過去の記録

過去の記録 ~12/04本日 12/05 | 今後の予定 12/06~

Lie群論・表現論セミナー

17:00-18:00   数理科学研究科棟(駒場) Online号室
森田陽介 氏 (京都大学大学院理学研究科)
非簡約な部分群の Cartan 射影とコンパクト Clifford-Klein 形の存在問題 (Japanese)
[ 講演概要 ]
G を簡約 Lie 群、H を G の閉部分群、Γ を G の離散部分群とする。小林-Benoistの判定法によれば、Γ の G/H への作用の固有性は、H と Γ の Cartan 射影によって決定される。非簡約な部分群の Cartan 射影は大抵計算が困難だが、中には具体的に計算可能な例もある。そうした部分群を利用して、コンパクトな Clifford-Klein 形を持たない簡約型等質空間の例が得られることを紹介する。

2021年06月17日(木)

応用解析セミナー

16:00-17:00   オンライン開催
柴田将敬 氏 (名城大学理工学部)
メトリックグラフ上の半線形楕円型方程式の正値解について (Japanese)
[ 講演概要 ]
メトリックグラフとは、辺と頂点の集合であるグラフにおいて、各辺の長さを考え、各辺と区間と同一視したものである。その上の半線形楕円型方程式は、グラフの辺の数だけ未知関数を持つ常微分方程式系に帰着される。本講演では、特異極限問題を考え、最小エネルギー解に代表される正値解の漸近挙動や解構造について考察する。そして、解が集中する位置や解の個数とメトリックグラフの幾何的な情報との関係について、得られている結果を紹介する。本研究は、倉田和浩氏(東京都立大学)との共同研究に基づく。
[ 参考URL ]
https://forms.gle/apD358V3Jn3ztKVK8

情報数学セミナー

16:50-18:35   オンライン開催
Zoomでの開催
藤原 洋 氏 (株式会社ブロードバンドタワー)
機械学習からディープラーニングへ (Japanese)
[ 講演概要 ]
 現代AIの基本は、ディープラーニングであるが、これを基本としたAI技術基盤が存在する。そこで、今回は、最初に本技術基盤の第2層に相当するAIライブラリレイヤについて、機械学習ライブラリの実例を示す。また、ディープラーニングは、ニューラルネットワークを対象にした多層構造の機械学習モデルに基づいているが、機械学習から如何にしてディープラーニングに到達するかについて概観する。
[ 参考URL ]
https://docs.google.com/forms/d/1zdmPdHWcVgH6Sn62nVHNp0ODVBJ7fyHKJHdABtDd_Tw

2021年06月16日(水)

代数学コロキウム

17:00-18:00   オンライン開催
寺門 康裕 氏 (National Center for Theoretical Sciences)
Hecke eigensystems of automorphic forms (mod p) of Hodge type and algebraic modular forms (Japanese)
[ 講演概要 ]
In a 1987 letter to Tate, Serre showed that the prime-to-p Hecke eigensystems arising in the space of mod p modular forms are the same as those appearing in the space of automorphic forms on a quaternion algebra. This result is regarded as a mod p analogue of the Jacquet-Langlands correspondence. In this talk, we give a generalization of Serre's result to the Hecke eigensystems of mod p automorphic forms on a Shimura variety of Hodge type with good reduction at p. This is joint work with Chia-Fu Yu.

