過去の記録

過去の記録 ~12/08本日 12/09 | 今後の予定 12/10~

2023年07月13日(木)

情報数学セミナー

16:50-18:35   数理科学研究科棟(駒場) 128号室
岡本 龍明 氏 (NTT)
完全準同型暗号と関数型暗号 (Japanese)
[ 講演概要 ]
13回の講演の最終回
暗号理論の現状と今後の進展について講義する。基本的な暗号理論が現在のネットワークでどのように使われているかを理解するとともに、その安全性を証明する理論についても理解を深める。さらに、高度化した暗号や将来の計算機に対しても安全とされる暗号、ゼロ知識証明などの暗号プロトコル、暗号通貨やブロックチェーンなど、暗号理論の新しい進展や応用についても知見を得る。

離散数理モデリングセミナー

17:30-18:30   オンライン開催
Zoomを用いてオンラインで行います.参加希望の方はウィロックスまでZoomのリンクをお尋ねください.
Galina Filipuk 氏 (University of Warsaw)
On the Painlevé XXV - Ermakov equation (English)
[ 講演概要 ]
We study a nonlinear second order ordinary differential equation which we call the Ermakov-Painlevé XXV equation since under certain restrictions on its coefficients it can be reduced to the Ermakov or the Painlevé XXV equation. The Ermakov-Painlevé XXV equation also arises from a generalized Riccati equation and the related third order linear differential equation via the Schwarzian derivative. Starting from the Riccati equation and the second-order element of the Riccati chain as the simplest examples of linearizable equations, by introducing a suitable change of variables, it is shown how the Schwarzian derivative represents a key tool in the construction of solutions. Two families of Bäcklund transformations, which link the linear and nonlinear equations under investigation, are obtained. Some analytical examples will be given and discussed.

The talk will be mainly based on the paper
S. Carillo, A. Chichurin, G. Filipuk, F. Zullo, Schwarzian derivative, Painleve XXV--Ermakov equation and Backlund transformations, accepted in Mathematische Nachrichten, https://doi.org/10.1002/mana.202200180, available at arXiv:2201.02267 [nlin.SI].

2023年07月11日(火)

解析学火曜セミナー

16:00-17:30   数理科学研究科棟(駒場) 123号室
対面・オンラインハイブリッド開催,通常とは場所が異なります
Julian López-Gómez 氏 (Complutense University of Madrid)
Nodal solutions for a class of degenerate BVP’s (English)
[ 講演概要 ]
In this talk we characterize the existence of nodal solutions for a generalized class of one-dimensional diffusive logistic type equations, including
\[−u''=\lambda u−a(x)u^3,\quad x∈[0,L],\]
under the boundary conditions $u(0)=u(L)=0$, where $\lambda$ is regarded as a bifurcation parameter, and the non-negative weight function $a(x)$ vanishes on some subinterval
\[ [\alpha,\beta]\subset (0,L)\]
with $\alpha<\beta$.

At a later stage, the general case when $a(x)$ vanishes on finitely many subintervals with the same length is analyzed. Finally, we construct some examples with classical non-degenerate weights, with $a(x)>0$ for all $x∈[0,L]$, where the BVP has an arbitrarily large number of solutions with one node in $(0,L)$. These are the first examples of this nature constructed in the literature.

References:

P. Cubillos, J. López-Gómez and A. Tellini, Multiplicity of nodal solutions in classical non-degenerate logistic equations, El. Res. Archive 30 (2022), 898—928.

J. López-Gómez, M. Molina-Meyer and P. H. Rabinowitz, Global bifurcation diagrams of one-node solutions on a class of degenerate boundary value problems, Disc. Cont. Dyn. Syst. B 22 (2017), 923—946.

J. López-Gómez and P. H. Rabinowitz, Nodal solutions for a class of degenerate one dimensional BVP’s, Top. Meth. Nonl. Anal. 49 (2017), 359—376.

J. López-Gómez and P. H. Rabinowitz, The estructure of the set of 1-node solutions for a class of degenerate BVP’s, J. Differential Equations 268 (2020), 4691—4732.

