過去の記録
過去の記録 ~09/10|本日 09/11 | 今後の予定 09/12~
講演会
16:20-17:50 数理科学研究科棟(駒場) 052号室
伊藤 高一 氏 (IRI-DNL)
インターネットにおける数理科学的手法と実際「DNSとWebアクセス」
https://www.ms.u-tokyo.ac.jp/lecture/2008/inet/index.html
伊藤 高一 氏 (IRI-DNL)
インターネットにおける数理科学的手法と実際「DNSとWebアクセス」
[ 講演概要 ]
テーマごとに個別の企業活動を紹介し、第一線で活躍する企業研究者を招聘し、現場レポートを聴き、議論を行うことで、インターネット数理科学の原理とその応用の実際を紹介する。
[ 参考URL ]テーマごとに個別の企業活動を紹介し、第一線で活躍する企業研究者を招聘し、現場レポートを聴き、議論を行うことで、インターネット数理科学の原理とその応用の実際を紹介する。
https://www.ms.u-tokyo.ac.jp/lecture/2008/inet/index.html
2008年06月18日(水)
代数学コロキウム
16:30-18:45 数理科学研究科棟(駒場) 117号室
服部 新 氏 (北海道大学大学院理学研究院) 16:30-17:30
On a ramification bound of semi-stable torsion representations over a local field
朝倉 政典 氏 (北海道大学大学院理学研究院) 17:45-18:45
Beilinson-Tate予想と楕円曲面のK_1の不分解元
服部 新 氏 (北海道大学大学院理学研究院) 16:30-17:30
On a ramification bound of semi-stable torsion representations over a local field
朝倉 政典 氏 (北海道大学大学院理学研究院) 17:45-18:45
Beilinson-Tate予想と楕円曲面のK_1の不分解元
[ 講演概要 ]
(佐藤周友氏との共同研究)
代数サイクルのTate予想のK理論における類似であるBeilinson-Tate予想について、
楕円曲面の場合にそれが成り立つ非自明な例を構成する。
これは、p進レギュレーターの非消滅と関係しており、
応用としてK_1の不分解元であって整数環上のモデルからくるようなものを構成する。
(佐藤周友氏との共同研究)
代数サイクルのTate予想のK理論における類似であるBeilinson-Tate予想について、
楕円曲面の場合にそれが成り立つ非自明な例を構成する。
これは、p進レギュレーターの非消滅と関係しており、
応用としてK_1の不分解元であって整数環上のモデルからくるようなものを構成する。
数理ファイナンスセミナー
17:30-19:00 数理科学研究科棟(駒場) 122号室
塩谷 匡介 氏 (日本銀行)
経済学と金融工学 ―Financial Economics入門―」(講義)
+M. Piazzesi and E. Swanson, "Futures Prices as Risk-Adjusted Forecasts
of Monetary Policy", Journal of Monetary Economics (2008)
塩谷 匡介 氏 (日本銀行)
経済学と金融工学 ―Financial Economics入門―」(講義)
+M. Piazzesi and E. Swanson, "Futures Prices as Risk-Adjusted Forecasts
of Monetary Policy", Journal of Monetary Economics (2008)
2008年06月17日(火)
トポロジー火曜セミナー
16:30-18:00 数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
佐野 友二 氏 (東京大学IPMU)
Multiplier ideal sheaves and Futaki invariant on toric Fano manifolds.
Tea: 16:00 - 16:30 コモンルーム
佐野 友二 氏 (東京大学IPMU)
Multiplier ideal sheaves and Futaki invariant on toric Fano manifolds.
[ 講演概要 ]
I would like to discuss the subvarieties cut off by the multiplier
ideal sheaves (MIS) and Futaki invariant on toric Fano manifolds.
Futaki invariant is one of the necessary conditions for the existence
of Kahler-Einstein metrics on Fano manifolds,
on the other hand MIS is one of the sufficient conditions introduced by Nadel.
Especially I would like to focus on the MIS related to the Monge-Ampere equation
for Kahler-Einstein metrics on non-KE toric Fano manifolds.
The motivation of this work comes from the investigation of the
relationship with slope stability
of polarized manifolds introduced by Ross and Thomas.
This talk will be based on a part of the joint work with Akito Futaki
(arXiv:0711.0614).