統計数学セミナー

14:30-16:00   数理科学研究科棟(駒場) 号室
Zoomで配信します。 参加希望の方は以下のGoogle Formより2日前までにご登録ください。
Hiroki Masuda 氏 (Kyushu University)
Levy-Ornstein-Uhlenbeck Regression
[ 講演概要 ]
Asia-Pacific Seminar in Probability and Statistics (APSPS)
https://sites.google.com/view/apsps/home

We will present some of recent developments in parametric inference for a linear regression model driven by a non-Gaussian stable Levy process, when the process is observed at high frequency over a fixed time period. The model depends on a covariate process and the finite-dimensional parameter: the stability index (activity index) and the scale in the noise term, and the (auto)regression coefficients in the trend term, all being unknown. The maximum-likelihood estimator is shown to be asymptotically mixed-normally distributed with maximum concentration property. In order to bypass possible multiple-root problem and heavy numerical optimization, we also consider some easily computable initial estimator with which the one-step improvement does work. The asymptotic properties hold true in a unified manner regardless of whether the model is stationary and/or ergodic, almost without taking care of character of the
covariate process. Also discussed will be model-selection issues and some possible model extensions.
[ 参考URL ]
https://docs.google.com/forms/d/e/1FAIpQLSfkHbmXT_3kHkBIUedzNSFqQ6QxuZzUQ9_qOgc8HqtZsKHTPQ/viewform

2021年06月15日(火)

作用素環セミナー

16:45-18:15   オンライン開催
鈴木悠平 氏 (北海道大学)
$C^*$-simplicity has no local obstruction
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm

トポロジー火曜セミナー

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
佐藤 尚倫 氏 (早稲田大学)
Direct decompositions of groups of piecewise linear homeomorphisms of the unit interval (JAPANESE)
[ 講演概要 ]
In this talk, we consider subgroups of the group PLo(I) of piecewise linear orientation-preserving homeomorphisms of the unit interval I = [0, 1] that are differentiable everywhere except at finitely many real numbers, under the operation of composition. We provide a criterion for any two subgroups of PLo(I) which are direct products of finitely many indecomposable non-commutative groups to be non-isomorphic. As its application we give a necessary and sufficient condition for any two subgroups of the R. Thompson group F that are stabilizers of finite sets of numbers in the interval (0, 1) to be isomorphic.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

Lie群論・表現論セミナー

17:00-18:00   数理科学研究科棟(駒場) Online号室
小林俊行 氏 (東大数理)
極限代数と緩増加表現 (Japanese)
[ 講演概要 ]
次の4つの(見かけ上は無関係な)4つのトピックについての新しい関係について話す予定です。

1.(解析) 等質空間上のユニタリ表現が緩増加
2.(組合せ論) 凸多面体
3.(トポロジー)極限代数 
4.(シンプレクティック幾何学)余随伴軌道の幾何学的量子化

2021年06月14日(月)

複素解析幾何セミナー

10:30-12:00   オンライン開催
小池 貴之 氏 (大阪市立大学)
Projective K3 surfaces containing Levi-flat hypersurfaces (Japanese)
[ 講演概要 ]
In May 2017, I reported on the gluing construction of a K3 surface at Seminar on Geometric Complex Analysis.
Here, by the gluing construction of a K3 surface, I mean the construction of a K3 surface by holomorphically gluing two open complex surfaces which are the complements of tubular neighborhoods of elliptic curves included in the blow-ups of the projective planes by nine points.
As of 2017, it was an open problem whether a projective K3 surface can be obtained by the gluing construction. Recently, I and Takato Uehara found a very concrete way to construct a projective K3 surface by the gluing method. As a corollary, we obtained the existence of non-Kummer projective K3 surface with compact Levi-flat hypersurfaces.
In this talk, I will explain the detail of the concrete gluing construction of such a K3 surface.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

代数幾何学セミナー

17:00-18:00   数理科学研究科棟(駒場) 号室
京大と共催です。いつもと日時が異なります。
原和平 氏 (University of Glasgow)
Rank two weak Fano bundles on del Pezzo threefolds of degree 5 (日本語)
[ 講演概要 ]
射影化したとき反標準因子がネフかつ巨大になるようなベクトル束を弱Fanoベクトル束という.
本講演では,福岡氏,石川氏との共同研究で得られた,次数5の3次元del Pezzo多様体上の階数2のベクトル束の分類結果を紹介する.
今回は特に,導来圏の例外生成列を用いたベクトル束の分解を得る方法と,それを応用して得られるモジュライ空間についての諸結果に話題を絞って,証明を詳しく紹介したい.
[ 参考URL ]
Zoom

