過去の記録 ~06/22本日 06/23 | 今後の予定 06/24~


16:00-17:30   数理科学研究科棟(駒場) 002号室
Nitsan Ben-Gal 氏 (The Weizmann Institute of Science)
Attraction at infinity: Constructing non-compact global attractors in the slowly non-dissipative realm (ENGLISH)
[ 講演概要 ]
One of the primary tools for understanding the much-studied realm of reaction-diffusion equations is the global attractor, which provides us with a qualitative understanding of the governing behaviors of solutions to the equation in question. Nevertheless, the classic global attractor for such systems is defined to be compact, and thus attractor theory has previously excluded such analysis from being applied to non-dissipative reaction-diffusion equations.
In this talk I will present recent results in which I developed a non-compact analogue to the classical global attractor, and will discuss the methods derived in order to obtain a full decomposition of the non-compact global attractor for a slowly non-dissipative reaction-diffusion equation. In particular, attention will be paid to the nodal property techniques and reduction methods which form a critical underpinning of asymptotics research in both dissipative and non-dissipative evolutionary equations. I will discuss the concepts of the ‘completed inertial manifold’ and ‘non-compact global attractor’, and show how these in particular allow us to produce equivalent results for a class of slowly non-dissipative equations as have been achieved for dissipative equations. Additionally, I will address the behavior of solutions to slowly non-dissipative equations approaching and at infinity, the realm which presents both the challenges and rewards of removing the necessity of dissipativity.



16:30-17:30   数理科学研究科棟(駒場) 056号室
小林真一 氏 (東北大学)
楕円曲線の超特異素点におけるp-進Gross-Zagier公式 (JAPANESE)
[ 講演概要 ]
p進Gross-Zagier公式は, 楕円曲線のp進L関数の微分値をHeegner点のp進高さで記述する公式である. 楕円曲線がpで通常還元をもつときは, 20年以上前にPerrin-Riouによって証明されていた. 最近, pで超特異還元をもつときにも証明できたのでそれを紹介する. この講演では特に証明の解説に重点をおいて話したい.


10:30-11:30   数理科学研究科棟(駒場) 056号室
Jong-Shenq Guo 氏 (Department of Mathematics, Tamkang University
Quenching Problem Arising in Micro-electro Mechanical Systems

[ 講演概要 ]
In this talk, we shall present some recent results on quenching problems which arise in Micro-electro Mechanical Systems.
We shall also give some open problems in this research area.


15:00-16:10   数理科学研究科棟(駒場) 002号室
廣瀬 勇一 氏 (Victoria University of Wellington)
Semi-parametric profile likelihood estimation and implicitly defined functions (JAPANESE)
[ 講演概要 ]
The object of talk is the differentiability of implicitly defined functions which we
encounter in the profile likelihood estimation of parameters in semi-parametric models. Scott and Wild
(1997, 2001) and Murphy and Vaart (2000) developed methodologies that can avoid dealing with such implicitly
defined functions by reparametrizing parameters in the profile likelihood and using an approximate least
favorable submodel in semi-parametric models. Our result shows applicability of an alternative approach
developed in Hirose (2010) which uses the differentiability of implicitly defined functions.
[ 参考URL ]



16:30-17:30   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
春田 力 氏 (東京大学大学院数理科学研究科)
シート数が小さい曲面結び目の自明化について (JAPANESE)
[ 講演概要 ]
A connected surface smoothly embedded in ${\\mathbb R}^4$ is called a surface-knot. In particular, if a surface-knot $F$ is homeomorphic to the $2$-sphere or the torus, then it is called an $S^2$-knot or a $T^2$-knot, respectively. The sheet number of a surface-knot is an invariant analogous to the crossing number of a $1$-knot. M. Saito and S. Satoh proved some results concerning the sheet number of an $S^2$-knot. In particular, it is known that an $S^2$-knot is trivial if and only if its sheet number is $1$, and there is no $S^2$-knot whose sheet number is $2$. In this talk, we show that there is no $S^2$-knot whose sheet number is $3$, and a $T^2$-knot is trivial if and only if its sheet number is $1$.



10:30-12:00   数理科学研究科棟(駒場) 128号室
加藤 昌英 氏 (上智大学)
Toward a complex analytic 3-dimensional Kleinian group theory (JAPANESE)
[ 講演概要 ]



16:30-18:00   数理科学研究科棟(駒場) 122号室
見村万佐人 氏 (東大数理)
Property (TT)/T and homomorphism rigidity into Out$(F_n)$ (JAPANESE)
[ 講演概要 ]

「$G$を普遍格子SL$_m(Z[x_1,...,x_k])$ ($m$は3以上)または斜交普遍格子Sp$_{2m}(Z[x_1,...,x_k])$ ($m$は2以上)の指数有限の部分群とする ($k$は任意の自然数). このとき, $G$から曲面(コンパクトで向きづけ可能)の写像類群への; または, 有限生成自由群の(外部)自己同型群への準同型は有限の像をもつ.」

証明のキーとなるのが ``性質(TT)/T'' なる群の性質である. (Kazhdanの性質(T)をご存知の方は, それをある方向に強めたものとお考えください. ) この性質にスポットを当てて, 結果の証明のあらすじを説明する.