I would like to discuss the subvarieties cut off by the multiplier
ideal sheaves (MIS) and Futaki invariant on toric Fano manifolds.
Futaki invariant is one of the necessary conditions for the existence
of Kahler-Einstein metrics on Fano manifolds,
on the other hand MIS is one of the sufficient conditions introduced by Nadel.
Especially I would like to focus on the MIS related to the Monge-Ampere equation
for Kahler-Einstein metrics on non-KE toric Fano manifolds.
The motivation of this work comes from the investigation of the
relationship with slope stability
of polarized manifolds introduced by Ross and Thomas.
This talk will be based on a part of the joint work with Akito Futaki
(arXiv:0711.0614).
2008年06月16日(月)
複素解析幾何セミナー
10:30-12:00 数理科学研究科棟(駒場) 128号室
山ノ井 克俊 氏 (熊本大自然)
有理型関数の高階導関数の零点について
山ノ井 克俊 氏 (熊本大自然)
有理型関数の高階導関数の零点について
2008年06月14日(土)
東京無限可積分系セミナー
13:30-16:00 数理科学研究科棟(駒場) 117号室
孫 娟娟 氏 (東大数理) 13:30-14:30
Confluent KZ equations for $sl_2$ and quantization of monodromy preserving deformation
Exact Solution and Physical Combinatorics of Critical Dense
Polymers
孫 娟娟 氏 (東大数理) 13:30-14:30
Confluent KZ equations for $sl_2$ and quantization of monodromy preserving deformation
[ 講演概要 ]
We obtain a system of confluent Knizhnik-Zamolodchikov (KZ) equations which generalizes that of KZ equations for $sl_2$,
and give integral solutions of the system. We also study the relation between the system and monodromy preserving deformation theory,
and recover quantizations of Painlev\\'e equations P_I-P_V with affine Weyl group symmetry which are introduced by H.Nagoya.
Paul A. Pearce 氏 (Univ. of Melbourne) 15:00-16:00We obtain a system of confluent Knizhnik-Zamolodchikov (KZ) equations which generalizes that of KZ equations for $sl_2$,
and give integral solutions of the system. We also study the relation between the system and monodromy preserving deformation theory,
and recover quantizations of Painlev\\'e equations P_I-P_V with affine Weyl group symmetry which are introduced by H.Nagoya.
Exact Solution and Physical Combinatorics of Critical Dense
Polymers
[ 講演概要 ]
A Yang-Baxter integrable model of critical dense polymers on the
square lattice
is introduced corresponding to the first member ${\\cal LM}(1,2)$ of a
family of logarithmic
minimal models. The model has no local degrees of freedom, only non-
local degrees
of freedom in the form of extended polymers. The model is built
diagrammatically using the
planar Temperley-Lieb algebra and solved exactly on finite width
strips using transfer matrix
techniques. The bulk and boundary free energies and finite-size
corrections are
obtained from the Euler-Maclaurin formula. The spectra are classified
by selection rules and
the physical combinatorics of the eigenvalue patterns of zeros in the
complex
spectral-parameter plane. This yields explicit finitized conformal
characters.
In particular, in the scaling limit, we confirm the central charge
$c=-2$ and conformal weights
$\\Delta_{1,s}=\\frac{(2-s)^2-1}{8}$ for $s=1,2,3,\\ldots$ where $s-1$ is
the number
of defects.
A Yang-Baxter integrable model of critical dense polymers on the
square lattice
is introduced corresponding to the first member ${\\cal LM}(1,2)$ of a
family of logarithmic
minimal models. The model has no local degrees of freedom, only non-
local degrees
of freedom in the form of extended polymers. The model is built
diagrammatically using the
planar Temperley-Lieb algebra and solved exactly on finite width
strips using transfer matrix
techniques. The bulk and boundary free energies and finite-size
corrections are
obtained from the Euler-Maclaurin formula. The spectra are classified
by selection rules and
the physical combinatorics of the eigenvalue patterns of zeros in the
complex
spectral-parameter plane. This yields explicit finitized conformal
characters.
In particular, in the scaling limit, we confirm the central charge
$c=-2$ and conformal weights
$\\Delta_{1,s}=\\frac{(2-s)^2-1}{8}$ for $s=1,2,3,\\ldots$ where $s-1$ is
the number
of defects.
