過去の記録

過去の記録 ~01/17本日 01/18 | 今後の予定 01/19~

数理人口学・数理生物学セミナー

13:30-16:30   数理科学研究科棟(駒場) 128号室
中岡慎治 氏 (東京大学大学院医学系研究科) 15:10-15:50
HIV 感染リンパ器官ネットワークモデルの数理解析 (JAPANESE)
[ 講演概要 ]
バクテリアやウィルスからの感染を防御する働きを担う上で重要な T細胞は、通常リンパ節やリンパ器官に存在する。リンパ器官は免疫応答を活性化する場であると同時に、扁桃炎などウィルス感染の場になることもある。ヒト免疫不全ウィルス(HIV) は、T 細胞に感染するが、T 細胞が常駐するリンパ節に常駐している。リンパ節が HIV感染存続において重要であると示唆されているが、薬剤投与時でも HIV が消滅しない機構については、未だ明らかになっていない。
先行研究では、1000 以上あるヒト体内のリンパ器官ネットワークを計算機上で模したネットワーク数理モデルを構築し、HIV 感染伝播の数値計算を行った(Nakaoka, Satoh, Iwami, J. Math. Biol.2015)。ネットワーク数理モデルに対して定義される次世代行列から導出した基本再生産数をベースに数値解析を行い、リンパ節内で薬剤の効果が弱いことを示唆する臨床研究の理由付けを与えた。
先行研究では数値計算が主であり、ネットワーク数理モデル自体の数理解析はほとんど行ってこなかった。そこで本研究では、数理解析に主眼をおいた最近の進展について議論する。一般にN 個のリンパ器官が結合した状態において、基本再生産数をベースに感染平衡点の存在、また特殊な場合に Lyapunov関数を用いた大域的漸近安定性を示した。
解析中の課題として、基本再生産数が 1 より大きい場合に感染が定着する状況を示した一様パーシステンス (パーマネンス) 性、Inaba and Nishiura (Math. Biosci. 2008) によって定義された状態別再生産数の応用可能性と再生方程式を用いた定式化など、進行中の解析についても紹介する。本研究は、江夏洋一 (東京理科大)、國谷紀良 (神戸大)、中田行彦 (東京大)、竹内康博 (青山学院大学) 氏 (敬称略) らとの共同研究 (contributed equally) である。


佐野英樹 氏 (神戸大学大学院システム情報学研究科) 13:30-14:10
無限次元制御系に対する安定半径の近似について (JAPANESE)
[ 講演概要 ]
We discuss the problem of approximating stability radius appearing
in the design procedure of finite-dimensional stabilizing controllers
for an infinite-dimensional dynamical system. The calculation of
stability radius needs the value of the H-infinity norm of a transfer
function whose realization is described by infinite-dimensional
operators in a Hilbert space. From the practical point of view, we
need to prepare a family of approximate finite-dimensional operators
and then to calculate the H-infinity norm of their transfer functions.
However, it is not assured that they converge to the value of the
H-infinity norm of the original transfer function. The purpose of
this study is to justify the convergence. In a numerical example,
we treat parabolic distributed parameter systems with distributed
control and distributed/boundary observation.

國谷紀良 氏 (神戸大学大学院システム情報学研究科) 14:10-14:50
バックステッピング法に基づく感染人口の増減予測 (JAPANESE)
[ 講演概要 ]
実時間を第1変数、感染後の経過時間を第2変数とする感染齢構造モデルは、
Kermack and McKendrick (1927) から現在に至るまで長く研究されている。その
モデルは数学的には1階偏微分方程式の境界値問題と見なすことができ、その境
界条件は新規感染人口を表すものとなる。一方で、熱方程式などの偏微分方程式
の境界値問題に対し、自明平衡解の安定化のための境界フィードバック制御を導
出するバックステッピング法は近年 Smyshlyaev and Krstic (2004) によって研
究されている。本研究ではこの手法を疫学的に解釈することで、ステップ毎に計
算される条件値よりも新規感染人口が大きければ感染人口は増加し、小さければ
減少するという予測法を考案した。具体的に、日本における過去10年間のインフ
ルエンザの報告データに対してこの予測法を適用すると、その精度は8割を超え
ることが確認された。本研究は佐野英樹教授(神戸大学大学院システム情報学研
究科)との共同研究に基づく。
布野孝明 氏 (九州大学理学部生物学科) 15:50-16:30
村間の人口の流出入を考慮するマラリア感染の数理モデル
[ 講演概要 ]
マラリアは蚊によって媒介される感染症であるため、その流行を考察するにあたってヒトと蚊と両方の動態を考えることが必要である。主な流行地域の一つである南アフリカでは一つ一つの村(人口密集地)間の間隔が広く、村から村へとマラリアの感染を伝播させているのは主に車などの移動手段によるヒトの移動・交流であると考えられる。本研究では村間のヒトの往来に焦点を当て、マラリア流行の古典的なモデルであるRossモデルを下敷きとした数理モデルを構築した。また実際の村間のネットワーク構造を用いて南アフリカにおける感染報告データと比較しながら、何がマラリア感染の伝播のリスク要因となっているのかを解析してゆくために、今回は基本的なモデル解析を行った結果を報告する。