2021年06月10日(木)

情報数学セミナー

16:50-18:35   オンライン開催
Zoomでの開催
藤原 洋 氏 (株式会社ブロードバンドタワー)
AIの技術基盤と基礎となる機械学習 (Japanese)
[ 講演概要 ]
 AI技術の基本は、ディープラーニングであるが、これを基本としたAI技術基盤を俯瞰する。本技術基盤は、既にある通信プロトコルでのOSIモデルの7層構造やIoTプットフォームとしての3層構造と異なり、4層構造が、最適であると考えられる。また、ディープラーニングは、ニューラルネットワークを対象にした多層構造の機械学習モデルに基づいている。そこで、本講では、現代AIの技術基盤の4層構成を定義し、基礎となる機械学習の原理とそのライブラリ構成について概観する。
[ 参考URL ]
https://docs.google.com/forms/d/1zdmPdHWcVgH6Sn62nVHNp0ODVBJ7fyHKJHdABtDd_Tw

2021年06月09日(水)

代数幾何学セミナー

15:00-16:00   数理科学研究科棟(駒場) 122号室
京大と共催です。
Andrea Fanelli 氏 (Bordeaux)
Rational simple connectedness and Fano threefolds (English)
[ 講演概要 ]
The notion of rational simple connectedness can be seen as an algebro-geometric analogue of simple connectedness in topology. The work of de Jong, He and Starr has already produced several recent studies to understand this notion.
In this talk I will discuss the joint project with Laurent Gruson and Nicolas Perrin to study rational simple connectedness for Fano threefolds via explicit methods from birational geometry.
[ 参考URL ]
Zoom

2021年06月08日(火)

解析学火曜セミナー

16:00-17:30   オンライン開催
昨年度までと開始時間が異なるのでご注意ください
清水一慶 氏 (大阪大学)
Local well-posedness for the Landau-Lifshitz equation with helicity term (Japanese)
[ 講演概要 ]
We consider the initial value problem for the Landau-Lifshitz equation with helicity term (chiral interaction term), which arises from the Dzyaloshinskii-Moriya interaction. We show that it is locally well-posed in Sobolev spaces $H^s$ when $s>2$. The key idea is to reduce the problem to a system of semi-linear Schr\"odinger equations, called modified Schr\"odinger map equation. The problem here is that the helicity term appears as quadratic derivative nonlinearities, which is known to be difficult to treat as perturbation of the free evolution. To overcome that, we consider them as magnetic terms, then apply the energy method by introducing the differential operator associated with magnetic potentials.
[ 参考URL ]
https://forms.gle/nc85Mw9Jd6NgJzT98

トポロジー火曜セミナー

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
松下 尚弘 氏 (琉球大学)
Graphs whose Kronecker coverings are bipartite Kneser graphs (JAPANESE)
[ 講演概要 ]
Kronecker coverings are bipartite double coverings of graphs which are canonically determined. If a graph G is non-bipartite and connected, then there is a unique bipartite double covering of G, and the Kronecker covering of G coincides with it.

In general, there are non-isomorphic graphs although they have the same Kronecker coverings. Therefore, for a given bipartite graph X, it is a natural problem to classify the graphs whose Kronecker coverings are isomorphic to X. Such a classification problem was actually suggested by Imrich and Pisanski, and has been settled in some cases.

