過去の記録
過去の記録 ~07/03|本日 07/04 | 今後の予定 07/05~
2024年06月10日(月)
複素解析幾何セミナー
10:30-12:00 数理科学研究科棟(駒場) 128号室
鍋島 克輔 氏 (東京理科大学)
Computing Noetherian operators of polynomial ideals
--How to characterize a polynomial ideal by partial differential operators -- (Japanese)
https://forms.gle/gTP8qNZwPyQyxjTj8
鍋島 克輔 氏 (東京理科大学)
Computing Noetherian operators of polynomial ideals
--How to characterize a polynomial ideal by partial differential operators -- (Japanese)
[ 講演概要 ]
Describing ideals in polynomial rings by using systems of differential operators in one of the major approaches to study them. In 1916, F.S. Macaulay brought the notion of an inverse system, a system of differential conditions that describes an ideal. In 1937, W. Groebner mentioned the importance of the Macaulay's inverse system in the study of linear differential equations with constant coefficient, and in 1938, he introduced differential operators to characterize ideals that are primary to a rational maximal ideal. After that the important results and the terminology came from L. Ehrenpreise and V. P. Palamodov in 1961 and 1970, that is the characterization of primary ideals by the differential operators. The differential operators allow one to characterize the primary ideal by differential conditions on the associated characteristic variety. The differential operators are called Noetherian operators.
In this talk, we consider Noetherian operators in the context of symbolic computation. Upon utilizing the theory of holonomic D-modules, we present a new computational method of Noetherian operators associated to a polynomial ideal. The computational method that consists mainly of linear algebra techniques is given for computing them. Moreover, as applications, new computational methods of polynomial ideals are discussed by utilizing the Noetherian operators.
[ 参考URL ]Describing ideals in polynomial rings by using systems of differential operators in one of the major approaches to study them. In 1916, F.S. Macaulay brought the notion of an inverse system, a system of differential conditions that describes an ideal. In 1937, W. Groebner mentioned the importance of the Macaulay's inverse system in the study of linear differential equations with constant coefficient, and in 1938, he introduced differential operators to characterize ideals that are primary to a rational maximal ideal. After that the important results and the terminology came from L. Ehrenpreise and V. P. Palamodov in 1961 and 1970, that is the characterization of primary ideals by the differential operators. The differential operators allow one to characterize the primary ideal by differential conditions on the associated characteristic variety. The differential operators are called Noetherian operators.
In this talk, we consider Noetherian operators in the context of symbolic computation. Upon utilizing the theory of holonomic D-modules, we present a new computational method of Noetherian operators associated to a polynomial ideal. The computational method that consists mainly of linear algebra techniques is given for computing them. Moreover, as applications, new computational methods of polynomial ideals are discussed by utilizing the Noetherian operators.
https://forms.gle/gTP8qNZwPyQyxjTj8
東京確率論セミナー
16:00-17:30 数理科学研究科棟(駒場) 126号室
15:15〜 2階のコモンルームでTea timeを行いますので、ぜひそちらにもご参加ください。
後藤ゆきみ 氏 (学習院大学)
Phase Transition in a Lattice Nambu–Jona-Lasinio Model (日本語)
15:15〜 2階のコモンルームでTea timeを行いますので、ぜひそちらにもご参加ください。
後藤ゆきみ 氏 (学習院大学)
Phase Transition in a Lattice Nambu–Jona-Lasinio Model (日本語)
[ 講演概要 ]
量子色力学で重要な概念としてカイラル対称性の破れとそれに伴うフェルミオンの質量生成があるが、その証明は困難が多い。その理解に格子上の量子色力学は成功していると見られているものの、数学的結果はいまだ限られている。
この講演では格子上のフェルミオンの定式化のひとつであるスタッガード・フェルミオンをもちいて、それらが4つのフェルミオンと相互作用する模型(lattice Nambu–Jona-Lasinio model)を考える。この模型は離散的なカイラル対称性しかもたないものの、質量が自発的に生成することと、それに伴う対称性の破れを証明できる。また、連続的なフレーバー対称性をもつ場合は南部・ゴールドストーン・モードと呼ばれるスペクトルにギャップのない無限系の基底状態が出現することを説明する。
本講演は高麗徹氏との共同研究にもとづく。
量子色力学で重要な概念としてカイラル対称性の破れとそれに伴うフェルミオンの質量生成があるが、その証明は困難が多い。その理解に格子上の量子色力学は成功していると見られているものの、数学的結果はいまだ限られている。
この講演では格子上のフェルミオンの定式化のひとつであるスタッガード・フェルミオンをもちいて、それらが4つのフェルミオンと相互作用する模型(lattice Nambu–Jona-Lasinio model)を考える。この模型は離散的なカイラル対称性しかもたないものの、質量が自発的に生成することと、それに伴う対称性の破れを証明できる。また、連続的なフレーバー対称性をもつ場合は南部・ゴールドストーン・モードと呼ばれるスペクトルにギャップのない無限系の基底状態が出現することを説明する。
本講演は高麗徹氏との共同研究にもとづく。
日仏数学拠点FJ-LMIセミナー
13:30-14:30 数理科学研究科棟(駒場) 002号室
Sourav GHOSH 氏 (Ashoka University, India)
Affine Anosov representations
https://fj-lmi.cnrs.fr/seminars/
Sourav GHOSH 氏 (Ashoka University, India)
Affine Anosov representations
[ 講演概要 ]
In this survey talk I will give a brief overview of affine Anosov representations. These are appropriate analogues of Anosov representations inside affine Lie groups and are closely related with proper affine actions of hyperbolic groups.
