過去の記録 ~01/25本日 01/26 | 今後の予定 01/27~


10:00-11:00   数理科学研究科棟(駒場) 270号室
Alfred Ramani 氏 (Ecole Polytechnique)
All you never really wanted to know about QRT, but were foolhardy enough to ask (ENGLISH)
[ 講演概要 ]
We discuss various extensions of the famous QRT second order, first degree, integrable mapping. We show how these extensions can be combined. A discussion of integrable correspondences related to these extended QRT mappings is also presented.



16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
Francois Laudenbach 氏 (Univ. de Nantes)
Singular codimension-one foliations
and twisted open books in dimension 3.
(joint work with G. Meigniez)
[ 講演概要 ]
The allowed singularities are those of functions.
According to A. Haefliger (1958),
such structures on manifolds, called $\\Gamma_1$-structures,
are objects of a cohomological
theory with a classifying space $B\\Gamma_1$.
The problem of cancelling the singularities
(or regularization problem)
arise naturally.
For a closed manifold, it was solved by W.Thurston in a famous paper
(1976), with a proof relying on Mather's isomorphism (1971):
Diff$^\\infty(\\mathbb R)$ as a discrete group has the same homology
as the based loop space
$\\Omega B\\Gamma_1^+$.
For further extension to contact geometry, it is necessary
to solve the regularization problem
without using Mather's isomorphism.
That is what we have done in dimension 3. Our result is the following.

{\\it Every $\\Gamma_1$-structure $\\xi$ on a 3-manifold $M$ whose
normal bundle
embeds into the tangent bundle to $M$ is $\\Gamma_1$-homotopic
to a regular foliation
carried by a (possibily twisted) open book.}

The proof is elementary and relies on the dynamics of a (twisted)
pseudo-gradient of $\\xi$.

All the objects will be defined in the talk, in particular the notion
of twisted open book which is a central object in the reported paper.


16:30-18:00   数理科学研究科棟(駒場) 126号室
Laurant Demonet 氏 (Nagoya University)
Categorification of cluster algebras arising from unipotent subgroups of non-simply laced Lie groups (ENGLISH)
[ 講演概要 ]
We introduce an abstract framework to categorify some antisymetrizable cluster algebras by using actions of finite groups on stably 2-Calabi-Yau exact categories. We introduce the notion of the equivariant category and, with similar technics as in [K], [CK], [GLS1], [GLS2], [DK], [FK], [P], we construct some examples of such categorifications. For example, if we let Z/2Z act on the category of representations of the preprojective algebra of type A2n-1 via the only non trivial action on the diagram, we obtain the cluster structure on the coordinate ring of the maximal unipotent subgroup of the semi-simple Lie group of type Bn [D]. Hence, we can get relations between the cluster algebras categorified by some exact subcategories of these two categories. We also prove by the same methods as in [FK] a conjecture of Fomin and Zelevinsky stating that the cluster monomials are linearly independent.

[CK] P. Caldero, B. Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), no. 1, 169--211.
[DK] R. Dehy, B. Keller, On the combinatorics of rigid objects in 2-Calabi-Yau categories, arXiv: 0709.0882.
[D] L. Demonet, Cluster algebras and preprojective algebras: the non simply-laced case, C. R. Acad. Sci. Paris, Ser. I 346 (2008), 379--384.
[FK] C. Fu, B. Keller, On cluster algebras with coefficients and 2-Calabi-Yau categories, arXiv: 0710.3152.
[GLS1] C. Geiss, B. Leclerc, J. Schröer, Rigid modules over preprojective algebras, Invent. Math. 165 (2006), no. 3, 589--632.
[GLS2] C. Geiss, B. Leclerc, J. Schröer, Cluster algebra structures and semicanoncial bases for unipotent groups, arXiv: math/0703039.
[K] B. Keller, Categorification of acyclic cluster algebras: an introduction, arXiv: 0801.3103.
[P] Y. Palu, Cluster characters for triangulated 2-Calabi--Yau categories, arXiv: math/0703540.



17:00-18:00   数理科学研究科棟(駒場) 470号室
Oleg Emanouilov 氏 (Colorado State University)
Recovery of weakly coupled system from partial Cauchy data (ENGLISH)
[ 講演概要 ]
We consider the inverse problem for recovery of coefficients of weakly coupled system of elliptic equations in a bounded 2D domain.