2008年06月12日(木)
作用素環セミナー
16:30-18:00 数理科学研究科棟(駒場) 156号室
見村万佐人 氏 (東大数理)
On Lubotzky's property $(\\tau)$ and expander graphs
見村万佐人 氏 (東大数理)
On Lubotzky's property $(\\tau)$ and expander graphs
統計数学セミナー
16:20-17:30 数理科学研究科棟(駒場) 126号室
福水 健次 氏 (統計数理研究所)
再生核による指数分布族の構成とその統計的推定への応用
https://www.ms.u-tokyo.ac.jp/~kengok/statseminar/2008/03.html
福水 健次 氏 (統計数理研究所)
再生核による指数分布族の構成とその統計的推定への応用
[ 講演概要 ]
再生核ヒルベルト空間を用いて、ヒルベルト多様体として指数分布族を 構成する方法について述べる。無限次元指数分布族に関しては、Orlicz 空間を用いたPistone & Sempi (1995) の構成法が知られているが、 有限サンプルによる推定を考える場合、尤度関数が多様体上の連続汎関 数にならない点が問題となる。本講演の構成では、再生核ヒルベルト空 間を用いることにより尤度関数は連続となり、統計的推定の議論が容易 となる。再生核ヒルベルト空間が有限次元の場合は通常の有限次元指数 分布族の推定理論と一致し、無限次元の場合はその自然な拡張を与える。 本講演では、統計的推定への応用として、正則化最尤推定法と、特異点 を持つモデルの漸近理論に関して述べる。
[ 参考URL ]再生核ヒルベルト空間を用いて、ヒルベルト多様体として指数分布族を 構成する方法について述べる。無限次元指数分布族に関しては、Orlicz 空間を用いたPistone & Sempi (1995) の構成法が知られているが、 有限サンプルによる推定を考える場合、尤度関数が多様体上の連続汎関 数にならない点が問題となる。本講演の構成では、再生核ヒルベルト空 間を用いることにより尤度関数は連続となり、統計的推定の議論が容易 となる。再生核ヒルベルト空間が有限次元の場合は通常の有限次元指数 分布族の推定理論と一致し、無限次元の場合はその自然な拡張を与える。 本講演では、統計的推定への応用として、正則化最尤推定法と、特異点 を持つモデルの漸近理論に関して述べる。
https://www.ms.u-tokyo.ac.jp/~kengok/statseminar/2008/03.html
2008年06月09日(月)
数理人口学・数理生物学セミナー
16:30-17:30 数理科学研究科棟(駒場) 126号室
中岡 慎治 氏 (東京大学大学院数理科学研究科)
幼生の行動変化が個体群動態に及ぼす影響の数理モデル
中岡 慎治 氏 (東京大学大学院数理科学研究科)
幼生の行動変化が個体群動態に及ぼす影響の数理モデル
[ 講演概要 ]