[ 参考URL ]In this survey talk I will give a brief overview of affine Anosov representations. These are appropriate analogues of Anosov representations inside affine Lie groups and are closely related with proper affine actions of hyperbolic groups.
https://fj-lmi.cnrs.fr/seminars/
2024年06月07日(金)
代数幾何学セミナー
13:30-15:00 数理科学研究科棟(駒場) ハイブリッド開催/056号室
Ivan Cheltsov 氏 (University of Edinburgh)
K-stability of pointless Fano 3-folds (English)
Ivan Cheltsov 氏 (University of Edinburgh)
K-stability of pointless Fano 3-folds (English)
[ 講演概要 ]
In this talk we will show how to prove that all pointless smooth Fano 3-folds defined over a subfield of the field of complex numbers are Kahler-Einstein unless they belong to 8 exceptional deformation families. This is a joint work in progress with Hamid Abban (Nottingham) and Frederic Mangolte (Marseille).
In this talk we will show how to prove that all pointless smooth Fano 3-folds defined over a subfield of the field of complex numbers are Kahler-Einstein unless they belong to 8 exceptional deformation families. This is a joint work in progress with Hamid Abban (Nottingham) and Frederic Mangolte (Marseille).
東京名古屋代数セミナー
16:30-18:00 オンライン開催
柴田 大樹 氏 (岡山理科大学)
スーパー代数群の表現と奇鏡映について (Japanese)
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html
柴田 大樹 氏 (岡山理科大学)
スーパー代数群の表現と奇鏡映について (Japanese)
[ 講演概要 ]
良く知られているように分裂簡約代数群の表現論は,原理的には付随するルート・データ(やワイル群)の言葉で記述することが可能であり,既約表現の分類や指標理論などの研究が今日に至るまで盛んに行われてきている.一方で,スーパー代数群は対称テンソル圏の理論で本質的な役割を果たす(Deligneの定理)ことは知られていたが,それ自体の構造論や表現論に関する研究はまだ始まったばかりであり,非スーパーのときと比べて十分理解されているとは言い難い.例えば「付随するルート系の言葉で既約表現のパラメータを記述せよ」という問いは基本的であるにもかかわらず,いくつかのスーパー代数群に対してしか解決されていない.その理由としては,スーパーの場合はルートやボレル部分群の振る舞いが特異であり,そのコントロールが難しいという点があげられる.
本講演では,スーパー代数群の定義から始めて,いくつかの具体例をそのルート系とともに見ていく.そして誘導表現を用いた既約表現の構成法を紹介し,現状でどこまで(既約)表現に関して分かっているのか,またどのような困難があるのかを具体例を見ながら解説する.その後に
Serganova らによって導入された(ワイル群のある意味の補完である)奇鏡映と呼ばれる操作が,スーパー代数群の誘導表現に対してどのように振る舞うかを解説する.
ミーティング ID: 858 1659 5222
パスコード: 692360
[ 参考URL ]良く知られているように分裂簡約代数群の表現論は,原理的には付随するルート・データ(やワイル群)の言葉で記述することが可能であり,既約表現の分類や指標理論などの研究が今日に至るまで盛んに行われてきている.一方で,スーパー代数群は対称テンソル圏の理論で本質的な役割を果たす(Deligneの定理)ことは知られていたが,それ自体の構造論や表現論に関する研究はまだ始まったばかりであり,非スーパーのときと比べて十分理解されているとは言い難い.例えば「付随するルート系の言葉で既約表現のパラメータを記述せよ」という問いは基本的であるにもかかわらず,いくつかのスーパー代数群に対してしか解決されていない.その理由としては,スーパーの場合はルートやボレル部分群の振る舞いが特異であり,そのコントロールが難しいという点があげられる.
本講演では,スーパー代数群の定義から始めて,いくつかの具体例をそのルート系とともに見ていく.そして誘導表現を用いた既約表現の構成法を紹介し,現状でどこまで(既約)表現に関して分かっているのか,またどのような困難があるのかを具体例を見ながら解説する.その後に
Serganova らによって導入された(ワイル群のある意味の補完である)奇鏡映と呼ばれる操作が,スーパー代数群の誘導表現に対してどのように振る舞うかを解説する.
ミーティング ID: 858 1659 5222
パスコード: 692360
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html
2024年06月04日(火)
作用素環セミナー
16:45-18:15 数理科学研究科棟(駒場) 126号室
有本諒也 氏 (京大数理研)
Simplicity of crossed products of the actions of totally disconnected locally compact groups on their boundaries
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm
有本諒也 氏 (京大数理研)
Simplicity of crossed products of the actions of totally disconnected locally compact groups on their boundaries
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm
トポロジー火曜セミナー
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
石川 勝巳 氏 (京都大学数理解析研究所)
The trapezoidal conjecture for the links of braid index 3 (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
石川 勝巳 氏 (京都大学数理解析研究所)
The trapezoidal conjecture for the links of braid index 3 (JAPANESE)
[ 講演概要 ]
The trapezoidal conjecture is a classical famous conjecture posed by Fox, which states that the coefficient sequence of the Alexander polynomial of any alternating link is trapezoidal. In this talk, we show this conjecture for any alternating links of braid index 3. Although the result holds for any choice of the orientation, we shall mainly discuss the case of the closures of alternating 3-braids with parallel orientations.
[ 参考URL ]The trapezoidal conjecture is a classical famous conjecture posed by Fox, which states that the coefficient sequence of the Alexander polynomial of any alternating link is trapezoidal. In this talk, we show this conjecture for any alternating links of braid index 3. Although the result holds for any choice of the orientation, we shall mainly discuss the case of the closures of alternating 3-braids with parallel orientations.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2024年05月31日(金)
談話会・数理科学講演会
15:30-16:30 数理科学研究科棟(駒場) 大講義室(auditorium)号室
数理科学研究科所属以外の方は、[参考URL]から参加登録をお願いいたします。
酒井拓史 氏 (東京大学大学院数理科学研究科)
巨大基数について (JAPANESE)
https://forms.gle/ZmHhZW6bxUyKewro8
数理科学研究科所属以外の方は、[参考URL]から参加登録をお願いいたします。
酒井拓史 氏 (東京大学大学院数理科学研究科)
巨大基数について (JAPANESE)
[ 講演概要 ]
集合論は数学に現れる無限集合を調べる分野で,そこでは様々な無限基数が考えられています.これらのうち,自分自身より小さな基数に対して超越的な性質を持つ不可算基数は巨大基数とよばれます.これまでに多くの巨大基数が定式化されていますが,いずれもその名のとおり非常に大きな基数となり,その存在は集合論の標準的公理系 ZFC では証明できません.巨大基数の存在を主張する公理は巨大基数公理とよばれます.巨大基数は実数集合の濃度よりもはるかに大きくなりますが,巨大基数公理を仮定すると実数集合についての様々な命題が証明できるようになり,これは巨大基数の興味深いことのひとつです.この講演では,巨大基数理論の概要を紹介します.また,講演者が興味を持っている,小さな無限基数の巨大性についてもお話しします.