In this lecture, we classify the graphs whose Kronecker coverings are bipartite Kneser graphs H(n, k). The Kneser graph K(n, k) is the graph whose vertex set is the family of k-subsets of the n-point set {1, …, n}, and two vertices are adjacent if and only if they are disjoint. The bipartite Kneser graph H(n, k) is the Kronecker covering of K(n, k). We show that there are exactly k graphs whose Kronecker coverings are H(n, k) when n is greater than 2k. Moreover, we determine their automorphism groups and chromatic numbers.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

作用素環セミナー

16:45-18:15   オンライン開催
Hannes Thiel 氏 (TU Dresden)
The generator rank of $C^*$-algebras (English)
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm

数値解析セミナー

16:30-18:00   オンライン開催
曽我幸平 氏 (慶應義塾大学理工学部)
Action minimizing random walks and numerical analysis of Hamilton-Jacobi equations (Japanese)
[ 講演概要 ]
1階のHamilton-Jacobi方程式は様々な文脈で現れる完全非線形PDEであり,粘性解と呼ばれる弱解クラスで盛んに研究されている.例えば,解析力学の一部として1997年に登場した弱KAM理論においては,1階のHamilton-Jacobi方程式の粘性解だけでなくその1階微分と特性曲線の情報が本質的に活用される.1階のHamilton-Jacobi方程式の解を具体的に構成する手法(粘性消去法/割引消去法/離散近似法など)はよく知られているが,粘性解・1階微分・特性曲線の全てを同時に構成することは非自明である.本講演では,一般の空間次元で時間依存するTonelli型のHamiltonianが生成するHamilton-Jacobi方程式に対して,最も初等的な差分法によって,粘性解・1階微分・特性曲線の全てを同時に構成する手法を紹介する.収束証明のポイントは,離散近似問題を非一様ランダムウォークの最適制御問題に書き直し,変分法と確率論の議論を援用することである.時間が許せば,弱KAM理論への応用についても触れる.
[ 参考URL ]
https://forms.gle/kjhqne4nV6fqEFWB8

Lie群論・表現論セミナー

17:00-18:00   数理科学研究科棟(駒場) Online号室
甘中 一輝 氏 (理化学研究所 数理創造プログラム)
3次元コンパクト反ド・ジッター多様体の安定固有値の重複度
(Japanese)
[ 講演概要 ]
擬リーマン局所対称空間とは
半単純対称空間$G/H$の不連続群$\Gamma$による商多様体$\Gamma\backslash G/H$の事である。
小林俊行は擬リーマン局所対称空間の(ラプラシアンのような)内在的微分作用素のスペクトル解析の研究を創始した。古典的なリーマン多様体の設定とは異なり、擬リーマン局所対称空間のラプラシアンはもはや楕円型微分作用素ではない。
そのスペクトル解析において、Kassel・小林による先駆的研究に続き、リーマン多様体の設定とは異なる新たな現象が近年発見されつつある。例えば、Kassel・小林は$\Gamma$を変形させた時の$\Gamma\backslash G/H$の内在的微分作用素の固有値の振る舞いを研究した。特別な場合として$3$次元コンパクト反ド・ジッター多様体$\Gamma\backslash \mathrm{SO}(2,2)/\mathrm{SO}(2,1)$
の(双曲型)ラプラシアンの無限個の安定固有値を発見した([Adv.\ Math.\ 2016])。
本講演では、反ド・ジッター多様体の設定で安定固有値の重複度についての最近の結果について説明したい。

2021年06月07日(月)

複素解析幾何セミナー

10:30-12:00   オンライン開催
馬場 蔵人 氏 (東京理科大学)
Calabi-Yau structure and Bargmann type transformation on the Cayley projective plane (Japanese)
[ 講演概要 ]
In this talk, I would like to discuss a problem of the geometric quantization for the Cayley projective plane. Our purposes are to show the existence of a Calabi-Yau structure on the punctured cotangent bundle of the Cayley projective plane, and to construct a Bargmann type transformation between a space of holomorphic functions on the bundle and the $L_2$-space on the Cayley projective space. The transformation gives a quantization of the geodesic flow in terms of one parameter group of elliptic Fourier integral operators. This talk is based on a joint work with Kenro Furutani (Osaka City University Advanced Mathematical Institute): arXiv:2101.07505.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年06月03日(木)