動物の行動変化は個体群動態に影響を及ぼし得る。群生はもっとも良く知られた
動物行動の一つで、凝集することによって捕食者から狙われるリスクを回避する
ような効果(たとえば希釈効果)などがある。、たとえば幼生は成体に比べて一般に
捕食に会うリスクが高いため、個体の成長は行動を決める上で非常に重要な要因
である。
本研究では捕食者にステージ構造を考慮した捕食者被食者数理モデルを
構築し、動物の行動変化が個体群動態に及ぼす影響を調べた。もし種内で資源を
めぐる競争が激しい場合、上位の捕食者による捕食リスクが増えるにつれて
凝集して群生することは必ずしもメリットとはならず、Allee 効果による突然の
群生消滅が生じる可能性があることを数理モデルの解析・シミュレーションに
よって明らかにした。
動物の行動変化は個体群動態に影響を及ぼし得る。群生はもっとも良く知られた
動物行動の一つで、凝集することによって捕食者から狙われるリスクを回避する
ような効果(たとえば希釈効果)などがある。、たとえば幼生は成体に比べて一般に
捕食に会うリスクが高いため、個体の成長は行動を決める上で非常に重要な要因
である。
本研究では捕食者にステージ構造を考慮した捕食者被食者数理モデルを
構築し、動物の行動変化が個体群動態に及ぼす影響を調べた。もし種内で資源を
めぐる競争が激しい場合、上位の捕食者による捕食リスクが増えるにつれて
凝集して群生することは必ずしもメリットとはならず、Allee 効果による突然の
群生消滅が生じる可能性があることを数理モデルの解析・シミュレーションに
よって明らかにした。
講演会
16:30-18:00 数理科学研究科棟(駒場) 470号室
W. Rundell 氏 (Texas A&M Univ.)
Some Unsolved Inverse Spectral Problems
W. Rundell 氏 (Texas A&M Univ.)
Some Unsolved Inverse Spectral Problems
[ 講演概要 ]
Perhaps the first well-studied inverse problem
was the determination of the potential $q(x)$ in
$-u'' + q(x) u = \\lambda_n u$ given the eigenvalues
$\\{\\lambda_n\\}$. Despite its venerable age and
the fact that a considerable literature is still being published,
there are several major outstanding problems;
some are quite simple to state.
This seminar will outline some of these.
We will try to show why the problems are hard,
but leave it to the audience to attempt solutions.
Perhaps the first well-studied inverse problem
was the determination of the potential $q(x)$ in
$-u'' + q(x) u = \\lambda_n u$ given the eigenvalues
$\\{\\lambda_n\\}$. Despite its venerable age and
the fact that a considerable literature is still being published,
there are several major outstanding problems;
some are quite simple to state.
This seminar will outline some of these.
We will try to show why the problems are hard,
but leave it to the audience to attempt solutions.
複素解析幾何セミナー
10:30-12:00 数理科学研究科棟(駒場) 128号室
相原 義弘 氏 (沼津高専)
Deficiencies of holomorphic curves in algebraic manifolds
相原 義弘 氏 (沼津高専)
Deficiencies of holomorphic curves in algebraic manifolds
2008年06月05日(木)
作用素環セミナー
16:30-18:00 数理科学研究科棟(駒場) 056号室
谷本溶 氏 (東大数理)
Another analogue of the Borel-Weil theory on loop groups
谷本溶 氏 (東大数理)
Another analogue of the Borel-Weil theory on loop groups
応用解析セミナー
16:00-17:30 数理科学研究科棟(駒場) 002号室
齊藤 宣一 氏 (東京大学大学院数理科学研究科)
Keller-Segel系に対する離散化手法
齊藤 宣一 氏 (東京大学大学院数理科学研究科)
Keller-Segel系に対する離散化手法
[ 講演概要 ]
細胞性粘菌の凝集現象を記述するモデルとして広く知られるKeller-Segel(KS)系に対して,講演者の提案した保存的上流差分法および有限要素法を紹介したい.これらスキームは,KS系の解の基本性質である正値性保存と質量保存を厳密に再現し,解が凝集による集中化を起こしても安定な計算が遂行可能である.さらに,離散$L^p$空間における離散的解析半群の理論を応用して,陽的な誤差評価が導出される.なお当日の講演では,誤差解析等の理論よりは,離散スキームの構成方法や条件の説明に焦点をおきたい.
細胞性粘菌の凝集現象を記述するモデルとして広く知られるKeller-Segel(KS)系に対して,講演者の提案した保存的上流差分法および有限要素法を紹介したい.これらスキームは,KS系の解の基本性質である正値性保存と質量保存を厳密に再現し,解が凝集による集中化を起こしても安定な計算が遂行可能である.さらに,離散$L^p$空間における離散的解析半群の理論を応用して,陽的な誤差評価が導出される.なお当日の講演では,誤差解析等の理論よりは,離散スキームの構成方法や条件の説明に焦点をおきたい.
2008年06月04日(水)
代数学コロキウム
16:30-17:30 数理科学研究科棟(駒場) 117号室
坂内 健一 氏 (慶應義塾大学理工学部 )
$p$-adic elliptic polylogarithm, $p$-adic Eisenstein series and Katz measure
(joint work with G. Kings)
坂内 健一 氏 (慶應義塾大学理工学部 )
$p$-adic elliptic polylogarithm, $p$-adic Eisenstein series and Katz measure
(joint work with G. Kings)
[ 講演概要 ]
The Eisenstein classes are important elements in the motivic cohomology
of a modular curve, defined as the specializations of the motivic elliptic
polylogarithm by torsion sections. The syntomic Eisenstein classes are
defined as the image by the syntomic regulator of the motivic Eisenstein
classes. In this talk, we explain our result concerning the relation between
syntomic Eisenstein classes restricted to the ordinary locus and
p-adic Eisenstein series.