[ 参考URL ]集合論は数学に現れる無限集合を調べる分野で,そこでは様々な無限基数が考えられています.これらのうち,自分自身より小さな基数に対して超越的な性質を持つ不可算基数は巨大基数とよばれます.これまでに多くの巨大基数が定式化されていますが,いずれもその名のとおり非常に大きな基数となり,その存在は集合論の標準的公理系 ZFC では証明できません.巨大基数の存在を主張する公理は巨大基数公理とよばれます.巨大基数は実数集合の濃度よりもはるかに大きくなりますが,巨大基数公理を仮定すると実数集合についての様々な命題が証明できるようになり,これは巨大基数の興味深いことのひとつです.この講演では,巨大基数理論の概要を紹介します.また,講演者が興味を持っている,小さな無限基数の巨大性についてもお話しします.
https://forms.gle/ZmHhZW6bxUyKewro8
2024年05月30日(木)
応用解析セミナー
16:00-17:30 数理科学研究科棟(駒場) 128号室
対面・オンラインハイブリッド開催
Tim Laux 氏 (University of Regensburg, Germany)
Energy convergence of the Allen-Cahn equation for mean convex mean curvature flow (English)
https://forms.gle/8KnFWfHFbkn9fAqaA
対面・オンラインハイブリッド開催
Tim Laux 氏 (University of Regensburg, Germany)
Energy convergence of the Allen-Cahn equation for mean convex mean curvature flow (English)
[ 講演概要 ]
In this talk, I'll present a work in progress in which I positively answer a question of Ilmanen (JDG 1993) on the strong convergence of the Allen-Cahn equation to mean curvature flow when starting from well-prepared initial data around a mean convex surface. As a corollary, the conditional convergence result with Simon (CPAM 2018) becomes unconditional in the mean convex case.
[ 参考URL ]In this talk, I'll present a work in progress in which I positively answer a question of Ilmanen (JDG 1993) on the strong convergence of the Allen-Cahn equation to mean curvature flow when starting from well-prepared initial data around a mean convex surface. As a corollary, the conditional convergence result with Simon (CPAM 2018) becomes unconditional in the mean convex case.
https://forms.gle/8KnFWfHFbkn9fAqaA
2024年05月29日(水)
数値解析セミナー
16:30-18:00 数理科学研究科棟(駒場) 002号室
ハイブリッド開催です。参加の詳細は参考URLをご覧ください。
早川知志 氏 (ソニーグループ株式会社)
ランダム凸包とカーネル求積 (Japanese)
https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/
ハイブリッド開催です。参加の詳細は参考URLをご覧ください。
早川知志 氏 (ソニーグループ株式会社)
ランダム凸包とカーネル求積 (Japanese)
[ 講演概要 ]
確率測度の離散近似の代表例として、古典的には低次モーメントのマッチングによるcubature(立体求積)がある。これは一般の空間においても有限個の可積分関数の積分値を保つような離散化として導入でき、ランダムサンプリングによるナイーブな構成が考えられる。講演の前半では、この確率的構成の成功確率を定式化したものとして、ランダム凸包が空間上の点を含む確率についてのバウンドを与える。後半ではさらに、この一般化cubatureの問題が(被積分関数のクラスとして再生核ヒルベルト空間を想定する)カーネル求積問題に実用的なアルゴリズムとともに応用できることをみる。
講演内容は次の学位論文にもとづく:
https://ora.ox.ac.uk/objects/uuid:15008016-2418-4c9a-a2f7-c9515a0657b1
[ 参考URL ]確率測度の離散近似の代表例として、古典的には低次モーメントのマッチングによるcubature(立体求積)がある。これは一般の空間においても有限個の可積分関数の積分値を保つような離散化として導入でき、ランダムサンプリングによるナイーブな構成が考えられる。講演の前半では、この確率的構成の成功確率を定式化したものとして、ランダム凸包が空間上の点を含む確率についてのバウンドを与える。後半ではさらに、この一般化cubatureの問題が(被積分関数のクラスとして再生核ヒルベルト空間を想定する)カーネル求積問題に実用的なアルゴリズムとともに応用できることをみる。
講演内容は次の学位論文にもとづく:
https://ora.ox.ac.uk/objects/uuid:15008016-2418-4c9a-a2f7-c9515a0657b1
https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/
2024年05月28日(火)
トポロジー火曜セミナー
17:00-18:00 オンライン開催
参加を希望される場合は、下記URLから参加登録を行って下さい。
Andreani Petrou 氏 (沖縄科学技術大学院大学)
Knot invariants and their Harer-Zagier transform (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、下記URLから参加登録を行って下さい。
Andreani Petrou 氏 (沖縄科学技術大学院大学)
Knot invariants and their Harer-Zagier transform (ENGLISH)
[ 講演概要 ]
The Harer-Zagier (HZ) transform is a discrete Laplace transform that can be applied to knot polynomials, mapping them into a rational function of two variables $\lambda$ and $q$. The HZ transform of the HOMFLY-PT polynomial has a simple form, as it can be written as a sum of factorised terms. For some special families of knots, it can be fully factorised and it is completely determined by a set of exponents. There is an interesting relation between such exponents and Khovanov homology. Moreover, we conjecture that there is an 1-1 correspondence with such factorisability and a relation between the HOMFLY-PT and Kauffman polynomials. Furthermore, we suggest that by fixing the variable $\lambda= q^n$ for some "magical" exponent $n$, the HZ transform of any knot can obtain a factorised form in terms of cyclotomic polynomials. Finally, the zeros of the HZ transform show an interesting behaviour, which shall be discussed.