P. H. Rabinowitz, A note on a anonlinear eigenvalue problem for a class of differential equations, J. Differential Equations 9 (1971), 536—548.
[ 参考URL ]
https://forms.gle/S3VgMSWg9wUP69cY6

2023年07月10日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
吉川謙一 氏 (京都大学)
リーマン面の退化とラプラシアンの小さい固有値 (日本語)
[ 講演概要 ]
この講演では、非特異射影曲面からコンパクトなリーマン面への正則写像を考える。特異ファイバーの近くでは、これをコンパクトなリーマン面の一変数退化とみなすのとができる。この族の全空間である非特異射影曲面にケーラー計量を一つ固定し、各ファイバーにそれから誘導されるケーラー計量が与えられているとする。この設定で、各ファイバーに対して、各ファイバー上の関数に作用するラプラシアンを考えることができる。各kに対して、ラプラシアンの第k固有値は底空間上の連続関数に拡張することが知られている。特に、特異ファイバーが既約でない場合、通常ファイバーが特異ファイバーに近づくとき、通常フィバーのラプラシアンの固有値のいくつかは0に収束する。このような固有値を小さい固有値と呼ぶ。この講演では、特異ファイバーが被約な場合に、ラプラシアンの小さい固有値すべての積の漸近挙動について説明する。
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

東京確率論セミナー

17:00-18:30   数理科学研究科棟(駒場) 126号室
松井 千尋 氏 (東京大学大学院数理科学研究科)
孤立量子系の熱化と緩和 (日本語)
[ 講演概要 ]
近年,孤立量子系の熱化は統計力学分野において最も興味深い研究対象の一つであり,ミクロな観点からの熱化メカニズム解明に関する研究は目覚ましい進展を遂げている.現在,熱化のメカニズムとして最も有力なものは「固有状態熱化仮説」とよばれる仮説で,その主張は全てのエネルギー固有状態がマクロには熱平衡状態と区別できないというものである.
ほとんどの一般的な孤立量子系で反例が見つかっていない一方,多くの保存量をもつ可積分系では上記の仮説が成立しないことが知られている.
本講演では,可積分系の代表例であるXXZスピン鎖の緩和先について議論する.併せて,研究の動機の説明に必要な量子力学と統計力学の知識も簡単に説明する.

参考文献:
J. Phys. A: Math. Theor. 53 134001 (2020)

2023年07月07日(金)

東京名古屋代数セミナー

15:00-16:30   オンライン開催
浅芝 秀人 氏 (静岡大学・京都大学高等研究院・大阪公立大学数学研究所)
クイバー表現のパーシステンス加群への応用: 区間加群による近似と分解 (Japanese)
[ 講演概要 ]
位相的データ解析では,入力データーは,d次元ユークリッド空間内の有限個の点からなる集合"点雲" P の形で与えられ,各 r = 0, 1, ..., d に対して,パーシステントホモロジー群H_r(P)が計算される。これはある自然数nに対する,同方向A_n型クイバーQのある体k上の表現になっている。Gabrielの定理より,直既約表現の完全代表系は"区間"表現 V_I (I:= [a,b], 1 ≦ a ≦ b ≦ n)の全体で与えられる。Qの各表現Mに対して,d_M(I)をMの直既約分解におけるV_Iの重複度とすると,列d_M:= (d_M(I))_I は同型のもとでのMの完全不変量になっている。この重複度をkQのAuslander-Reiten quiver上にプロットした図をMのパーシステント図とよぶ。族(H_r(P))_r はPに関する重要な情報を保存し,応用研究で活用されるが,パーシステント図d_{H_r(P)}を用いて,これを解析することができる。次にPが他のパラメーター,例えば時間とともに変化する場合,この方法により2次元パーシステンス加群が定義され,さらに多次元に一般化される。これが位相的データ解析での代数的アプローチの主な研究対象になる。一般にm次元パーシステンス加群はm次元格子の形のクイバーQに関係式を入れた多元環上の加群と理解される。この場合1次元の場合と異なり多元環はほとんどワイルド表現型になるため,リアルタイムで直既約加群の重複度d_Mを計算しそれを比較するのは困難になる。上に述べたもとの意味の区間表現は,Q上の連結かつ凸な部分クイバーを台とする"区間加群"に一般化される。d_Mの代わりにMのこれら区間加群の直和によってMを近似することによりリアルタイム性を保証する方法が考えられる。この講演では2通りの意味の近似を提示しそれらの関係を与える。この講演は,エスカラ,中島,吉脇の各氏との共同研究に基づく。