The Eisenstein classes are important elements in the motivic cohomology
of a modular curve, defined as the specializations of the motivic elliptic
polylogarithm by torsion sections. The syntomic Eisenstein classes are
defined as the image by the syntomic regulator of the motivic Eisenstein
classes. In this talk, we explain our result concerning the relation between
syntomic Eisenstein classes restricted to the ordinary locus and
p-adic Eisenstein series.
PDE実解析研究会
16:00-18:15 数理科学研究科棟(駒場) 056号室
William Rundell 氏 (Department of Mathematics, Texas A&M University) 16:00-17:00
Inverse Obstacle Recovery when the boundary condition is also unknown
The Inverse Scattering Problem for an Isotropic Medium
William Rundell 氏 (Department of Mathematics, Texas A&M University) 16:00-17:00
Inverse Obstacle Recovery when the boundary condition is also unknown
[ 講演概要 ]
We consider the inverse problem of recovering the shape, location
and surface properties of an object where the surrounding medium
is both conductive and homogeneous. It is assumed that the physical situation is modeled by either harmonic functions or solutions of the Helmholtz equation and that the boundary condition on the obstacle is one of impedance type. We measure either Cauchy data, on an accessible part of the exterior boundary or the far field pattern resulting from a plane wave. Given sets of Cauchy data pairs we wish to recover both the shape and location of the unknown obstacle together with its impedance.
It turns out this adds considerable complexity to the analysis. We give a local injectivity result and use two different algorithms
to investigate numerical reconstructions. The setting is in two space dimensions, but indications of possible extensions (and difficulties) to three dimensions are provided. We also look at the case of a nonlinear impedance function.
David Colton 氏 (Department of Mathematical Sciences, University of Delaware) 17:15-18:15We consider the inverse problem of recovering the shape, location
and surface properties of an object where the surrounding medium
is both conductive and homogeneous. It is assumed that the physical situation is modeled by either harmonic functions or solutions of the Helmholtz equation and that the boundary condition on the obstacle is one of impedance type. We measure either Cauchy data, on an accessible part of the exterior boundary or the far field pattern resulting from a plane wave. Given sets of Cauchy data pairs we wish to recover both the shape and location of the unknown obstacle together with its impedance.
It turns out this adds considerable complexity to the analysis. We give a local injectivity result and use two different algorithms
to investigate numerical reconstructions. The setting is in two space dimensions, but indications of possible extensions (and difficulties) to three dimensions are provided. We also look at the case of a nonlinear impedance function.
The Inverse Scattering Problem for an Isotropic Medium
[ 講演概要 ]
This talk is concerned with the inverse electromagnetic scattering problem for an isotropic inhomogeneous infinite cylinder. After formulating the direct scattering problem we proceed to the inverse scattering problem which is the main theme of this lecture. After discussing what is known about uniqueness for the inverse problem,we will proceed to the definition and properties of the far field operator. This leads to the study of a rather unusual spectral problem for partial differential equations called the interior transmission problem. We will state what is known about this problem including its role in determining lower bounds for the index of refraction from a knowledge of the far field pattern of the scattered wave, The talk is concluded by briefly considering the case of limited aperture data,in particular the use of the gap reciprocity method to determine the shape and location of buried objects. Numerical examples will be given as well as a number of open problems.
This talk is concerned with the inverse electromagnetic scattering problem for an isotropic inhomogeneous infinite cylinder. After formulating the direct scattering problem we proceed to the inverse scattering problem which is the main theme of this lecture. After discussing what is known about uniqueness for the inverse problem,we will proceed to the definition and properties of the far field operator. This leads to the study of a rather unusual spectral problem for partial differential equations called the interior transmission problem. We will state what is known about this problem including its role in determining lower bounds for the index of refraction from a knowledge of the far field pattern of the scattered wave, The talk is concluded by briefly considering the case of limited aperture data,in particular the use of the gap reciprocity method to determine the shape and location of buried objects. Numerical examples will be given as well as a number of open problems.