15:30-17:00   数理科学研究科棟(駒場) 122号室
渡辺 究 氏 (東京大学数理科学研究科)
On projective manifolds swept out by cubic varieties (JAPANESE)
[ 講演概要 ]
The structures of embedded complex projective manifolds swept out by varieties with preassigned properties have been studied by several authors. In this talk, we study structures of embedded projective manifolds swept out by cubic varieties.



17:00-18:00   数理科学研究科棟(駒場) 370号室
Oleg Emanouilov 氏 (Colorado State University)
Inverse boundary value problem for Schroedinger equation in two dimensions (ENGLISH)
[ 講演概要 ]
We relax the regularity condition on potentials of Schroedinger equations in uniqueness results on the inverse boundary value problem recently proved in A.Bukhgeim (2008) and O. Imanuvilov, G.Uhlmann and M. Yamamoto (2010).


15:00-16:00   数理科学研究科棟(駒場) 128号室
森洋一朗 氏 (ミネソタ大学)
電解質および浸透圧調節の細胞生理学とその数理モデル (JAPANESE)
[ 講演概要 ]
モデルはpump-leak model と呼ばれ、数学的には常微分方程式に
知られていなかった。本講演では、pump-leak model には熱力学的な
結果を紹介する。さらにpump-leak model を拡張して得られる偏微分


16:30-17:30   数理科学研究科棟(駒場) 128号室
Bernold Fiedler 氏 (Free University of Berlin)
Schoenflies spheres in Sturm attractors (ENGLISH)
[ 講演概要 ]
In gradient systems on compact manifolds the boundary of the unstable manifold of an equilibrium need not be homeomorphic to a sphere, or to any compact manifold.
For scalar parabolic equations in one space dimension, however, we can exlude complications like Reidemeister torsion and the Alexander horned sphere. Instead the boundary is a Schoenflies embedded sphere. This is due to Sturm nodal properties related to the Matano lap number.



18:00-19:00   数理科学研究科棟(駒場) 056号室
志甫 淳 氏 (東京大学数理科学研究科)
On extension and restriction of overconvergent isocrystals (ENGLISH)
[ 講演概要 ]
First we explain two theorems concerning (log) extension of overconvergent isocrystals. One is a p-adic analogue of the theorem of logarithmic extension of regular integrable connections, and the other is a p-adic analogue of Zariski-Nagata purity. Next we explain a theorem which says that we can check certain property of overconvergent isocrystals by restricting them to curves.




16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
與倉 昭治 氏 (鹿児島大学)
Fiberwise bordism groups and related topics (JAPANESE)
[ 講演概要 ]
We have recently introduced the notion of fiberwise bordism. In this talk, after a quick review of some of the classical (co)bordism theories, we will explain motivations of considering fiberwise bordism and some results and connections with other known works, such as M. Kreck's bordism groups of orientation preserving diffeomorphisms and Emerson-Meyer's bivariant K-theory etc. An essential motivation is our recent work towards constructing a bivariant-theoretic analogue (in the sense of Fulton-MacPherson) of Levine-Morel's or Levine-Pandharipande's algebraic cobordism.


16:30-18:00   数理科学研究科棟(駒場) 128号室
寺澤 祐高 氏 (東京大数理(日本学術振興会特別研究員PD))
確率的摂動項を持つ冪乗法則流体方程式の弱解の存在と 一意性について (JAPANESE)
[ 講演概要 ]
偏微分方程式に加法的確率的摂動項を加えた確率偏微分方程式 の弱解
の存在と一意性について考察する。 非ニュートン流体としては、粘性
が変形速度テンソルの大きさの冪乗 の形で依存する冪乗法則流体を考
察し、確率的摂動項としては 有色雑音を考察する。 Necas-Malek-
Ruzicka('93)において、確率的外力項を伴わない、 決定方程式に関し
て示された弱解の存在と一意性の主張を、 確率的摂動項を持つ方程式
に対して示す。 解の存在の証明は、ガレルキン近似によって得られた
解の列に対して、 伊藤の公式、Birkholder-Davis-Gundyの不等式など
により、 解の列のコンパクト性を示すこと及び、解の部分列が収束し
、 その収束先が方程式を弱い意味で満たすことを示すことでなされる。


16:30-17:30   数理科学研究科棟(駒場) 052号室
Ralph Bruckschen 氏 (ベルリン工科大学、MATHEON)
Interactive Data Visualization challenges, approaches and examples (ENGLISH)
[ 講演概要 ]
Data visualization is probably the most important method to analyze scientific datasets. In the time of petaflop supercomputers and high resolution sensors, the visualization of such datasets became a challenge because of the sheer magnitude. Using the latest technology I will describe some of the challenges and approaches to visualize large and massive datasets. The main bottle necks will be explained, as some algorithms and data structures to widen them. Finally I will show some examples of data visualization using a CAVE environment and virtual prototyping from the 3D Labor at the Technical University of Berlin.