ミーティングID: 844 0560 1675
パスコード: 381661
[ 参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2023年07月06日(木)

情報数学セミナー

16:50-18:35   数理科学研究科棟(駒場) 128号室
岡本 龍明 氏 (NTT)
暗号プロトコル (Japanese)
[ 講演概要 ]
13回の講演の12回目
暗号理論の現状と今後の進展について講義する。基本的な暗号理論が現在のネットワークでどのように使われているかを理解するとともに、その安全性を証明する理論についても理解を深める。さらに、高度化した暗号や将来の計算機に対しても安全とされる暗号、ゼロ知識証明などの暗号プロトコル、暗号通貨やブロックチェーンなど、暗号理論の新しい進展や応用についても知見を得る。

2023年07月05日(水)

代数学コロキウム

17:00-18:00   数理科学研究科棟(駒場) 117号室
Thomas Geisser 氏 (立教大学)
Duality for motivic cohomology over local fields and applications to class field theory. (English)
[ 講演概要 ]
We give an outline a (conjectural) construction of cohomology groups for smooth and proper varieties over local fields with values in the heart of the derived category of locally compact groups.
This theory should satisfy a Pontrjagin duality theorem, and for certain weights, we give an ad hoc construction which satisfies such a duality unconditionally.
As an application we discuss class field theory for smooth and proper varieties over local fields.

2023年07月04日(火)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
野坂 武史 氏 (東京工業大学)
3次元多様体のChern-Simons不変量の相互律 (JAPANESE)
[ 講演概要 ]
$M$を閉3次元多様体とする。$M$の基本群から$SL_2(\mathbb{C})$への群準同型(ないし平坦$G$束)に対してChern-Simons不変量や随伴トーションが定まる。多くの既存の研究では、一つの準同型に固定するかCSの臨界点がよく扱われてきた。近年、数理物理で随伴トーションに関し全ての群準同型に対する和を考え、相互律が予想されている。その類似として講演者はCS不変量に関しても同様の和を考察し、その和の24倍が消える予想を提起した。ある特定の多様体に対し代数$K_3$群の議論を用いる事で予想が正しい事を示せた。本講演では背景や結果の証明の概略を説明する。
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2023年07月03日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
山ノ井 克俊 氏 (大阪大学)
準射影多様体の擬双曲性と基本群の非可換性について
[ 講演概要 ]
この講演ではB. Cadorel, Y. Deng両氏との共同研究で、最近得られた結果についてお話しします。論文についてはarXiv:2212.12225をご覧ください。
準射影多様体Xの基本群が、半単純代数群の中へザリスキー稠密かつbigな表現をもつとき、Xは幾つかの擬双曲性を持つことをお話しします。また、時間が許せば、準射影多様体Xがspecialであるとき、Xの基本群の線形表現の像は(指数有限で)ベキ零であることをお話しします。
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年06月30日(金)