2008年06月03日(火)
Lie群論・表現論セミナー
16:30-18:00 数理科学研究科棟(駒場) 126号室
示野 信一 氏 (岡山理科大)
Matrix valued commuting differential operators with B2 symmetry
http://akagi.ms.u-tokyo.ac.jp/seminar.html
示野 信一 氏 (岡山理科大)
Matrix valued commuting differential operators with B2 symmetry
[ 講演概要 ]
B2 型のWeyl群の作用による対称性を持つ2次正方行列値の2階の可換な微分作用素を構成した。
作用素は Iida (Publ. Res. Inst. Math. Sci. Kyoto Univ. 32 (1996)) により計算された Sp(2,R)/U(2) の等質ベクトル束上の不変微分作用素の動径成分を特別な場合として含み、係数は楕円関数を用いて表される。
講演では、群の場合、可換な作用素の構成、spin Calogero-Sutherland 模型との関係について述べる。
[ 参考URL ]B2 型のWeyl群の作用による対称性を持つ2次正方行列値の2階の可換な微分作用素を構成した。
作用素は Iida (Publ. Res. Inst. Math. Sci. Kyoto Univ. 32 (1996)) により計算された Sp(2,R)/U(2) の等質ベクトル束上の不変微分作用素の動径成分を特別な場合として含み、係数は楕円関数を用いて表される。
講演では、群の場合、可換な作用素の構成、spin Calogero-Sutherland 模型との関係について述べる。
http://akagi.ms.u-tokyo.ac.jp/seminar.html
トポロジー火曜セミナー
16:30-18:00 数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
山口 祥司 氏 (東京大学大学院数理科学研究科)
On the geometry of certain slices of the character variety of a knot group
Tea: 16:00 - 16:30 コモンルーム
山口 祥司 氏 (東京大学大学院数理科学研究科)
On the geometry of certain slices of the character variety of a knot group
[ 講演概要 ]
joint work with Fumikazu Nagasato (Meijo University)
This talk is concerned with certain subsets in the character variety of a knot group.
These subsets are called '"slices", which are defined as a level set of a regular function associated to a meridian of a knot.
They are related to character varieties for branched covers along the knot.
Some investigations indicate that an equivariant theory for a knot is connected to a theory for branched covers via slices, for example, the equivariant signature of a knot and the equivariant Casson invariant.
In this talk, we will construct a map from slices into the character varieties for branched covers and investigate the properties.
In particular, we focus on slices called "trace-free", which are used to define the Casson-Lin invariant, and the relation to the character variety for two--fold branched cover.
joint work with Fumikazu Nagasato (Meijo University)
This talk is concerned with certain subsets in the character variety of a knot group.
These subsets are called '"slices", which are defined as a level set of a regular function associated to a meridian of a knot.
They are related to character varieties for branched covers along the knot.
Some investigations indicate that an equivariant theory for a knot is connected to a theory for branched covers via slices, for example, the equivariant signature of a knot and the equivariant Casson invariant.
In this talk, we will construct a map from slices into the character varieties for branched covers and investigate the properties.
In particular, we focus on slices called "trace-free", which are used to define the Casson-Lin invariant, and the relation to the character variety for two--fold branched cover.
2008年06月02日(月)
複素解析幾何セミナー
10:30-12:00 数理科学研究科棟(駒場) 128号室
本多 宣博 氏 (東工大理工)
A new series of compact minitwistor spaces and Moishezon twistor spaces over them
本多 宣博 氏 (東工大理工)
A new series of compact minitwistor spaces and Moishezon twistor spaces over them
Kavli IPMU Komaba Seminar
17:00-18:30 数理科学研究科棟(駒場) 002号室
Shinobu Hikami 氏 (The University of Tokyo)
Intersection theory from duality and replica
Shinobu Hikami 氏 (The University of Tokyo)
Intersection theory from duality and replica
[ 講演概要 ]
Kontsevich's work on Airy matrix integrals has led to explicit results for the
intersection numbers of the moduli space of curves. In this article we show that a duality between k-point functions on N by N matrices and N-point functions of k by k matrices, plus the replica method, familiar in the theory of disordered systems, allows one to recover Kontsevich's results on the intersection numbers, and to generalize them to other models. This provides an alternative and simple way to compute intersection numbers with one marked point, and leads also to some new results. This is a joint work with E. Brezin (Comm.Math. Phys. in press, arXiv:0708.2210).
Kontsevich's work on Airy matrix integrals has led to explicit results for the
intersection numbers of the moduli space of curves. In this article we show that a duality between k-point functions on N by N matrices and N-point functions of k by k matrices, plus the replica method, familiar in the theory of disordered systems, allows one to recover Kontsevich's results on the intersection numbers, and to generalize them to other models. This provides an alternative and simple way to compute intersection numbers with one marked point, and leads also to some new results. This is a joint work with E. Brezin (Comm.Math. Phys. in press, arXiv:0708.2210).