17:00-18:00   数理科学研究科棟(駒場) 470号室
Oleg Emanouilov 氏 (Colorado State University)
Inverse boundary value problem for Schroedinger equation in two dimensions (ENGLISH)
[ 講演概要 ]
We relax the regularity condition on potentials of Schroedinger equations in uniqueness results on the inverse boundary value problem recently proved in A.Bukhgeim (2008) and O. Imanuvilov, G.Uhlmann and M. Yamamoto (2010).


15:30-17:00   数理科学研究科棟(駒場) 122号室
伊藤 敦 氏 (東京大学数理科学研究科)
Okounkov bodies and Seshadri constants (JAPANESE)
[ 講演概要 ]
Okounkov bodies, which are convex bodies associated to big line bundles, have rich information of the line bundles. On the other hand, Seshadri constants are invariants which measure the positivities of line bundles. In this talk, I will explain a relation between Okounkov bodies and Seshadri constants.


10:30-12:00   数理科学研究科棟(駒場) 128号室
野口潤次郎 氏 (東大数理)
岡の余零問題と関連する話題について (JAPANESE)
[ 講演概要 ]
The main part of this talk is a joint work with my colleagues, M. Abe and S. Hamano. After the solution of Cousin II problem by K. Oka III in 1939, he thought an extra-zero problem in 1945 (his posthumous paper) asking if it is possible to solve an arbitrarily given Cousin II problem adding some extra-zeros whose support is disjoint from the given one. Some special case was affirmatively confirmed in dimension two and a counter-example in dimension three or more was obtained. We will give a complete solution of this problem with examples and to discuss some new questions. An example on a toric variety of which idea is based on K. Stein's paper in 1941 has some special interest and will be discussed. I would like also to discuss some analytic intersections form the viewpoint of Nevanlinna theory.



16:30-17:30   数理科学研究科棟(駒場) 123号室
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)。

金井 雅彦 氏 (東京大学・数理科学研究科)
複比を巡って (JAPANESE)
[ 講演概要 ]
複比 (cross ratio) は二千年にもおよぶ歴史を有すると言われているが,



16:30-17:30   数理科学研究科棟(駒場) 056号室
金城 謙作 氏 (東京大学数理科学研究科)
Hypergeometric series and arithmetic-geometric mean over 2-adic fields (JAPANESE)
[ 講演概要 ]
Dwork proved that the Gaussian hypergeometric function on p-adic numbers
can be extended to a function which takes values of the unit roots of
ordinary elliptic curves over a finite field of characteristic p>2.
We present an analogous theory in the case p=2.
As an application, we give a relation between the canonical lift
and the unit root of an elliptic curve over a finite field of
characteristic 2
by using the 2-adic arithmetic-geometric mean.



16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
竹内 潔 氏 (筑波大学)
Motivic Milnor fibers and Jordan normal forms of monodromies (JAPANESE)
[ 講演概要 ]
We introduce a method to calculate the equivariant
Hodge-Deligne numbers of toric hypersurfaces.
Then we apply it to motivic Milnor
fibers introduced by Denef-Loeser and study the Jordan
normal forms of the local and global monodromies
of polynomials maps in various situations.
Especially we focus our attention on monodromies
at infinity studied by many people. The results will be
explicitly described by the ``convexity" of
the Newton polyhedra of polynomials. This is a joint work
with Y. Matsui and A. Esterov.



15:30-17:00   数理科学研究科棟(駒場) 122号室
藤野 修 氏 (京都大学理学系研究科)
Minimal model theory for log surfaces (JAPANESE)
[ 講演概要 ]
We discuss the log minimal model theory for log sur- faces. We show that the log minimal model program, the finite generation of log canonical rings, and the log abundance theorem for log surfaces hold true under assumptions weaker than the usual framework of the log minimal model theory.


