過去の記録 ~07/24本日 07/25 | 今後の予定 07/26~


10:30-11:30   数理科学研究科棟(駒場) 056号室
Wojciech Zajączkowski 氏 (Institute of Mathematics Polish Academy of Sciences)
Global regular solutions to the Navier-Stokes equations which remain close to the two-dimensional solutions (English)
[ 講演概要 ]
We consider the motion of the Navier-Stokes equations in a cylinder with the Navier-boundary conditions. First we prove global existence of regular two-dimensional solutions non-decaying in time. Next we show stability of these solutions. In this way we have existence of global regular solutions which remain close to the two-dimensional solutions. We prove the results for nonvanishing external force in time.



13:00-18:00   数理科学研究科棟(駒場) 128号室
貝塚 公一 氏 (学習院大学) 13:30-15:00
Scattering theory for the Laplacian on symmetric spaces of noncompact type and its application (JAPANESE)
[ 講演概要 ]
非コンパクト型対称空間上のラプラシアンに対する散乱理論について紹介する. ラプラシアンのレゾルベントに対する極限吸収原理,レゾルベントとPoisson 作用素に対する無限遠での漸近展開,Helmholtz方程式の解の特徴づけ等の散乱理論における基本的な定理について解説する. 特に, 対称空間上のRadon変換を用いた, 一様Fourier制限評価について詳しく述べる.
猪奥 倫左 氏 (愛媛大学) 15:30-17:00
スケール不変性を持つ臨界Hardyの不等式について (JAPANESE)
[ 講演概要 ]
Hardyの不等式は,劣臨界指数の場合には伸縮に関するスケール不変性を持つ事が知られている.一方,臨界指数の場合には対数型の特異性に起因して通常の伸縮不変性は破綻する. 本講演では,「伸縮に関するスケール不変性を持つ平均振動型の臨界Hardyの不等式」および「非線形スケール不変性を持つ対数補正型臨界 Hardyの不等式」の二種を導出する.更にその最良定数は達成されないことを,対応する変分問題を解析することで証明する.



16:40-17:40   数理科学研究科棟(駒場) 056号室
Sandra Rozensztajn 氏 (ENS de Lyon)
Congruences of modular forms modulo p and a variant of the Breuil-Mézard conjecture (English)
[ 講演概要 ]
In this talk I will explain how a problem of congruences modulo p in the space of modular forms $S_k(\Gamma_0(p))$ is related to the geometry of some deformation spaces of Galois representations and can be solved by using a variant of the Breuil-Mézard conjecture.


16:30-18:00   数理科学研究科棟(駒場) 122号室
早瀬友裕 氏 (東大数理)
De Finetti theorems related to Boolean independence (English)



10:30-11:30   数理科学研究科棟(駒場) 056号室
Elio Eduardo Espejo 氏 (National University of Colombia / Osaka University)
Global existence and asymptotic behavior for some Keller-Segel systems coupled with Navier-Stokes equations (英語)
[ 講演概要 ]
There are plenty of examples in nature, where cells move in response to some chemical signal in the environment. Biologists call this phenomenon chemotaxis. In my talk I will approach the problem of describing mathematically the phenomenon of chemotaxis when it happens surrounded by a fluid. This is a new research topic bringing the attention of many scientists because it has given rise to many interesting questions having relevance in both biology and mathematics. In particular, I will present some new mathematical models arising from my current research that have given rise to Keller-Segel type systems coupled with Navier-Stokes systems. I will present some results of global existence and asymptotic behavior. Finally I will discuss some open problems.



15:00-16:20   数理科学研究科棟(駒場) 122号室
Don Yueping 氏 (Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo)
Estimating the seroincidence of pertussis in Japan
[ 講演概要 ]
Despite relatively high vaccination coverage of pertussis for decades, the disease keeps circulating among both vaccinated and unvaccinated individuals and a periodic large epidemic is observed every 4 years. To understand the transmission dynamics, specific immunoglobulin G (IgG) antibodies against pertussis toxin (PT) have been routinely measured in Japan. Using the cross-sectional serological survey data with a known decay rate of antibody titres as a function of time since infection, we estimate the age-dependent seroincidence of pertussis. The estimated incidence of pertussis declined with age, the shape of which will be extremely useful for reconstructing the transmission dynamics and considering effective countermeasures.



10:00-11:30   数理科学研究科棟(駒場) 126号室
蒲谷祐一 氏 (京都大学)
Exotic components in linear slices of quasi-Fuchsian groups
[ 講演概要 ]
The linear slice of quasi-Fuchsian punctured torus groups is defined by fixing the length of some simple closed curve to be a fixed positive real number. It is known that the linear slice is a union of disks, and it has one `standard' component containing Fuchsian groups. Komori-Yamashita proved that there exist non-standard components if the length is sufficiently large. In this talk, I give another proof based on the theory of complex projective structures. If time permits, I will talk about a refined statement and a generalization to other surfaces.