[ 参考URL ]The Harer-Zagier (HZ) transform is a discrete Laplace transform that can be applied to knot polynomials, mapping them into a rational function of two variables $\lambda$ and $q$. The HZ transform of the HOMFLY-PT polynomial has a simple form, as it can be written as a sum of factorised terms. For some special families of knots, it can be fully factorised and it is completely determined by a set of exponents. There is an interesting relation between such exponents and Khovanov homology. Moreover, we conjecture that there is an 1-1 correspondence with such factorisability and a relation between the HOMFLY-PT and Kauffman polynomials. Furthermore, we suggest that by fixing the variable $\lambda= q^n$ for some "magical" exponent $n$, the HZ transform of any knot can obtain a factorised form in terms of cyclotomic polynomials. Finally, the zeros of the HZ transform show an interesting behaviour, which shall be discussed.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2024年05月27日(月)
複素解析幾何セミナー
10:30-12:00 数理科学研究科棟(駒場) 128号室
丸亀 泰二 氏 (電気通信大学)
Hyperkähler ambient metrics associated with twistor CR manifolds
(Japanese)
https://forms.gle/gTP8qNZwPyQyxjTj8
丸亀 泰二 氏 (電気通信大学)
Hyperkähler ambient metrics associated with twistor CR manifolds
(Japanese)
[ 講演概要 ]
アンビエント計量は,CR多様体に付随する(漸近的)Ricci平坦不定値Kähler計量である.Feffermanは,複素多様体の非退化実超曲面に対し,複素Monge-Ampère方程式の近似解となる局所定義関数を用いてアンビエント計量を構成したが,(対数項を導入することなく)厳密にRicci平坦方程式を満たす計量が構成できるCR多様体の例はあまり知られていない.この講演では,3次元実解析的共形多様体上の球面束として定義されるツイスターCR多様体に対して,アンビエント計量がスピノル束上のhyperkähler計量として具体的に構成できることを説明する.
[ 参考URL ]アンビエント計量は,CR多様体に付随する(漸近的)Ricci平坦不定値Kähler計量である.Feffermanは,複素多様体の非退化実超曲面に対し,複素Monge-Ampère方程式の近似解となる局所定義関数を用いてアンビエント計量を構成したが,(対数項を導入することなく)厳密にRicci平坦方程式を満たす計量が構成できるCR多様体の例はあまり知られていない.この講演では,3次元実解析的共形多様体上の球面束として定義されるツイスターCR多様体に対して,アンビエント計量がスピノル束上のhyperkähler計量として具体的に構成できることを説明する.
https://forms.gle/gTP8qNZwPyQyxjTj8
東京確率論セミナー
16:00-17:30 数理科学研究科棟(駒場) 126号室
15:15〜 2階のコモンルームでTea timeを行いますので、ぜひそちらにもご参加ください。
野田涼一郎 氏 (京都大学)
測度付き抵抗距離空間上の確率過程の局所時間のスケール極限について (日本語)
15:15〜 2階のコモンルームでTea timeを行いますので、ぜひそちらにもご参加ください。
野田涼一郎 氏 (京都大学)
測度付き抵抗距離空間上の確率過程の局所時間のスケール極限について (日本語)
[ 講演概要 ]
抵抗距離空間は電気回路の一般化であり,ディリクレ形式の理論により測度付き抵抗距離空間には確率過程が定まる.Croydon-Hambly-Kumagai (2017)は収束する抵抗距離空間が一様体積倍化条件を満たすならば対応する確率過程とその局所時間が収束することを示した.その後Croydon (2018)はより弱い条件である非爆発条件の下で確率過程の収束を示したが,局所時間の収束については未解決のままであった.本講演では非爆発条件及び距離エントロピーに関する適当な条件の下で確率過程とその局所時間の収束が従うこと,そしてこの結果の応用例について解説する.また同様の結果は離散時間マルコフ連鎖とその局所時間に対しても成立し,時間が許せばこの結果についても紹介する.
抵抗距離空間は電気回路の一般化であり,ディリクレ形式の理論により測度付き抵抗距離空間には確率過程が定まる.Croydon-Hambly-Kumagai (2017)は収束する抵抗距離空間が一様体積倍化条件を満たすならば対応する確率過程とその局所時間が収束することを示した.その後Croydon (2018)はより弱い条件である非爆発条件の下で確率過程の収束を示したが,局所時間の収束については未解決のままであった.本講演では非爆発条件及び距離エントロピーに関する適当な条件の下で確率過程とその局所時間の収束が従うこと,そしてこの結果の応用例について解説する.また同様の結果は離散時間マルコフ連鎖とその局所時間に対しても成立し,時間が許せばこの結果についても紹介する.
2024年05月24日(金)
代数幾何学セミナー
13:30-15:00 数理科学研究科棟(駒場) ハイブリッド開催/056号室
佐藤謙太 氏 (九州大学)
Boundedness of weak Fano threefolds with fixed Gorenstein index in positive characteristic
佐藤謙太 氏 (九州大学)
Boundedness of weak Fano threefolds with fixed Gorenstein index in positive characteristic
[ 講演概要 ]
In this talk, we give a partial affirmative answer to the BAB conjecture for 3-folds in characteristic p>5. Specifically, we prove that a set of weak Fano 3-folds over an uncountable algebraically closed field is bounded, if each element X satisfies certain conditions regarding the Gorenstein index, a complement and Kodaira type vanishing. In the course of the proof, we also study a uniform lower bound for Seshadri constants of nef and big invertible sheaves on projective 3-folds.
In this talk, we give a partial affirmative answer to the BAB conjecture for 3-folds in characteristic p>5. Specifically, we prove that a set of weak Fano 3-folds over an uncountable algebraically closed field is bounded, if each element X satisfies certain conditions regarding the Gorenstein index, a complement and Kodaira type vanishing. In the course of the proof, we also study a uniform lower bound for Seshadri constants of nef and big invertible sheaves on projective 3-folds.