2008年05月29日(木)
作用素環セミナー
16:30-18:00 数理科学研究科棟(駒場) 056号室
Rolf Dyre Svegstrup 氏 (東大数理)
2D models in AQFT from wedge algebras
Rolf Dyre Svegstrup 氏 (東大数理)
2D models in AQFT from wedge algebras
2008年05月27日(火)
Lie群論・表現論セミナー
16:30-18:00 数理科学研究科棟(駒場) 126号室
笹木集夢 氏 (早稲田大学)
Visible actions on multiplicity-free spaces
http://akagi.ms.u-tokyo.ac.jp/seminar.html
笹木集夢 氏 (早稲田大学)
Visible actions on multiplicity-free spaces
[ 講演概要 ]
The holomorphic action of a Lie group G on a complex manifold D is called strongly visible if there exist a real submanifold S such that D':=G・S is open in D and an anti-holomorphic diffeomorphism σ which is an identity map on S and preserves each G-orbit in D'.
In this talk, we treat the case where D is a multiplicity-free space V of a connected complex reductive Lie group G(C), and show that the action of a compact real form of G(C) on V is strongly visible.
[ 参考URL ]The holomorphic action of a Lie group G on a complex manifold D is called strongly visible if there exist a real submanifold S such that D':=G・S is open in D and an anti-holomorphic diffeomorphism σ which is an identity map on S and preserves each G-orbit in D'.
In this talk, we treat the case where D is a multiplicity-free space V of a connected complex reductive Lie group G(C), and show that the action of a compact real form of G(C) on V is strongly visible.
http://akagi.ms.u-tokyo.ac.jp/seminar.html
2008年05月26日(月)
複素解析幾何セミナー
10:30-12:00 数理科学研究科棟(駒場) 128号室
下村 俊 氏 (慶大理工)
角領域における値分布論とその応用
下村 俊 氏 (慶大理工)
角領域における値分布論とその応用
2008年05月24日(土)
保型形式の整数論月例セミナー
13:30-16:00 数理科学研究科棟(駒場) 123号室
Raimandus Vidunas
氏 (神戸大学理学部
) 13:30-14:30
Identities between Appell's and univariate hyeprgeometric functions
Whittaker functions with one-dimensional $K$-type on a semisimple Lie group of Hermitian type
Raimandus Vidunas
氏 (神戸大学理学部
) 13:30-14:30
Identities between Appell's and univariate hyeprgeometric functions
[ 講演概要 ]
We look for univariate specializations of Appell'd bivariante hypergeometric functions that can be expressed in terms of univaraite ${}_{i+1} F_{i} ~(i=1,2,3)$ HGF's. The method is identifying cases when the partial differential equations for Appell's functions imply hypegeometric ordinary differential equations for their univariate specializations. In general, ordinary differential equations for univariate specializations of Apell's functions have order at moast 4.
示野 信一 氏 (岡山理科大学理学部) 14:45-15:45We look for univariate specializations of Appell'd bivariante hypergeometric functions that can be expressed in terms of univaraite ${}_{i+1} F_{i} ~(i=1,2,3)$ HGF's. The method is identifying cases when the partial differential equations for Appell's functions imply hypegeometric ordinary differential equations for their univariate specializations. In general, ordinary differential equations for univariate specializations of Apell's functions have order at moast 4.