18:00-19:00   数理科学研究科棟(駒場) 117号室
Konstantin Ardakov 氏 (University of Oxford)
Equivariant $\wideparen{\mathcal{D}}$ modules on rigid analytic spaces
[ 講演概要 ]
Locally analytic representations of p-adic Lie groups are of interest in several branches of arithmetic algebraic geometry, notably the p-adic local Langlands program. I will discuss some work in progress towards a Beilinson-Bernstein style localisation theorem for admissible locally analytic representations of semisimple compact p-adic Lie groups using equivariant formal models of rigid analytic flag varieties.
(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)


16:30-18:00   数理科学研究科棟(駒場) 122号室
Valentin Zagrebnov 氏 (Univ. d'Aix-Marseille)
Dynamics of an Open Quantum System with Repeated Harmonic Perturbation (with Hiroshi Tamura) (English)


14:50-16:20   数理科学研究科棟(駒場) 122号室
矢作由美 氏 (東京都市大学)
[ 講演概要 ]



16:30-18:00   数理科学研究科棟(駒場) 128号室
水谷 治哉 氏 (大阪大学・理学研究科)
Global Strichartz estimates for Schr¥”odinger equations on
asymptotically conic manifolds (Japanese)


17:10-18:10   数理科学研究科棟(駒場) 056号室
Tea : 16:50-17:10 Common Room
岩瀬 則夫 氏 (九州大学)
Differential forms in diffeological spaces (JAPANESE)
[ 講演概要 ]
The idea of a space with smooth structure is first introduced by K. T. Chen in his study of a loop space to employ the idea of iterated path integrals.
Following the pattern established by Chen, J. M. Souriau introduced his version of a space with smooth structure which is now called diffeology and become one of the most exciting topics in Algebraic Topology. Following Souriau, P. I.-Zenmour presented de Rham theory associated to a diffeology of a space. However, if one tries to show a version of de Rham theorem for a general diffeological space, he must encounter a difficulty to show the existence of a partition of unity and thus the exactness of the Mayer-Vietoris sequence. To resolve such difficulties, we introduce a new definition of differential forms.



10:30-12:00   数理科学研究科棟(駒場) 126号室
辻 元 氏 (上智大学)
The limits of Kähler-Ricci flows
[ 講演概要 ]


15:30-17:00   数理科学研究科棟(駒場) 122号室
三内 顕義 氏 (東京大学数理科学研究科)
A characterization of ordinary abelian varieties in positive characteristic (JAPANESE)
[ 講演概要 ]
This is joint work with Hiromu Tanaka. In this talk, we study F^e_*O_X on a projective variety over the algebraic closed field of positive characteristic. For an ordinary abelian variety X, F^e_*O_X is decomposed into line bundles for every positive integer e. Conversely, if a smooth projective variety X satisfies this property and its Kodaira dimension is non-negative, then X is an ordinary abelian variety.



15:00-18:30   数理科学研究科棟(駒場) 002号室
鹿島 洋平 氏 (東大数理) 15:00-16:30
多体電子系における繰り込み群の方法 (JAPANESE)
[ 講演概要 ]
もし系に格子の最小の正方形あたりの磁束がπ (mod 2π)
渋川 元樹 氏 (九州大学マス・フォア・インダストリ研究所) 17:00-18:30
Unitary transformations and multivariate special
orthogonal polynomials (JAPANESE)
[ 講演概要 ]
すなわち, 既知の直交系のユニタリ変換(Fourier変換等)の像を求めることで
新たな直交系を導出し, ユニタリ性からその基本的性質(直交性, 母函数, 微分
方程式等)を解明する, というのがその基本方針である. 一変数の直交函数系に
関してはこのような技法は古くから知られていたが, 近年ではその多変数化(
matrix arguments)の研究もDavidson, Olafsson, Zhang, Faraut, Wakayama et.

 本講演では, 特にShenによるcircular Jacobi多項式のFourier変換による描写
を紹介し, その多変数化について述べる. このようにして構成される多変数直交
多項式(多変数circular Jacobi多項式)は, 球多項式の一般化(2-パラメータ変
形)になっているが, 球多項式の拡張として良く知られているJack多項式や
Macdonald多項式とも異なる直交系である. 更にそのweight函数はBourgade et
al.により導入されたcircular Jacobi ensembleとなっており, そのCayley変換
 加えて多変数circular Jacobi多項式はJack多項式を含むような一般化も可能
である. この一般化多変数circular Jacobi多項式に関するいくつかの予想及び

 また時間があれば, 離散型の直交多項式系の代表例であるMeixner, Charlier,
Krawtchouk多項式のユニタリ変換を用いた描写を述べ, その多変数化に関しても



16:30-18:00   数理科学研究科棟(駒場) 122号室
岸本晶孝 氏 (北大)
Approximately inner flows on $C^*$-algebras (English)


16:00-17:30   数理科学研究科棟(駒場) 118号室
Danielle Hilhorst 氏 (CNRS / Univ. Paris-Sud)
Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium
[ 講演概要 ]
This talk is concerned with a mathematical model for the storage of radioactive waste. The model which we study deals with the diffusion of chemical species transported by water, with possible dissolution or precipitation and for a rather general kinetics law. In this talk, we consider a three-component reaction-diffusion system with a fast precipitation and dissolution reaction term. We investigate its singular limit as the reaction rate tends to infinity. The limit problem is described by the combination of a Stefan problem and a linear heat equation. The rate of convergence with respect to the reaction rate is established in a specific case. This is joint work with Hideki Murakawa.