2016年01月26日(火)

PDE実解析研究会

10:30-11:30   数理科学研究科棟(駒場) 056号室
Salomé Oudet 氏 (University of Tokyo)
Hamilton-Jacobi equations for optimal control on 2-dimensional junction (English)
[ 講演概要 ]
We are interested in infinite horizon optimal control problems on 2-dimensional junctions (namely a union of half-planes sharing a common straight line) where different dynamics and different running costs are allowed in each half-plane. As for more classical optimal control problems, ones wishes to determine the Hamilton-Jacobi equation which characterizes the value function. However, the geometric singularities of the 2-dimensional junction and discontinuities of data do not allow us to apply the classical results of the theory of the viscosity solutions.
We will explain how to skirt these difficulties using arguments coming both from the viscosity theory and from optimal control theory. By this way we prove that the expected equation to characterize the value function is well posed. In particular we prove a comparison principle for this equation.

2016年01月25日(月)

東京確率論セミナー

16:50-18:20   数理科学研究科棟(駒場) 128号室
中安 淳 氏 (東京大学大学院数理科学研究科)
Hamilton-Jacobi equations in metric spaces
[ 講演概要 ]
ハミルトン・ヤコビ方程式は解析力学の基礎的な方程式の一つであると同時に前
線の伝播を記述する方程式としても知られる。ネットワークやフラクタル、無秩
序系での伝播の数学的表現として講演者は一般化された空間上のハミルトン・ヤ
コビ方程式の研究を進めてきた。そこで本講演ではまずハミルトン・ヤコビ方程
式の導入として、その粒子系的な導出を熱方程式の場合と比較しながら行う。そ
して、一般の完備測地的距離空間上のハミルトン・ヤコビ方程式を導入し、最近
の研究成果である粘性解の時間漸近挙動を紹介する。なお、本講演の内容の一部
は東京大学の難波時永氏との共同研究に基づく。

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
このセミナーは悪天候の影響によりキャンセルになりました。
小櫃 邦夫 氏 (鹿児島大学)
Weil-Petersson 計量の漸近解析についての最近の進展 (Japanese)
[ 講演概要 ]
リーマン面のモジュライ空間上のWeil-Petersson 計量の境界における漸近展開は、H. Masurが1976年に与えた結果を初めとし、その後Yamada, Wolpert, Obitsu-Wolpert によって改良された。最近、Melrose, X. Zhu, Mazzeo, Swoboda により、その漸近展開の形が完全に決定された。彼らの仕事を紹介し、残された問題や関連する話題について解説する。

2016年01月22日(金)

FMSPレクチャーズ

15:00 -16:00   数理科学研究科棟(駒場) 056号室
全9回講演の(8)
Aurelien Djament (Nantes/CNRS)氏(by video conference system) and Christine Vespa (Strasbourg) 氏 (ENGLISH)
Functor categories and stable homology of groups (8) (ENGLISH)
[ 参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Djament%26Vespa.pdf

FMSPレクチャーズ

16:30-17:30   数理科学研究科棟(駒場) 056号室
全9回講演の(9)
Aurelien Djament (Nantes/CNRS)氏(by video conference system) and Christine Vespa (Strasbourg) 氏
Functor categories and stable homology of groups (9) (ENGLISH)
[ 参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Djament%26Vespa.pdf

作用素環セミナー

15:00-17:00   数理科学研究科棟(駒場) 118号室
戸松玲治 氏 (北大理)
$C^*$テンソル圏入門

2016年01月21日(木)

FMSPレクチャーズ

15:00-16:00   数理科学研究科棟(駒場) 056号室
全9回講演の(6)
Aurelien Djament (Nantes/CNRS)氏(by video conference system) and Christine Vespa (Strasbourg) 氏
Functor categories and stable homology of groups (6) (ENGLISH)
[ 参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Djament%26Vespa.pdf

FMSPレクチャーズ

16:30-18:00   数理科学研究科棟(駒場) 056号室
全9回講演の(7)
Aurelien Djament (Nantes/CNRS)氏(by video conference system) and Christine Vespa (Strasbourg) 氏
Functor categories and stable homology of groups (7) (ENGLISH)
[ 参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Djament%26Vespa.pdf