情報数学セミナー

16:50-18:35   オンライン開催
Zoomでの開催
藤原 洋 氏 (株式会社ブロードバンドタワー)
AIの過去・現在・未来 (Japanese)
[ 講演概要 ]
機械学習と深層学習の登場で、AIは、コンピュータサイエンスの研究対象から、実用段階に入った。そして、あらゆる学術分野・産業分野における研究対象、事業対象へと変貌を遂げた。本講義では、今日のAI研究とAIビジネスの過去・現在・未来について展望する。
[ 参考URL ]
https://docs.google.com/forms/d/1zdmPdHWcVgH6Sn62nVHNp0ODVBJ7fyHKJHdABtDd_Tw

2021年06月02日(水)

代数幾何学セミナー

15:00-16:00   数理科学研究科棟(駒場) 号室
京大と共催です。
青木孔 氏 (東大数理)
Quasiexcellence implies strong generation (日本語)
[ 講演概要 ]
BondalとVan den Berghは(小さい)三角圏からの反変関手がいつ表現可能かという問題の考察の中で、対象が三角圏を強生成(strongly generate)することの定義を導入した。強生成する対象が存在するときは良い表現可能性定理が成立する。
どのような有限次元Noetherスキームに対してその連接層の導来圏が強生成であるかについてはBondal–Van den Bergh以降Rouquier, Keller–Van den Bergh, Aihara–Takahashi, Iyengar–Takahashiなどにより多くの結果が得られていたが、最近Neemanは別の手法を用いてそれをalterationが適用できる分離Noetherスキームに対して示した。それを講演者はGabberのweak local uniformizationを用いることでさらに分離的準優秀スキームにまで拡張した。講演ではこの結果およびその証明の手法を紹介する。
[ 参考URL ]
Zoom

東京名古屋代数セミナー

16:00-17:30   オンライン開催
オンライン開催の詳細は下記URLをご覧ください。
村井 聡 氏 (早稲田大学)
An equivariant Hochster's formula for $S_n$-invariant monomial ideals (Japanese)
[ 講演概要 ]
組合せ可換環論の分野では、多項式環の単項式イデアルや二項式イデアルの代数的な情報と凸多面体や単体的複体の組合せ論的な情報の関連がよく研究される。イデアルの自由分解に関するHochsterの公式は、(squarefreeな)単項式イデアルの自由分解のベッチ数と単体的複体のホモロジーとの関係を与える公式で、組合せ可換代数の分野における基本的な結果の一つである。本講演では、$n$変数多項式環$S=K[x_1,\dots,x_n]$の単項式イデアル$I$が$n$次対称群の作用で固定されるときは、ベッチ数$\beta_{ij}(I)=\dim_K \mathrm{Tor}_i(I,K)_j$のみならず、$\mathrm{Tor}_i(I,K)_j$の表現の情報まで単体的複体のホモロジーを用いて計算できることを紹介する。

対称群の作用で固定される単項式イデアルの性質を調べた今回の研究結果は、無限変数多項式環上のイデアルで無限対称群の作用で固定されるイデアルにある種の有限生成性があること(Noetherianity up to symmetry)に関連する研究を動機としている。講演の前半ではこの問題の背景について簡単に話をし、後半に今回の結果とその応用について紹介したい。

本研究はClaudiu Raicuとの共同研究である。
[ 参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2021年06月01日(火)

トポロジー火曜セミナー

17:30-18:30   オンライン開催
Lie群論・表現論セミナーと合同。 参加を希望される場合は、セミナーのウェブページをご覧下さい。
北川 宜稔 氏 (早稲田大学)
On the discrete decomposability and invariants of representations of real reductive Lie groups (JAPANESE)
[ 講演概要 ]
群の既約表現を部分群に制限したときにどのように振る舞うかを記述する問題を分岐則の問題という。既約表現の制限は一般には既約ではなくなり、ユニタリな場合には直積分で記述される既約分解が存在する。この分解は、ユニタリ作用素のスペクトル分解の一般化とみなすことができ、一般には連続的なスペクトルと離散的なスペクトルが現れる。連続的なスペクトルが現れない場合、つまりユニタリ表現の離散的な直和になっている場合、その表現は離散分解するという。