10:30-11:30   数理科学研究科棟(駒場) 056号室
小笠原 義仁 氏 (早稲田大学 理工学術院)
Mullins方程式の本質への探求 (JAPANESE)
[ 講演概要 ]


15:00-16:10   数理科学研究科棟(駒場) 000号室
清水 泰隆 氏 (大阪大学)
Notes on estimating the probability of ruin and some generalization (JAPANESE)
[ 講演概要 ]
保険数学において,破産確率の評価は最も重要な話題の一つである. 本講演では,古典的リスクモデル(Cramer-Lundberg model)の下での破産確率の確率論的評価法をいくつか紹介し, それらに基づく統計推測法について,理論と数値計算上の両方の観点からそれらの手法の比較を行う. また,破産確率のリスク測度としての使用法や,より一般的なレヴィ・リスク過程への一般化, 破産リスクの一般化として近年注目されている割引罰則関数など,最近の話題についても概観する.
[ 参考URL ]



16:30-18:00   数理科学研究科棟(駒場) 118号室
Claude-Alain Pillet 氏 (Univ. de Toulon et du Var)
Scattering induced current in a tight binding band (ENGLISH)


17:00-18:00   数理科学研究科棟(駒場) 126号室
Pierre Clare 氏 (Universite Orleans and the University of Tokyo)
Connections between Noncommutative Geometry and Lie groups
representations (ENGLISH)
[ 講演概要 ]
One of the principles of Noncommutative Geometry is to study singular spaces that the tools of classical analysis like algebras of continuous functions fail to describe, replacing them by more general C*-algebras. After recalling fundamental facts about C*-algebras, Hilbert modules and group C*-algebras, we will present constructions and results aiming to understand principal series representations and Knapp-Stein theory in the noncommutative geometrical framework. Eventually we will explain the relationship between the analysis of reduced group C*-algebras and the computation of the Connes-Kasparov isomorphisms.



16:40-18:10   数理科学研究科棟(駒場) 126号室
Dano Kim 氏 (KIAS)
L^2 methods and Skoda division theorems (ENGLISH)
[ 講演概要 ]
Extension of Ohsawa-Takegoshi type and division of Skoda type are two important consequences of the L^2 methods of Hormander, Demailly and others. They are analogous to vanishing theorems of Kodaira type and can be viewed as some refinement of the vanishing. The best illustration of their usefulness up to now is Siu’s proof of invariance of plurigenera without general type assumption. In this talk, we will focus on the division theorem / problem and talk about its currently known cases (old and new). One motivation comes from yet another viewpoint on the finite generation of canonical ring.


10:30-12:00   数理科学研究科棟(駒場) 128号室
野瀬 敏洋 氏 (九大数理)
Asymptotics of the Bergman function for semipositive holomorphic line bundles (JAPANESE)
[ 講演概要 ]
In this talk, an asymptotic expansion of the Bergman function at a degenerate point is given for high powers of semipositive holomorphic line bundles on compact Kahler manifolds, whose Hermitian metric has some kind of quasihomogeneous properties. In the sence of pointwise asymptotics, This expansion is a generalization of the expansion of Tian-Zelditch-Catlin-Lu in the positive line bundle case.



16:30-18:00   数理科学研究科棟(駒場) 122号室
Robert Coquereaux 氏 (CNRS/CPT)
Global dimensions for fusion categories of type $(G,k)$ (ENGLISH)



16:30-18:45   数理科学研究科棟(駒場) 056号室
Zhonghua Li 氏 (東京大学大学院数理科学研究科) 16:30-17:30
On regularized double shuffle relation for multiple zeta values (ENGLISH)
[ 講演概要 ]
Multiple zeta values(MZVs) are natural generalizations of Riemann zeta values. There are many rational relations among MZVs. It is conjectured that the regularized double shuffle relations contian all rational relations of MZVs. So other rational relations should be deduced from regularized dhouble shuffle relations. In this talk, we discuss some results on this problem. We define the gamma series accociated to elements satisfying regularized double shuffle relations and give some properties. Moreover we show that the Ohno-Zagier relations can be deduced from regularized double shuffle relations.
Dan Yasaki 氏 (North Carolina University) 17:45-18:45
Spines with View Toward Modular Forms (ENGLISH)
[ 講演概要 ]
The study of an arithmetic group is often aided by the fact that it acts naturally on a nice topological object. One can then use topological or geometric techniques to try to recover arithmetic data. For example, one often studies SL_2(Z) in terms of
its action on the upper half plane. In this talk, we will examine spines, which are the ``smallest" such spaces for a given arithmetic group. On overview of some known theoretical results and explicit computations will be given.