作用素環セミナー

15:00-17:00   数理科学研究科棟(駒場) 118号室
戸松玲治 氏 (北大理)
$C^*$テンソル圏入門

2016年01月20日(水)

FMSPレクチャーズ

16:00-18:00   数理科学研究科棟(駒場) 056号室
全9回講演の(5)
Aurelien Djament (Nantes/CNRS)氏(by video conference system) and Christine Vespa (Strasbourg) 氏
Functor categories and stable homology of groups (5) (ENGLISH)
[ 参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Djament%26Vespa.pdf

作用素環セミナー

15:00-17:00   数理科学研究科棟(駒場) 118号室
戸松玲治 氏 (北大理)
$C^*$テンソル圏入門

統計数学セミナー

13:00-17:00   数理科学研究科棟(駒場) 123号室
Enzo Orsingher 氏 (Sapienza University of Rome)
Fractional calculus and some applications to stochastic processes
[ 講演概要 ]
1) Riemann-Liouville fractional integrals and derivatives
2) integrals of derivatives and derivatives of integrals
3) Dzerbayshan-Caputo fractional derivatives
4) Marchaud derivative
5) Riesz potential and fractional derivatives
6) Hadamard derivatives and also Erdelyi-Kober derivatives
7) Laplace transforms of Riemann.Liouville and Dzerbayshan-Caputo fractional derivatives
8) Fractional diffusion equations and related special functions (Mittag-Leffler and Wright functions)
9) Fractional telegraph equations (space-time fractional equations and also their mutidimensional versions)
10) Time-fractional telegraph Poisson process
11) Space fractional Poisson process
13) Other fractional point processes (birth and death processes)
14) We shall present the relationship between solutions of wave and Euler-Poisson-Darboux equations through the Erdelyi-Kober integrals.

In these lessons we will introduce the main ideas of the classical fractional calculus. The results and theorems will be presented with all details and calculations. We shall study some fundamental fractional equations and their interplay with stochastic processes. Some details on the iterated Brownian motion will also be given.

2016年01月19日(火)

FMSPレクチャーズ

13:30 -14:30   数理科学研究科棟(駒場) 056号室
全9回講演の(3)
Aurelien Djament (Nantes/CNRS)氏(by video conference system) and Christine Vespa (Strasbourg) 氏
Functor categories and stable homology of groups (3) (ENGLISH)
[ 参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Djament%26Vespa.pdf

FMSPレクチャーズ

16:30 -18:00   数理科学研究科棟(駒場) 056号室
全9回講演の(4)
Aurelien Djament (Nantes/CNRS)氏(by video conference system) and Christine Vespa (Strasbourg) 氏
Functor categories and stable homology of groups (4) (ENGLISH)
[ 参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Djament%26Vespa.pdf

作用素環セミナー

15:00-17:00   数理科学研究科棟(駒場) 118号室
戸松玲治 氏 (北大理)
$C^*$テンソル圏入門

トポロジー火曜セミナー

15:00-16:00   数理科学研究科棟(駒場) 056号室
山本 光 氏 (東京大学大学院数理科学研究科)
Ricci-mean curvature flows in gradient shrinking Ricci solitons (JAPANESE)
[ 講演概要 ]
A Ricci-mean curvature flow is a coupled parabolic PDE system of a mean
curvature flow and a Ricci flow.
In this talk, we consider a Ricci-mean curvature flow in a gradient
shrinking Ricci soliton, and give a generalization of a well-known result
of Huisken which states that if a mean curvature flow in a Euclidean space
develops a singularity of type I, then its parabolic rescaling near the singular
point converges to a self-shrinker.

PDE実解析研究会

10:30-11:30   数理科学研究科棟(駒場) 056号室
Hao Wu 氏 (Fudan University)
Well-posedness and stability of the full Ericksen-Leslie system for incompressible nematic liquid crystal flows
[ 講演概要 ]
In this talk, the general Ericksen-Leslie (E-L) system modelling the incompressible nematic liquid crystal flow will be discussed.
We shall prove the well-posedness and long-time behavior of the E-L system under proper assumptions on the viscous Leslie coefficients.
In particular, we shall discuss the connection between Parodi's relation and stability of the E-L system.

2016年01月18日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
志賀 啓成 氏 (東京工業大学)
Holomorphic motions and the monodromy (Japanese)
[ 講演概要 ]
Holomorphic motions, which was introduced by Mane, Sad and Sullivan, is a useful tool for Teichmuller theory as well as for complex dynamics. In particular, Slodkowski’s theorem makes a significant contribution to them. The theorem says that every holomorphic motion of a closed set on the Riemann sphere parametrized by the unit disk is extended to a holomorphic motion of the whole Riemann sphere parametrized by the unit disk. In this talk, we consider a generalization of the theorem. If time permits, we will discuss applications of our results.