離散分解する分岐則は技術的に扱いやすいというだけでなく、大きな群の表現の情報から小さい部分群の表現の情報が取り出しやすい状況になっており、以下のような応用が知られている。保型形式から別の保型形式を作り出す Rankin--Cohen ブラケットという作用素は、離散分解する表現から既約表現への絡作用素として得られることが知られており、近年でも多くの一般化が得られている。また、等質空間の L^2 関数の空間の離散スペクトルを別の等質空間のものから構成するという結果にも用いられている。(T. Kobayashi, J. Funct. Anal. ('98))

本講演では、実簡約リー群の既約表現の制限の離散分解性について、小林俊行氏が提唱した離散分解性とG'-許容性の一般論と判定条件(Invent. math. '94, Annals of Math. '98, Invent. math. '98)を踏まえつつ、最近得られた結果を紹介したい。表現の代数的な不変量である随伴多様体、解析的な不変量である wave front set、表現空間の位相、の三つを用いて離散分解性を記述する。
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

Lie群論・表現論セミナー

17:30-18:30   数理科学研究科棟(駒場) Online号室
トポロジー火曜セミナーと合同。オンライン開催。
北川 宜稔 氏 (早稲田大学)
On the discrete decomposability and invariants of representations of real reductive Lie groups (Japanese)
[ 講演概要 ]
群の既約表現を部分群に制限したときにどのように振る舞うかを記述する問題を分岐則の問題という。既約表現の制限は一般には既約ではなくなり、ユニタリな場合には直積分で記述される既約分解が存在する。この分解は、ユニタリ作用素のスペクトル分解の一般化とみなすことができ、一般には連続的なスペクトルと離散的なスペクトルが現れる。連続的なスペクトルが現れない場合、つまりユニタリ表現の離散的な直和になっている場合、その表現は離散分解するという。

離散分解する分岐則は技術的に扱いやすいというだけでなく、大きな群の表現の情報から小さい部分群の表現の情報が取り出しやすい状況になっており、以下のような応用が知られている。保型形式から別の保型形式を作り出す Rankin--Cohen ブラケットという作用素は、離散分解する表現から既約表現への絡作用素として得られることが知られており、近年でも多くの一般化が得られている。
また、等質空間の L^2 関数の空間の離散スペクトルを別の等質空間のものから構成するという結果にも用いられている。(T. Kobayashi, J. Funct. Anal. ('98))

本講演では、実簡約リー群の既約表現の制限の離散分解性について、小林俊行氏が提唱した離散分解性とG'-許容性の一般論と判定条件(Invent. math. '94, Annals of Math. '98, Invent. math. '98)を踏まえつつ、最近得られた結果を紹介したい。
表現の代数的な不変量である随伴多様体、解析的な不変量である wave front set、表現空間の位相、の三つを用いて離散分解性を記述する。

作用素環セミナー

16:45-18:15   オンライン開催
武石拓也 氏 (京都工芸繊維大学)
KMS states of Toeplitz algebras of graphs
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm

2021年05月31日(月)

複素解析幾何セミナー

10:30-12:00   オンライン開催
竹内 有哉 氏 (筑波大学)
Nonnegativity of the CR Paneitz operator for embeddable CR manifolds (Japanese)
[ 講演概要 ]
The CR Paneitz operator, which is a fourth-order CR invariant differential operator, plays a crucial role in three-dimensional CR geometry; it is deeply connected to global embeddability and the CR positive mass theorem. In this talk, I will show that the CR Paneitz operator is nonnegative for embeddable CR manifolds. I will also apply this result to some problems in CR geometry. In particular, I will give an affirmative solution to the CR Yamabe problem for embeddable CR manifolds.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 次へ >