16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
河澄 響矢 氏 (東京大学大学院数理科学研究科)
The Chas-Sullivan conjecture for a surface of infinite genus (JAPANESE)
[ 講演概要 ]
\\Sigma_{\\infty,1} を境界成分 1 の向きづけられたコンパクト曲面の
帰納極限とする。この曲面 \\Sigma_{\\infty,1} の Goldman Lie 代数
同様の定理を Chas と Sullivan が予想し、Etingof が証明している。
我々の結果は向きづけられたコード図式の Lie 代数の中心を計算
Lie 代数の構造についても議論したい。


16:30-18:00   数理科学研究科棟(駒場) 122号室
Raphael Ponge 氏 (Univ. Tokyo)
Noncommutative geometry and diffeomorphism-invariant geometries (ENGLISH)


16:30-18:00   数理科学研究科棟(駒場) 002号室

木下武彦 氏 (京都大学数理解析研究所)
線形常微分作用素の逆作用素に対するノルム評価とその応用 (JAPANESE)
[ 講演概要 ]
[ 参考URL ]



11:00-12:00   数理科学研究科棟(駒場) 570号室
Mourad Bellassoued 氏 (Faculté des Sciences de Bizerte)
Stability estimates for the anisotropic Schrodinger equations from the Dirichlet to Neumann map (ENGLISH)
[ 講演概要 ]
In this talk we want to obtain stability estimates for the inverse problem of determining the electric potential or the conformal factor in the Schrodinger equations in an anisotropic media with Dirichlet data from measured Neumann boundary observations. This information is enclosed in the dynamical Dirichlet-to-Neumann map associated to the Schrödinger equation. We prove in dimension $n\\geq 2$ that the knowledge of the Dirichlet to Neumann map for the Schrödinger equation measured on the boundary uniquely determines the electric potential and we prove H\\"older-type stability in determining the potential. We prove similar results for the determination of a conformal factor close to 1 (this is a joint work with David Dos Santos Ferreira).


16:30-17:30   数理科学研究科棟(駒場) 056号室
原隆 氏 (東京大学大学院数理科学研究科)
総実代数体の羃指数p型非可換p拡大に対するp-進ゼータ関数の帰納的構成 (JAPANESE)
[ 講演概要 ]

総実代数体の非可換岩澤主予想は、David Burns 及び加藤和也による
「ゼータ関数の貼り合わせ」の手法を用いて加藤、Mahesh Kakde 及び
講演者によって特別な場合に証明されてきた (Jurgen Ritter,
Alfred Weiss も異なる定式化の下で主予想が成立する例を構成している)。

Ritter-Weiss 及び Kakde によって一般の場合にも



16:30-18:00   数理科学研究科棟(駒場) 126号室
直井克之 氏 (東京大学大学院数理科学研究科)
Some relation between the Weyl module and the crystal basis of the tensor product of fudamental representations (ENGLISH)
[ 講演概要 ]
The Lie algebra defined by the tensor product of a simple Lie algebra and a polynomial ring is called the current algebra, and the Weyl module is defined by a finite dimensional module of the current algebra having some universal property.
The fundamental representation is a irreducible, finite dimensional, level zero integrable representation of the quantized affine algebra, and it is known that this module has a crystal basis.
If the simple Lie algebra is of ADE type, Fourier and Littelamnn has shown that the Weyl module is isomorphic to a module called the Demazure module.
Using this fact, we can easily see that the (\\mathbb{Z}-graded) characters of the Weyl module and the crystal basis of the tensor product of fundamental representations coincides.
In my talk, I will introduce the generalization of this result in the non-simply laced case.
In this case, the result of Fourier and Littelmann does not necessarily true, but we can show the characters of two objects also coincide in this case.
This fact is shown using the Demazure modules and its ``crystal basis'' called the Demazure crystals.



10:30-12:00   数理科学研究科棟(駒場) 128号室
山口 博史 氏 (滋賀大学*)
ホップ曲面の擬凸状領域について (JAPANESE)
[ 講演概要 ]
2つの複素数a, b (1<|a|\\le|b|)に関するホップ曲面をHとする. Hの実解析的滑らかな境界を持つ擬凸状領域Dのロバン函数 ¥Lambda[z,w] は多重劣調和近似函数であることを示し, 上田の予想について述べる.


16:40-18:10   数理科学研究科棟(駒場) 126号室
権業 善範 氏 (東大数理)
On the minimal model theory from a viewpoint of numerical invariants (JAPANESE)
[ 講演概要 ]
I will introduce the numerical Kodaira dimension for pseudo-effective divisors after N. Nakayama and explain the minimal model theory of numerical Kodaira dimension zero. I also will talk about the applications. ( partially joint work with B. Lehmann.)



16:30-18:00   数理科学研究科棟(駒場) 122号室
Marco Merkli 氏 (Memorial Univ. Newfoundland)
Evolution of Quantum Dynamical Systems (ENGLISH)


15:15-16:15   数理科学研究科棟(駒場) 122号室
Nicolas Monod 氏 (EPFL)
Fixed point theorems and derivations (ENGLISH)

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 次へ >