FMSPレクチャーズ

15:00-16:00   数理科学研究科棟(駒場) 056号室
全9回講演の(1)
Aurelien Djament (Nantes/CNRS)氏(by video conference system) and Christine Vespa (Strasbourg) 氏
Functor categories and stable homology of groups (1) (ENGLISH)
[ 参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Djament%26Vespa.pdf

FMSPレクチャーズ

16:30-17:30   数理科学研究科棟(駒場) 056号室
全9回講演の(2)
Aurelien Djament (Nantes/CNRS)氏(by video conference system) and Christine Vespa (Strasbourg) 氏
Functor categories and stable homology of groups (2) (ENGLISH)
[ 参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Djament%26Vespa.pdf

作用素環セミナー

15:00-17:00   数理科学研究科棟(駒場) 118号室
戸松玲治 氏 (北大理)
$C^*$テンソル圏入門 (日本語)

統計数学セミナー

13:00-17:00   数理科学研究科棟(駒場) 123号室
Enzo Orsingher 氏 (Sapienza University of Rome)
Fractional calculus and some applications to stochastic processes
[ 講演概要 ]
1) Riemann-Liouville fractional integrals and derivatives
2) integrals of derivatives and derivatives of integrals
3) Dzerbayshan-Caputo fractional derivatives
4) Marchaud derivative
5) Riesz potential and fractional derivatives
6) Hadamard derivatives and also Erdelyi-Kober derivatives
7) Laplace transforms of Riemann.Liouville and Dzerbayshan-Caputo fractional derivatives
8) Fractional diffusion equations and related special functions (Mittag-Leffler and Wright functions)
9) Fractional telegraph equations (space-time fractional equations and also their mutidimensional versions)
10) Time-fractional telegraph Poisson process
11) Space fractional Poisson process
13) Other fractional point processes (birth and death processes)
14) We shall present the relationship between solutions of wave and Euler-Poisson-Darboux equations through the Erdelyi-Kober integrals.

In these lessons we will introduce the main ideas of the classical fractional calculus. The results and theorems will be presented with all details and calculations. We shall study some fundamental fractional equations and their interplay with stochastic processes. Some details on the iterated Brownian motion will also be given.

FMSPレクチャーズ

14:00-15:00   数理科学研究科棟(駒場) 126号室
Samuli Siltanen 氏 (University of Helsinki)
Blind deconvolution for human speech signals (ENGLISH)
[ 講演概要 ]
The structure of vowel sounds in human speech can be divided into two independent components. One of them is the “excitation signal,” which is a kind of buzzing sound created by the vocal folds flapping against each other. The other is the “filtering effect” caused by resonances in the vocal tract, or the confined space formed by the mouth and throat. The Glottal Inverse Filtering (GIF) problem is to (algorithmically) divide a microphone recording of a vowel sound into its two components. This “blind deconvolution” type task is an ill-posed inverse problem. Good-quality GIF filtering is essential for computer-generated speech needed for example by disabled people (think Stephen Hawking). Also, GIF affects the quality of synthetic speech in automatic information announcements and car navigation systems. Accurate estimation of the voice source from recorded speech is known to be difficult with current glottal inverse filtering (GIF) techniques, especially in the case of high-pitch speech of female or child subjects. In order to tackle this problem, the present study uses two different solution methods for GIF: Bayesian inversion and alternating minimization. The first method takes advantage of the Markov chain Monte Carlo (MCMC) modeling in defining the parameters of the vocal tract inverse filter. The filtering results are found to be superior to those achieved by the standard iterative adaptive inverse filtering (IAIF), but the computation is much slower than IAIF. Alternating minimization cuts down the computation time while retaining most of the quality improvement.
[ 参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Siltanen.pdf

FMSPレクチャーズ

14:45-15:25   数理科学研究科棟(駒場) 126号室
Tapio Helin 氏 (University of Helsinki)
Inverse scattering from random potential (ENGLISH)
[ 講演概要 ]
We consider an inverse scattering problem with a random potential. We assume that our far-field data at multiple angles and all frequencies are generated by a single realization of the potential. From the frequency-correlated data our aim is to demonstrate that one can recover statistical properties of the potential. More precisely, the potential is assumed to be Gaussian with a covariance operator that can be modelled by a classical pseudodifferential operator. Our main result is to show that the principal symbol of this
covariance operator can be determined uniquely. What is important, our method does not require any approximation and we can analyse also the multiple scattering. This is joint work with Matti Lassas and Pedro Caro.
[ 参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Helin.pdf

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 次へ >