Whittaker functions with one-dimensional $K$-type on a semisimple Lie group of Hermitian type
[ 講演概要 ]
橋爪(Hiroshima J. Math. 12(1982))が与えたクラス1 Whittaker関数の表示式のHermitian対称空間上の1次元$K$-typeに付随したWhittaker関数への拡張を与える。またHeckeman-Opdamの超幾何関数の極限として、クラス1または1次元$K$-type を持つWhittaker関数が得られることを調べる。後者は石井-織田-平野(Math. Proc. Cambridge Philos. Soc. 41 (2006))の類似であり、一部は大島利雄氏との共同研究である。
橋爪(Hiroshima J. Math. 12(1982))が与えたクラス1 Whittaker関数の表示式のHermitian対称空間上の1次元$K$-typeに付随したWhittaker関数への拡張を与える。またHeckeman-Opdamの超幾何関数の極限として、クラス1または1次元$K$-type を持つWhittaker関数が得られることを調べる。後者は石井-織田-平野(Math. Proc. Cambridge Philos. Soc. 41 (2006))の類似であり、一部は大島利雄氏との共同研究である。
2008年05月23日(金)
談話会・数理科学講演会
16:30-17:30 数理科学研究科棟(駒場) 123号室
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)
Jean-Michel Bismut 氏 (Univ. Paris-Sud, Orsay)
Functional integration and index theory
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)
Jean-Michel Bismut 氏 (Univ. Paris-Sud, Orsay)
Functional integration and index theory
[ 講演概要 ]
The heat equation proof of the Atiyah-Singer index theorem involves a local `fantastic cancellation' mechanism, which has long been unexplained conceptually.
In this lecture, I will show how the supersymmetric formalism introduced by physicists has ultimately led to a new understanding of this cancellation mechanism. Ideas of Witten and Atiyah relating the index theorem to the localization formulas of Duistermaat-Heckman in equivariant cohomology have ultimately led to a renewed understanding of the cancellation mechanism as being of geometric nature (albeit in infinite dimensions). The key fact is that when interpreting the heat equation method for the proof of the index theorem, integrals of measures on the loop space of the given manifold, which one obtains via Ito stochastic calculus, should be properly interpreted as integrals of differential forms on the loop space.
I will then explain how this new understanding of the local index theorem has naturally led to a better understanding of spectral invariants, and often to the proof of certain key properties.
The heat equation proof of the Atiyah-Singer index theorem involves a local `fantastic cancellation' mechanism, which has long been unexplained conceptually.
In this lecture, I will show how the supersymmetric formalism introduced by physicists has ultimately led to a new understanding of this cancellation mechanism. Ideas of Witten and Atiyah relating the index theorem to the localization formulas of Duistermaat-Heckman in equivariant cohomology have ultimately led to a renewed understanding of the cancellation mechanism as being of geometric nature (albeit in infinite dimensions). The key fact is that when interpreting the heat equation method for the proof of the index theorem, integrals of measures on the loop space of the given manifold, which one obtains via Ito stochastic calculus, should be properly interpreted as integrals of differential forms on the loop space.
I will then explain how this new understanding of the local index theorem has naturally led to a better understanding of spectral invariants, and often to the proof of certain key properties.
2008年05月22日(木)
応用解析セミナー
16:00-17:30 数理科学研究科棟(駒場) 002号室
森 洋一朗 氏 (University of British Columbia)
細胞生理学における数理研究のいくつかの話題について
森 洋一朗 氏 (University of British Columbia)
細胞生理学における数理研究のいくつかの話題について
[ 講演概要 ]
数理生理学は広汎な分野であり,用いられる手法も近年ますます多様化している.本講演では,数理生理学の中でも古典的な分野である電気生理学の数理モデルに関する最近の研究を紹介する.
電気生理学が対象とするのは細胞および組織レベルでの電気活動であり,これは神経・心・内分泌機能の根幹をなすものである.Hodgkin とHuxley の有名な仕事を契機として,この方面の研究は数理生理学に格好の題材を提供し続けてきた.本講演では,まず電気生理の基礎概念を紹介した後,イオン動態と細胞膜の3次元形状の効果を取り入れたモデルについて解説し,その心臓生理学への応用について語る.さらに時間が許せば,私が今興味を持っている細胞極性の生成,細胞の動きなどの話題についても紹介したい.
数理生理学は広汎な分野であり,用いられる手法も近年ますます多様化している.本講演では,数理生理学の中でも古典的な分野である電気生理学の数理モデルに関する最近の研究を紹介する.
電気生理学が対象とするのは細胞および組織レベルでの電気活動であり,これは神経・心・内分泌機能の根幹をなすものである.Hodgkin とHuxley の有名な仕事を契機として,この方面の研究は数理生理学に格好の題材を提供し続けてきた.本講演では,まず電気生理の基礎概念を紹介した後,イオン動態と細胞膜の3次元形状の効果を取り入れたモデルについて解説し,その心臓生理学への応用について語る.さらに時間が許せば,私が今興味を持っている細胞極性の生成,細胞の動きなどの話題についても紹介したい.
< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 次へ >