2024年05月23日(木)
応用解析セミナー
16:00-17:30 数理科学研究科棟(駒場) 128号室
Adina Ciomaga 氏 (University Paris Cité (Laboratoire Jacques Louis Lions), France “O Mayer” Institute of the Romanian Academy, Iasi, Roumania)
Homogenization of nonlocal Hamilton Jacobi equations (English)
Adina Ciomaga 氏 (University Paris Cité (Laboratoire Jacques Louis Lions), France “O Mayer” Institute of the Romanian Academy, Iasi, Roumania)
Homogenization of nonlocal Hamilton Jacobi equations (English)
[ 講演概要 ]
I will present the framework of periodic homogenisation of nonlocal Hamilton-Jacobi equations, associated with Levy-Itô integro-differential operators. A typical equation is the fractional diffusion coupled with a transport term, where the diffusion is only weakly elliptical. Homogenization is established in two steps: (i) the resolution of a cellular problem - where Lipshitz regularity of the corrector plays a key role and (ii) the convergence of the oscillating solutions towards an averaged profile - where comparison principles are involved. I shall discuss recent results on the regularity of solutions and comparison principles for nonlocal equations, and the difficulties we face when compared with local PDEs. The talked is based on recent developments obtained in collaboration with D. Ghilli, O.Ley, E. Topp, T. Minh Le.
I will present the framework of periodic homogenisation of nonlocal Hamilton-Jacobi equations, associated with Levy-Itô integro-differential operators. A typical equation is the fractional diffusion coupled with a transport term, where the diffusion is only weakly elliptical. Homogenization is established in two steps: (i) the resolution of a cellular problem - where Lipshitz regularity of the corrector plays a key role and (ii) the convergence of the oscillating solutions towards an averaged profile - where comparison principles are involved. I shall discuss recent results on the regularity of solutions and comparison principles for nonlocal equations, and the difficulties we face when compared with local PDEs. The talked is based on recent developments obtained in collaboration with D. Ghilli, O.Ley, E. Topp, T. Minh Le.
2024年05月22日(水)
代数学コロキウム
17:00-18:00 数理科学研究科棟(駒場) 117号室
渡部匠 氏 (東京大学大学院数理科学研究科)
On the (φ,Γ)-modules corresponding to crystalline representations and semi-stable representations
渡部匠 氏 (東京大学大学院数理科学研究科)
On the (φ,Γ)-modules corresponding to crystalline representations and semi-stable representations
[ 講演概要 ]
From the 1980s to the 1990s, J.-M. Fontaine constructed an equivalence of categories between the category of (φ, Γ)-modules and the category of p-adic Galois representations. After recalling it, I will present my result on the (φ, Γ)-modules corresponding to crystalline representations and semi-stable representations. As for the crystalline case, this can be seen, in a sense, as a generalization of Wach module in the ramified case. If time permits, I will explain my ongoing research on the (φ, Γ)-modules corresponding to de Rham representations.
From the 1980s to the 1990s, J.-M. Fontaine constructed an equivalence of categories between the category of (φ, Γ)-modules and the category of p-adic Galois representations. After recalling it, I will present my result on the (φ, Γ)-modules corresponding to crystalline representations and semi-stable representations. As for the crystalline case, this can be seen, in a sense, as a generalization of Wach module in the ramified case. If time permits, I will explain my ongoing research on the (φ, Γ)-modules corresponding to de Rham representations.
2024年05月21日(火)
トポロジー火曜セミナー
17:30-18:30 数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
池 祐一 氏 (九州大学マス・フォア・インダストリ研究所)
γ-supports and sheaves (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
池 祐一 氏 (九州大学マス・フォア・インダストリ研究所)
γ-supports and sheaves (JAPANESE)
[ 講演概要 ]
The space of smooth compact exact Lagrangians of a cotangent bundle carries the spectral metric γ, and we consider its completion. With an element of the completion, Viterbo associated a closed subset called γ-support. In this talk, I will explain how we can use sheaf-theoretic methods to explore the completion and γ-supports. I will show that we can associate a sheaf with an element of the completion, and its (reduced) microsupport is equal to the γ-support through the correspondence. With this equality, I will also show several properties of γ-supports. This is joint work with Tomohiro Asano (RIMS), Stéphane Guillermou (Nantes Université), Vincent Humilière (Sorbonne Université), and Claude Viterbo (Université Paris-Saclay).
[ 参考URL ]The space of smooth compact exact Lagrangians of a cotangent bundle carries the spectral metric γ, and we consider its completion. With an element of the completion, Viterbo associated a closed subset called γ-support. In this talk, I will explain how we can use sheaf-theoretic methods to explore the completion and γ-supports. I will show that we can associate a sheaf with an element of the completion, and its (reduced) microsupport is equal to the γ-support through the correspondence. With this equality, I will also show several properties of γ-supports. This is joint work with Tomohiro Asano (RIMS), Stéphane Guillermou (Nantes Université), Vincent Humilière (Sorbonne Université), and Claude Viterbo (Université Paris-Saclay).
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
作用素環セミナー
16:45-18:15 数理科学研究科棟(駒場) 126号室
森迪也 氏 (東大数理)
Optimal version of the fundamental theorem of chronogeometry
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm
森迪也 氏 (東大数理)
Optimal version of the fundamental theorem of chronogeometry
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm
2024年05月20日(月)
複素解析幾何セミナー
10:50-12:20 数理科学研究科棟(駒場) 128号室
いつもより20分遅れて開始します。
孫 立杰 氏 (山口大学)
Kähler metrics in the Siegel domain (Japanese)
https://forms.gle/gTP8qNZwPyQyxjTj8
いつもより20分遅れて開始します。
孫 立杰 氏 (山口大学)
Kähler metrics in the Siegel domain (Japanese)
[ 講演概要 ]
The Siegel domain is endowed with an intrinsic Kähler structure, making it an exemplary model for the complex hyperbolic plane. Its boundary, characterized as the one-point compactification of the Heisenberg group, plays an important role in studying the geometry of the Siegel domain. In this talk, using the CR structure of the Heisenberg group we introduce a variety of Kähler structures within the Siegel domain. We conclude by demonstrating that all these metrics are PCR-Kähler equivalent, that is, essentially the same when confined to the CR structure. This talk is based on a joint work with Ioannis Platis and Joonhyung Kim.