談話会・数理科学講演会

15:30-16:30   数理科学研究科棟(駒場) 大講義室(auditorium)号室
数理科学研究科所属以外の方は、https://forms.gle/Pw6AHaJjqAwaHB8s9から参加登録をお願いいたします。
Guy Henniart 氏 (Université Paris-Saclay)
Did you say $p$-adic? (English)
[ 講演概要 ]
I am a Number Theorist and $p$ is a prime number. The $p$-adic numbers are obtained by pushing to the limit a simple idea. Suppose that you want to know which integers are sums of two squares. If an integer $x$ is odd, its square has the form $8k+1$; if $x$ is even, its square is a multiple of $4$. So the sum of two squares has the form $4k$, $4k+1$ or $4k+2$, never $4k+3$ ! More generally if a polynomial equation with integer coefficients has no integer solution if you work «modulo $N$» that is you neglect all multiples of an integer $N$, then a fortiori it has no integer solution. By the Chinese Remainder Theorem, working modulo $N$ is the same as working modulo $p^r$ where $p$ runs through prime divisors of $N$ and $p^r$ is the highest power of $p$ dividing $N$. Now work modulo $p$, modulo $p^2$, modulo $p^3$, etc. You have invented the $p$-adic integers, which are, I claim, as real as the real numbers and (nearly) as useful!

2023年06月29日(木)

情報数学セミナー

16:50-18:35   数理科学研究科棟(駒場) 128号室
岡本 龍明 氏 (NTT)
ゼロ知識証明 (Japanese)
[ 講演概要 ]
13回の講演の11回目
暗号理論の現状と今後の進展について講義する。基本的な暗号理論が現在のネットワークでどのように使われているかを理解するとともに、その安全性を証明する理論についても理解を深める。さらに、高度化した暗号や将来の計算機に対しても安全とされる暗号、ゼロ知識証明などの暗号プロトコル、暗号通貨やブロックチェーンなど、暗号理論の新しい進展や応用についても知見を得る。

2023年06月28日(水)

代数幾何学セミナー

13:30-15:00   数理科学研究科棟(駒場) ハイブリッド開催/056号室
(6/27更新) 講演者の都合で中止となりました。
松澤 陽介 氏 (大阪公立大学)
Preimages question and dynamical cancellation
[ 講演概要 ]
Pulling back an invariant subvariety by a self-morphism on projective variety, you will get a tower of increasing closed subsets. Working over a number field, we expect that the set of rational points contained in this increasing subsets eventually stabilizes. I am planning to discuss several results on this problem, such as the case of etale morphisms, morphisms on the product of two P^1. I will also present some counter examples that occur when we drop some of the assumptions. This work is based on a joint work with Matt Satriano and Jason Bell, and recent work in progress with Kaoru Sano.

代数学コロキウム

17:00-18:00   数理科学研究科棟(駒場) 117号室
中山裕大 氏 (東京大学大学院数理科学研究科)
The integral models of the RSZ Shimura varieties (日本語)
[ 講演概要 ]
We prove that the integral models of Shimura varieties by Rapoport, Smithling and Zhang proposed to describe variants of the arithmetic Gan–Gross–Prasad conjecture are isomorphic to the models by Pappas and Rapoport. This extends our previous work that compares the former models and the Kisin–Pappas models. We rely on the construction of the models of Pappas and Rapoport, not on their characterization.

2023年06月27日(火)

数値解析セミナー

16:30-18:00   数理科学研究科棟(駒場) 002号室
ハイブリッド開催です。参加の詳細は参考URLをご覧ください。
山田俊皓 氏 (一橋大学大学院経済学研究科)
ディープラーニングと確率論的方法を用いた高次元偏微分方程式の数値計算法について (Japanese)
[ 講演概要 ]
近年、ディープラーニングは高次元の偏微分方程式を「次元の呪い」の影響を受けずに数値的に解く技術としても著しく発展している。本講演では、ディープラーニングと確率論的な方法、特に確率微分方程式の数値解法を融合させた収束の速い高次元偏微分方程式の数値計算法について紹介する。講演では、偏微分方程式の数値計算においてディープラーニングが確率論的方法とどのように結び付くか解説し、様々な偏微分方程式に対する数値計算例をアルゴリズムとともに紹介する予定である。また、理論・応用面において現在のところどこまで分かっていてどのような課題があるかについて触れ、今後の展望について述べたい。
[ 参考URL ]
https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/

2023年06月26日(月)

東京確率論セミナー

17:00-18:30   数理科学研究科棟(駒場) 126号室
簗島 瞬 氏 (東京都立大学)
δ次元Bessel引越過程の構成方法,サンプルパス生成方法,および汎関数期待値の数値計算法について (日本語)
[ 講演概要 ]
本講演では,時刻1で初めて所定の値に到達するδ次元Bessel過程(以下,δ次元Bessel引越過程とよぶ)の弱収束による構成方法,サンプルパス生成方法,および汎関数期待値の数値計算法を紹介する.