16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea : 16:00-16:30 Common Room
藤原 耕二 氏 (京都大学大学院理学研究科)
Stable commutator length on mapping class groups (JAPANESE)
[ 講演概要 ]
Let MCG(S) be the mapping class group of a closed orientable surface S.
We give a precise condition (in terms of the Nielsen-Thurston
decomposition) when an element
in MCG(S) has positive stable commutator length.

Stable commutator length tends to be positive if there is "negative
The proofs use our earlier construction in the paper "Constructing group
actions on quasi-trees and applications to mapping class groups" of
group actions on quasi-trees.
This is a joint work with Bestvina and Bromberg.



10:30-12:00   数理科学研究科棟(駒場) 126号室
泊 昌孝 氏 (日本大学)
擬斉次2次元正規特異点および星型特異点の極大イデアルサイクルと基本サイクルについて(都丸正氏との共同研究) (JAPANESE)



17:00-18:30   数理科学研究科棟(駒場) 123号室
後藤竜司 氏 (大阪大学)
一般化された複素多様体の変形とモジュライ空間 (JAPANESE)



16:30-18:00   数理科学研究科棟(駒場) 122号室
荒野悠輝 氏 (東大数理)
Central property (T) for $SU_q(2n+1)$ (English)


16:30-17:30   数理科学研究科棟(駒場) 128号室
Xavier Cabre 氏 (ICREA and UPC, Barcelona)
New isoperimetric inequalities with densities, part II: Detailed proofs and related works (ENGLISH)
[ 講演概要 ]
This is a sequel to the Tuesday Analysis Seminar on December 2 by the same speaker.
In joint works with X. Ros-Oton and J. Serra, the study of the regularity of stable solutions to reaction-diffusion problems has led us to certain Sobolev and isoperimetric inequalities with weights. We will present our results in these new isoperimetric inequalities with the best constant, that we establish via the ABP method.
More precisely, we obtain a new family of sharp isoperimetric inequalities with weights (or densities) in open convex cones of R^n. Our results apply to all nonnegative homogeneous weights satisfying a concavity condition in the cone. Surprisingly, even that our weights are not radially symmetric, Euclidean balls centered at the origin (intersected with the cone) minimize the weighted isoperimetric quotient. As a particular case of our results, we provide with new proofs of classical results such as the Wulff inequality and the isoperimetric inequality in convex cones of Lions and Pacella. Furthermore, we also study the anisotropic isoperimetric problem for the same class of weights and we prove that the Wulff shape always minimizes the anisotropic weighted perimeter under the weighted volume constraint.


14:50-16:20   数理科学研究科棟(駒場) 122号室
國谷紀良 氏 (神戸大学大学院システム情報学研究科)

[ 講演概要 ]
Busenberg et al. (1991) では、非線形偏微分方程式系として記述されるある年
齢構造化 SIS 感染症モデルに対し、その解が定義するセミフローの単調性に依
散項を含むモデルを対象とし、基本再生産数 Ro に相当すると考えられるある閾
値が 1 より大きい場合には、エンデミックな非自明平衡解が一意に存在し、大



16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00-16:30 Common Room
窪田 陽介 氏 (東京大学大学院数理科学研究科)
The Atiyah-Segal completion theorem in noncommutative topology (JAPANESE)
[ 講演概要 ]
いて,Atiyah-Segal completion theoremに新しい視点を導入する.ここで,R.
MeyerとR. Nestらによって発展したKasparov categoryの三角圏としてのホモロ
れK理論に対するAtiyah-Segal型のcompletion theoremを含む.これは荒野悠輝


10:30-11:30   数理科学研究科棟(駒場) 056号室
伊藤 翼 氏 (東京工業大学)
Remark on single exponential bound of the vorticity gradient for the two-dimensional Euler flow around a corner (JAPANESE)
[ 講演概要 ]
In this talk, the two dimensional Euler flow under a simple symmetry condition with hyperbolic structure in a unit square $D=\{(x_{1}, x_{2}): 0 < x_{1} + x_{2} < \sqrt{2},\ 0<-x_{1} + x_{2} < \sqrt{2}\}$ is considered.
It is shown that the Lipschitz estimate of the vorticity on the boundary is at most single exponential growth near the stagnation point.
(Joint work with Tsuyoshi Yoneda and Hideyuki Miura.)

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 次へ >