[ 参考URL ]The Siegel domain is endowed with an intrinsic Kähler structure, making it an exemplary model for the complex hyperbolic plane. Its boundary, characterized as the one-point compactification of the Heisenberg group, plays an important role in studying the geometry of the Siegel domain. In this talk, using the CR structure of the Heisenberg group we introduce a variety of Kähler structures within the Siegel domain. We conclude by demonstrating that all these metrics are PCR-Kähler equivalent, that is, essentially the same when confined to the CR structure. This talk is based on a joint work with Ioannis Platis and Joonhyung Kim.
https://forms.gle/gTP8qNZwPyQyxjTj8
東京確率論セミナー
16:00-17:30 数理科学研究科棟(駒場) 126号室
15:15〜 2階のコモンルームでTea timeを行いますので、ぜひそちらにもご参加ください。
西野 颯馬 氏 (東京都立大学)
2曲線間に制限されたパス空間上でのWiener測度に対する高階の部分積分公式 (日本語)
15:15〜 2階のコモンルームでTea timeを行いますので、ぜひそちらにもご参加ください。
西野 颯馬 氏 (東京都立大学)
2曲線間に制限されたパス空間上でのWiener測度に対する高階の部分積分公式 (日本語)
[ 講演概要 ]
2曲線間に制限されたパス空間上でのWiener測度に対する1階微分の部分積分公式は既に知られている。本講演では、この結果を高階微分の部分積分公式に拡張する。高階微分の部分積分公式においては、従来の1階微分の場合にはない非自明な境界項が追加で現れ、さらに、その証明において、Brownian excursionやBrownian house-movingと呼ばれる確率過程のランダムウォーク近似による構成方法が新たに必要となる。また、証明の中で、1次および2次の無限小確率の概念を導入する。この概念を導入することで、部分積分公式の各項に現れる数式に対して確率論的な解釈が可能となり、部分積分公式を整理する上で有益な概念であることを説明する。なお、本講演内容は、東京都立大学の石谷謙介氏との共同研究(arXiv:2405.05595)に基づく。
2曲線間に制限されたパス空間上でのWiener測度に対する1階微分の部分積分公式は既に知られている。本講演では、この結果を高階微分の部分積分公式に拡張する。高階微分の部分積分公式においては、従来の1階微分の場合にはない非自明な境界項が追加で現れ、さらに、その証明において、Brownian excursionやBrownian house-movingと呼ばれる確率過程のランダムウォーク近似による構成方法が新たに必要となる。また、証明の中で、1次および2次の無限小確率の概念を導入する。この概念を導入することで、部分積分公式の各項に現れる数式に対して確率論的な解釈が可能となり、部分積分公式を整理する上で有益な概念であることを説明する。なお、本講演内容は、東京都立大学の石谷謙介氏との共同研究(arXiv:2405.05595)に基づく。
2024年05月17日(金)
代数幾何学セミナー
13:30-15:00 数理科学研究科棟(駒場) ハイブリッド開催/056号室
松本 雄也 氏 (東京理科大学)
非分離Kummer曲面 (日本語)
松本 雄也 氏 (東京理科大学)
非分離Kummer曲面 (日本語)
[ 講演概要 ]
Kummer曲面Km(A)とは,+-1倍写像によるアーベル曲面Aの商の最小特異点解消として得られる曲面である.Aが標数≠2の場合(resp. 標数2で,超特異ではない場合)は,Km(A)はK3曲面であり,例外曲線は互いに交わらない(resp. 所定の交わり方をする)16本の有理曲線である.Aが標数2で超特異の場合はKm(A)はK3曲面にならない.また,Km(A)が標数2の超特異K3曲面になることはない.
本講演では,標数2の超特異K3曲面とその上の16本の有理曲線で所定の交わり方をするものに対し,非分離2重被覆Aを構成することができること,Aは非特異部分に群構造が入り「アーベル曲面もどき」になることを示す.Aの分類のために,RDP K3曲面のRDPの補集合から最小特異点解消への B_n \Omega^1(Cartier作用素を何回か適用すると消える1次微分形式の層)の延長に関する結果を用いるので,これにも言及したい.
プレプリントは https://arxiv.org/abs/2403.02770 でご覧いただけます.
Kummer曲面Km(A)とは,+-1倍写像によるアーベル曲面Aの商の最小特異点解消として得られる曲面である.Aが標数≠2の場合(resp. 標数2で,超特異ではない場合)は,Km(A)はK3曲面であり,例外曲線は互いに交わらない(resp. 所定の交わり方をする)16本の有理曲線である.Aが標数2で超特異の場合はKm(A)はK3曲面にならない.また,Km(A)が標数2の超特異K3曲面になることはない.
本講演では,標数2の超特異K3曲面とその上の16本の有理曲線で所定の交わり方をするものに対し,非分離2重被覆Aを構成することができること,Aは非特異部分に群構造が入り「アーベル曲面もどき」になることを示す.Aの分類のために,RDP K3曲面のRDPの補集合から最小特異点解消への B_n \Omega^1(Cartier作用素を何回か適用すると消える1次微分形式の層)の延長に関する結果を用いるので,これにも言及したい.
プレプリントは https://arxiv.org/abs/2403.02770 でご覧いただけます.