近年,バリア・オプションの高次Greeks計算において,3次元Bessel引越過程が重要な役割を果たすことが示唆された.δ次元Bessel引越過程は,Williamsの分解の一部分としても現れるため,これまでもその存在は知られていた.しかしながら,この確率過程をバリア・オプションの高次Greeks計算で応用するためには,この確率過程の従来の数学的表現方法だけでは不十分であり,数値計算の観点でより使いやすい別の表現方法が必要となる.本講演ではそれらの別表現と,その別表現を利用した数値計算法を紹介する.

本講演ではまず,δ次元Bessel引越過程が,到達点を超えないよう条件付けられたδ次元Bessel橋の弱収束極限として得られることを説明する.次に,この弱収束の結果と逆関数法を組み合わせることで,3次元Bessel引越過程のサンプルパス生成が可能となることを実証する.更に,この弱収束の結果を用いることで,δ次元Bessel過程とδ次元Bessel引越過程の絶対連続性に関する結果が得られ,対応するラドン・ニコディム微分を用いることで,δ次元Bessel引越過程の汎関数期待値を高速に計算可能となることを説明し,その実証結果を紹介する.
本講演は,石谷謙介氏,林徳福氏との共同研究に基づく.

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
岩井雅崇 氏 (大阪大学)
Miyaoka type inequality for terminal weak Fano varieties
[ 講演概要 ]
In this talk, we show that $c_2(X)c_1(X)^{n-2}$ is positive for any $n$-dimensional terminal weak Fano varieties $X$. As a corollary, we obtain some inequalities (Miyaoka type inequalities) with respect to $c_2(X)c_1(X)^{n-2}$ and $c_1(X)^{n}$. This is joint work with Chen Jiang and Haidong Liu (arXiv:2303.00268).
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年06月23日(金)

代数幾何学セミナー

13:30-15:00   数理科学研究科棟(駒場) ハイブリッド開催/117号室
柴田 康介 氏 (東京電機大学)
Minimal log discrepnacies for quotient singularities
[ 講演概要 ]
In this talk, I will discuss recent joint work with Yusuke Nakamura on minimal log discrepancies for quotient singularities. The minimal log discrepancy is an important invariant of singularities in birational geometry. The denominator of the minimal log discrepancy of a variety depends on the Gorenstein index. On the other hand, Shokurov conjectured that the Gorenstein index of a Q-Gorenstein germ can be bounded in terms of its dimension and minimal log discrepancy. In this talk, I will explain basic properties for quotient singularities and show Shokurov's index conjecture for quotient singularities.

2023年06月22日(木)

応用解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催
Jiwoong Jang 氏 (University of Wisconsin Madison)
Convergence rate of periodic homogenization of forced mean curvature flow of graphs in the laminar setting (English)
[ 講演概要 ]
Mean curvature flow with a forcing term models the motion of a phase boundary through media with defects and heterogeneities. When the environment shows periodic patterns with small oscillations, an averaged behavior is exhibited as we zoom out, and providing mathematical treatment for the behavior has received a great attention recently. In this talk, we discuss the periodic homogenization of forced mean curvature flows, and we give a quantitative analysis for the flow starting from an entire graph in a laminated environment.
[ 参考URL ]
https://forms.gle/BTuFtcmUVnvCLieX9

情報数学セミナー

16:50-18:35   数理科学研究科棟(駒場) 128号室
岡本 龍明 氏 (NTT)
格子暗号 (Japanese)
[ 講演概要 ]
13回の講演の10回目
暗号理論の現状と今後の進展について講義する。基本的な暗号理論が現在のネットワークでどのように使われているかを理解するとともに、その安全性を証明する理論についても理解を深める。さらに、高度化した暗号や将来の計算機に対しても安全とされる暗号、ゼロ知識証明などの暗号プロトコル、暗号通貨やブロックチェーンなど、暗号理論の新しい進展や応用についても知見を得る。