13:30-14:30   数理科学研究科棟(駒場) 056号室
Horst Heck
(Technische Universität Darmstadt)
Stationary Weak Solutions of the Navier-Stokes Equations Past an Obstacle (ENGLISH)
[ 講演概要 ]
Consider the stationary Navier-Stokes equations in an exterior smooth domain $\\Omega$. If the flow condition $u_\\infty$ for $u$ at infinity is non-zero and the external force $f\\in \\dot H^{-1}_2(\\Omega)$ is given Leray constructed a weak solution $u\\in \\dot H^1_2(\\Omega)$, the homogeneous Sobolev space, with $u-u_\\infty\\in L^6(\\Omega)$.
We show that if in addition $f\\in \\dot H^{-1}_q(\\Omega)$ for some $q\\in (4/3,4)$ then the weak solution has the property $u-u_\\infty\\in L^{4q/(4-q)}(\\Omega)$.
This additional integrability implies that $u$ satisfies the energy identity. Further consequences are uniqueness results for small $u_\\infty$ and $f$ and continuous dependence of the solution with respect to $u_\\infty$.
The presented results are joint work with Hyunseok Kim and Hideo Kozono.


10:30-12:00   数理科学研究科棟(駒場) 128号室
本多宣博 氏 (東北大学)
Classification of Moishezon twistor spaces on 4CP^2 (JAPANESE)



11:00-14:30   数理科学研究科棟(駒場) 117号室
Alexander Orlov 氏 (Nonlinear Wave Processes Laboratory, Oceanology Institute (Moscow)) 11:00-12:00
CKP Hierarchy, Bosonic Tau Function, Bosonization Formulae and Orthogonal Polynomials both in Odd and Even Variables
(based on a joint work with Johan van de Leur and Takahiro Shiota) (ENGLISH)
[ 講演概要 ]
We develop the theory of CKP hierarchy introduced in the papers of Kyoto school where the CKP tau function is written as a vacuum expectation value in terms of free bosons. We show that a sort of odd currents naturaly appear. We consider bosonization formulae which relate bosonic Fock vectors to polynomials in even and odd Grassmannian variables, where both sets play a role of higher times.
増田恭穂 氏 (神戸大学) 13:30-14:30
van Diejenの$q$差分作用素に対する核関係式と
多重$q$超幾何級数の変換公式 (JAPANESE)
[ 講演概要 ]
$BC$型のCauchy型核関数がKoornwinderの$q$差分作用素に対して, ある関係式を満たすことが知られている. 本講演ではこの結果を一般化して, 核関数とvan Diejenの$q$差分作用素族との関係を述べる. また,この関係式から現れる2種類の多重$q$超幾何級数の変換公式を紹介する.



15:00-16:10   数理科学研究科棟(駒場) 000号室
本セミナーはITスタジオで開かれます.参加希望の方は事前に東大数理 鎌谷研吾( kengok at ms.u-tokyo.ac.jp)までお問い合わせください.
清 智也 氏 (慶應義塾大学 理工学部 数理科学科)
定常な最適輸送写像から作られる統計モデル (JAPANESE)
[ 講演概要 ]
輸送コストの定義が Gray, Neuhoff and Shields (1975) によって与えられている.
本研究の一部は,Ludger Rueschendorf 教授との共同研究である
[ 講演参考URL ]



16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
Andrei Pajitnov 氏 (Univ. de Nantes, Univ. of Tokyo)
Circle-valued Morse theory for complex hyperplane arrangements (ENGLISH)
[ 講演概要 ]
Let A be a complex hyperplane arrangement
in an n-dimensional complex vector space V.
Denote by H the union of the hyperplanes
and by M the complement to H in V.

We develop the real-valued and circle-valued Morse
theory on M. We prove that if A is essential then
M has the homotopy type of a space
obtained from a finite n-dimensional
CW complex fibered over a circle,
by attaching several cells of dimension n.

We compute the Novikov homology of M and show
that its structure is similar to the
homology with generic local coefficients:
it vanishes for all dimensions except n.

This is a joint work with Toshitake Kohno.


16:30-18:00   数理科学研究科棟(駒場) 126号室
大島芳樹 氏 (東京大学大学院数理科学研究科)
コホモロジカル誘導の局所化 (ENGLISH)
[ 講演概要 ]
コホモロジカル誘導は(g,K)-加群に対して代数的に定義され、半単純リー群の離散系列表現、主系列表現(のHarish-Chandra加 群)、Zuckerman加群などを生成する。
Borel部分代数の1次元表現からの誘導の場合、誘導された表現は旗多様体のD加群を用いて実現できることが,Hecht, Milicic, Schmid, Wolfにより示されている。

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 次へ >