2024年05月15日(水)
数値解析セミナー
16:30-18:00 数理科学研究科棟(駒場) 002号室
ハイブリッド開催です。参加の詳細は参考URLをご覧ください。
榊原航也 氏 (金沢大学理工研究域)
離散最適輸送問題の Bregman ダイバージェンスによる正則化 (Japanese)
https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/
ハイブリッド開催です。参加の詳細は参考URLをご覧ください。
榊原航也 氏 (金沢大学理工研究域)
離散最適輸送問題の Bregman ダイバージェンスによる正則化 (Japanese)
[ 講演概要 ]
最適輸送理論は確率測度間の距離を測ることを可能とし,数学や物理学,経済学,統計学,コンピュータ科学,機械学習等,数多くの分野への応用を持つ.有限集合上での最適輸送問題を考えると,これは線型計画問題に他ならず,組合せ論的アルゴリズムや内点法など,様々な数値計算手法が提案されてきたが,計算量の問題により高次元の場合には求解が難しいことが知られている.その中で,2013年に M. Cuturi はコスト函数に Kullback–Leibler(KL)ダイバージェンスを足し合わせる正則化(エントロピー正則化)を考え,Sinkhorn アルゴリズムに基づいた「光速」な数値計算法を提唱した.このアルゴリズムの誕生以降,最適輸送は機械学習分野で盛んに用いられるようになり,近年では改めて大きな注目を集めている.
エントロピー正則化の有効性が分かった上で,数学的にも応用的にも以下のような疑問が生じる.
・KL ダイバージェンス以外での正則化は可能か?
・他の正則化を用いた際,正則化パラメータを 0 にする極限での元の最適輸送問題の最適コストへの収束オーダーはどのように評価できるか?
・KL ダイバージェンスの場合よりも収束が速い正則化項は存在するか?
本講演では,上記の疑問に答えるべく,KL ダイバージェンスを含むクラスである Bregman ダイバージェンスを用いた正則化を考える.ある性質を満たす Bregman ダイバージェンスを用いる場合,KL ダイバージェンスを用いた場合よりも収束が速くなることを示し,そのような具体例を数値実験とともに提示する.時間が許せば,現在考えている問題や将来的な応用の可能性についても触れたい.
本講演は,高津飛鳥氏(東京都立大学),保國惠一氏(筑波大学)との共同研究に基づく.また,本講演の内容は以下のプレプリントにまとまっている.
K. Morikuni, K. Sakakibara, and A. Takatsu. Error estimate for regularized optimal transport problems via Bregman divergence. arXiv:2309.11666
[ 参考URL ]最適輸送理論は確率測度間の距離を測ることを可能とし,数学や物理学,経済学,統計学,コンピュータ科学,機械学習等,数多くの分野への応用を持つ.有限集合上での最適輸送問題を考えると,これは線型計画問題に他ならず,組合せ論的アルゴリズムや内点法など,様々な数値計算手法が提案されてきたが,計算量の問題により高次元の場合には求解が難しいことが知られている.その中で,2013年に M. Cuturi はコスト函数に Kullback–Leibler(KL)ダイバージェンスを足し合わせる正則化(エントロピー正則化)を考え,Sinkhorn アルゴリズムに基づいた「光速」な数値計算法を提唱した.このアルゴリズムの誕生以降,最適輸送は機械学習分野で盛んに用いられるようになり,近年では改めて大きな注目を集めている.
エントロピー正則化の有効性が分かった上で,数学的にも応用的にも以下のような疑問が生じる.
・KL ダイバージェンス以外での正則化は可能か?
・他の正則化を用いた際,正則化パラメータを 0 にする極限での元の最適輸送問題の最適コストへの収束オーダーはどのように評価できるか?
・KL ダイバージェンスの場合よりも収束が速い正則化項は存在するか?
本講演では,上記の疑問に答えるべく,KL ダイバージェンスを含むクラスである Bregman ダイバージェンスを用いた正則化を考える.ある性質を満たす Bregman ダイバージェンスを用いる場合,KL ダイバージェンスを用いた場合よりも収束が速くなることを示し,そのような具体例を数値実験とともに提示する.時間が許せば,現在考えている問題や将来的な応用の可能性についても触れたい.
本講演は,高津飛鳥氏(東京都立大学),保國惠一氏(筑波大学)との共同研究に基づく.また,本講演の内容は以下のプレプリントにまとまっている.
K. Morikuni, K. Sakakibara, and A. Takatsu. Error estimate for regularized optimal transport problems via Bregman divergence. arXiv:2309.11666
https://sites.google.com/g.ecc.u-tokyo.ac.jp/utnas-bulletin-board/
代数学コロキウム
17:00-18:00 数理科学研究科棟(駒場) 117号室
高谷悠太 氏 (東京大学大学院数理科学研究科)
Equidimensionality of affine Deligne-Lusztig varieties in mixed characteristic (日本語)
高谷悠太 氏 (東京大学大学院数理科学研究科)
Equidimensionality of affine Deligne-Lusztig varieties in mixed characteristic (日本語)
[ 講演概要 ]
Shimura varieties are of central interest in arithmetic geometry and affine Deligne-Lusztig varieties are closely related to their special fibers. These varieties are group-theoretical objects and can be defined even for non-miniscule local Shimura data. In this talk, I will explain the proof of the equidimensionality of affine Deligne-Lusztig varieties in mixed characteristic.
The main ingredient is a local foliation of affine Deligne-Lusztig varieties in mixed characteristic. In equal characteristic, this local structure was previously introduced by Hartl and Viehmann.
Shimura varieties are of central interest in arithmetic geometry and affine Deligne-Lusztig varieties are closely related to their special fibers. These varieties are group-theoretical objects and can be defined even for non-miniscule local Shimura data. In this talk, I will explain the proof of the equidimensionality of affine Deligne-Lusztig varieties in mixed characteristic.
The main ingredient is a local foliation of affine Deligne-Lusztig varieties in mixed characteristic. In equal characteristic, this local structure was previously introduced by Hartl and Viehmann.