2023年06月21日(水)

代数学コロキウム

17:00-18:00   数理科学研究科棟(駒場) 117号室
Stefan Reppen 氏 (Stockholm University)
On moduli of principal bundles under non-connected reductive groups (英語)
[ 講演概要 ]
Let $C$ be a smooth, connected projective curve over an algebraically closed field $k$ of characteristic 0, and let $G$ be a non-connected reductive group over $k$. I will explain how to decompose the stack of $G$-bundles $\text{Bun}_G$ into open and closed substacks $X_i$ which admits finite torsors $\text{Bun}_{\mathcal{G}_i} \to X_i$, for some connected reductive group schemes $\mathcal{G}_i$ over $C$. I explain how to use this to obtain a projective good moduli space of semistable $G$-bundles over $C$, for a suitable notion of semistability. Finally, after stating a result concerning finite subgroups of connected reductive groups over $k$, I explain how to see that essentially finite $H$-bundles are not dense in the moduli space of semistable degree 0 $H$-bundles, for any connected reductive group $H$ not equal to a torus.

2023年06月20日(火)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Arnaud Maret 氏 (Sorbonne Université)
Moduli spaces of triangle chains (ENGLISH)
[ 講演概要 ]
In this talk, I will describe a moduli space of triangle chains in the hyperbolic plane with prescribed angles. We will relate this moduli space to a specific character variety of representations of surface groups into PSL(2,R). This identification provides action-angle coordinates for the Goldman symplectic form on the character variety. If time permits, I will explain why the mapping class group action on that particular character variety is ergodic.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2023年06月19日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
本多 宣博 氏 (東京工業大学)
3次元不定値Zoll多様体の新しい構成方法
[ 講演概要 ]
ペンローズ対応は多様体上の特殊な幾何構造と複素多様体の間の対応関係を与えるものであるが、その一つとして、3次元多様体上のEinstein-Weyl構造と複素曲面の間の対応がある。後者の複素曲面をミニツイスター空間という。本講演では、任意種数の超楕円曲線から自然な方法でコンパクトミニツイスター空間が構成できることと、それから得られる3次元実Einstein-Weyl多様体がZoll性とよばれる顕著な幾何的性質をもつことを示す。Zoll性とはすべての測地線が閉じているというものであり、その代表的な例は球面である。今回得られた3次元Einstein-Weyl多様体は不定値であり、考える測地線は空間的なものである。これらのEinstein-Weyl多様体は arXiv:2208.13567 で与えられたものの一般化とみなすことができる。
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年06月15日(木)

情報数学セミナー

16:50-18:35   数理科学研究科棟(駒場) 128号室
岡本 龍明 氏 (NTT)
楕円曲線を用いた暗号 (Japanese)
[ 講演概要 ]
13回の講演の9回目
暗号理論の現状と今後の進展について講義する。基本的な暗号理論が現在のネットワークでどのように使われているかを理解するとともに、その安全性を証明する理論についても理解を深める。さらに、高度化した暗号や将来の計算機に対しても安全とされる暗号、ゼロ知識証明などの暗号プロトコル、暗号通貨やブロックチェーンなど、暗号理論の新しい進展や応用についても知見を得る。

2023年06月14日(水)

代数幾何学セミナー

14:00-15:30   数理科学研究科棟(駒場) ハイブリッド開催/056号室
普段と曜日・時間・場所が異なります。
Wenliang Zhang 氏 (University of Illinois Chicago)
Vanishing of local cohomology modules
[ 講演概要 ]
Studying the vanishing of local cohomology modules has a long and rich history, and is still an active research area. In this talk, we will discuss classic theorems (due to Grothendieck, Hartshorne, Peskine-Szpiro, and Ogus), recent developments, and some open problems.

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 次へ >