2024年05月14日(火)
解析学火曜セミナー
16:00-18:15 数理科学研究科棟(駒場) 128号室
対面・オンラインハイブリッド開催(今回は講演が2件あります)
Heinz Siedentop 氏 (LMU University of Munich) 16:00-17:00
The Energy of Heavy Atoms: Density Functionals (English)
https://forms.gle/ZEyVso6wa9QpNfxH7
Robert Laister 氏 (University of the West of England) 17:15-18:15
Well-posedness for Semilinear Heat Equations in Orlicz Spaces (English)
https://forms.gle/ZEyVso6wa9QpNfxH7
対面・オンラインハイブリッド開催(今回は講演が2件あります)
Heinz Siedentop 氏 (LMU University of Munich) 16:00-17:00
The Energy of Heavy Atoms: Density Functionals (English)
[ 講演概要 ]
Since computing the energy of a system with $N$ particles requires solving a $4^N$ dimensional system of (pseudo-)differential equations in $3N$ independent variables, an analytic solution is practically impossible. Therefore density functionals, i.e., functionals that depend on the particle density (3 variables) only and yield the energy upon minimization, are of great interest.
This concept has been applied successfully in non-relativistic quantum mechanics. However, in relativistic quantum mechanics even the simple analogue of the Thomas-Fermi functional is not bounded from below for Coulomb potential. This problem was addressed eventually by Engel and Dreizler who derived a functional from QED. I will review some known mathematical properties of this functional and show that it yields basic features of physics, such as asymptotic correct energy, stability of matter, and boundedness of the excess charge.
[ 参考URL ]Since computing the energy of a system with $N$ particles requires solving a $4^N$ dimensional system of (pseudo-)differential equations in $3N$ independent variables, an analytic solution is practically impossible. Therefore density functionals, i.e., functionals that depend on the particle density (3 variables) only and yield the energy upon minimization, are of great interest.
This concept has been applied successfully in non-relativistic quantum mechanics. However, in relativistic quantum mechanics even the simple analogue of the Thomas-Fermi functional is not bounded from below for Coulomb potential. This problem was addressed eventually by Engel and Dreizler who derived a functional from QED. I will review some known mathematical properties of this functional and show that it yields basic features of physics, such as asymptotic correct energy, stability of matter, and boundedness of the excess charge.
https://forms.gle/ZEyVso6wa9QpNfxH7
Robert Laister 氏 (University of the West of England) 17:15-18:15
Well-posedness for Semilinear Heat Equations in Orlicz Spaces (English)
[ 講演概要 ]
We consider the local well-posedness of semilinear heat equations in Orlicz spaces, the latter prescribed via a Young function $\Phi$. Many existence-uniqueness results exist in the literature for power-like or exponential-like nonlinearities $f$, where the natural setting is an Orlicz space of corresponding type; i.e. if $f$ is power-like then $\Phi$ is power-like (Lebesgue space), if $f$ is exponential-like then $\Phi$ is exponential-like. However, the general problem of prescribing a suitable $\Phi$ for a given, otherwise arbitrary $f$ is open. Our goal is to provide a suitable framework to resolve this problem and I will present some recent results in this direction. The key is a new (to the best of our knowledge) smoothing estimate for the heat semigroup between two arbitrary Orlicz spaces. Existence then follows familiar lines via monotonicity or contraction mapping arguments. Global solutions are also presented under additional assumptions. This work is part of a collaborative project with Prof Kazuhiro Ishige, Dr Yohei Fujishima and Dr Kotaro Hisa.
[ 参考URL ]We consider the local well-posedness of semilinear heat equations in Orlicz spaces, the latter prescribed via a Young function $\Phi$. Many existence-uniqueness results exist in the literature for power-like or exponential-like nonlinearities $f$, where the natural setting is an Orlicz space of corresponding type; i.e. if $f$ is power-like then $\Phi$ is power-like (Lebesgue space), if $f$ is exponential-like then $\Phi$ is exponential-like. However, the general problem of prescribing a suitable $\Phi$ for a given, otherwise arbitrary $f$ is open. Our goal is to provide a suitable framework to resolve this problem and I will present some recent results in this direction. The key is a new (to the best of our knowledge) smoothing estimate for the heat semigroup between two arbitrary Orlicz spaces. Existence then follows familiar lines via monotonicity or contraction mapping arguments. Global solutions are also presented under additional assumptions. This work is part of a collaborative project with Prof Kazuhiro Ishige, Dr Yohei Fujishima and Dr Kotaro Hisa.
https://forms.gle/ZEyVso6wa9QpNfxH7
トポロジー火曜セミナー
17:00-18:00 オンライン開催
参加を希望される場合は、下記URLから参加登録を行って下さい。
濵田 法行 氏 (九州大学マス・フォア・インダストリ研究所)
符号数0のエキゾチック4次元多様体 (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、下記URLから参加登録を行って下さい。
濵田 法行 氏 (九州大学マス・フォア・インダストリ研究所)
符号数0のエキゾチック4次元多様体 (JAPANESE)
[ 講演概要 ]
我々の構成した「符号数0をもつ標準的な単連結閉4次元多様体と同相だが微分同相ではないシンプレクティック4次元多様体」の新しい例についてお話ししたい.とくに,これまで知られている中で最小のオイラー標数をもつ例も与える.構成方法は reverse-engineering とよばれる典型的な手法を用いるが,鍵となるのがそのモデル多様体で,レフシェッツ束として新しく一から作り上げる.この種の研究では基本群の計算がもっとも中心的でかつ煩雑な部分であることが典型的であるが,我々の方法ではこの計算も大幅に単純化されることを注意したい.
本講演は Inanc Baykur 氏(University of Massachusetts Amherst) との共同研究に基づく.
[ 参考URL ]我々の構成した「符号数0をもつ標準的な単連結閉4次元多様体と同相だが微分同相ではないシンプレクティック4次元多様体」の新しい例についてお話ししたい.とくに,これまで知られている中で最小のオイラー標数をもつ例も与える.構成方法は reverse-engineering とよばれる典型的な手法を用いるが,鍵となるのがそのモデル多様体で,レフシェッツ束として新しく一から作り上げる.この種の研究では基本群の計算がもっとも中心的でかつ煩雑な部分であることが典型的であるが,我々の方法ではこの計算も大幅に単純化されることを注意したい.
本講演は Inanc Baykur 氏(University of Massachusetts Amherst) との共同研究に基づく.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 次へ >