過去の記録

過去の記録 ~11/11本日 11/12 | 今後の予定 11/13~

東京無限可積分系セミナー

15:00-16:00   数理科学研究科棟(駒場) 002号室
元良直輝 氏 (京大数研)
Screening Operators and Parabolic inductions for W-algebras
(ENGLISH)
[ 講演概要 ]
(アファイン)W代数とはDrinfeld-Sokorov reductionによって定義される頂点代数
の族である。本講演ではアファインLie代数の脇本表現から誘導される、一般のW代数
の自由場表示を考える。その時、W代数の脇本表現とも呼べる表現が構成され、自由
場表示はスクリーニング作用素の共通核として実現される。応用として、PremetやLo
sevによって構成された有限W代数におけるParabolic inductionのW代数版が得られる
ことを示す。特にA型の場合ではBrundan-Klshchevのcoproductのchiralizationにな
り、BCD型の特殊な場合ではその類似が発見できる。

2018年03月30日(金)

トポロジー火曜セミナー

15:00-16:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
Matteo Felder 氏 (University of Geneva)
Graph Complexes and the Kashiwara-Vergne Lie algebra (ENGLISH)
[ 講演概要 ]
The Kashiwara-Vergne Lie algebra krv was introduced by A. Alekseev and C. Torossian. It describes the symmetries of the Kashiwara-Vergne problem in Lie theory. It has been shown to contain the Grothendieck-Teichmüller Lie algebra grt as a Lie subalgebra. Conjecturally, these two Lie algebras are expected to be isomorphic. An important theorem by T. Willwacher states that in degree zero the cohomology of M. Kontsevich's graph complex GC is isomorphic to grt. We will show how T. Willwacher's result induces a natural way to define a nested sequence of Lie subalgebras of krv whose intersection is grt. This infinite family therefore interpolates between the two Lie algebras. For this we will recall several techniques from the theory of graph complexes. If time permits, we will then sketch how one might generalize these notions to establish a "genus one" analogue of T. Willwacher theorem. More precisely, we will define a chain complex whose degree zero cohomology is given by a Lie subalgebra of the elliptic Grothendieck-Teichmüller Lie algebra introduced by B. Enriquez. The last part is joint work in progress with T. Willwacher.

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
Florian Naef 氏 (Massachusetts Institute of Technology)
Goldman-Turaev formality in genus 0 from the KZ connection (ENGLISH)
[ 講演概要 ]
Using the intersection and self-intersection of loops on a surface one can define the Goldman-Turaev Lie bialgebra. By earlier joint work with A. Alekseev, N. Kawazumi and Y. Kuno it is known that the linearization problem of the Goldman-Turaev Lie bialgebra is closely related to the Kashiwara-Vergne problem and hence to Drinfeld associators. It turns out that in the case of a genus 0 surface and over the field of complex numbers there is a very direct and explicit proof of the formality of the Goldman-Turaev Lie bialgebra using the monodromy of the Knizhnik-Zamolodchikov connection. This is joint work with Anton Alekseev.

2018年03月27日(火)

東京無限可積分系セミナー

15:00-16:00   数理科学研究科棟(駒場) 002号室
福住吉喜 氏 (東大物性研)
シュラム・レヴナー発展とリウヴィル場理論 (JAPANESE)
[ 講演概要 ]
シュラム・レヴナー発展(SLE)はブラウン
運動で駆動される確率的共形変換の一つである。
これにより、イジング模型やパーコレーションを代表とした
二次元のミニマル境界共形場理論で記述されるクラスター境界が
記述される。特に、場の理論の相関関数がマルチンゲール性
を満たすことが特徴である。
本講演ではまず初めに、これらの既存の結果を簡単に紹介する。
次にSLEに形式的に時間反転を施すことで、マルチンゲールが
ミニマル境界共形場の理論からそれと結合可能なリウヴィル場理論
の相関関数に変化することを示す。

2018年03月26日(月)

FMSPレクチャーズ

10:00-12:00   数理科学研究科棟(駒場) 002号室
全2回講演の(2)
Jørgen Ellegaard Andersen 氏 (Aarhus University)
Geometric Recursion (ENGLISH)
[ 講演概要 ]
Geometric Recursion is a very general machinery for constructing mapping class group invariants objects associated to two dimensional surfaces. After presenting the general abstract definition we shall see how a number of constructions in low dimensional geometry and topology fits into this setting. These will include the Mirzakhani-McShane identies, mapping class group invariant closed forms on Teichmüller space (including the Weil-Petterson symplectic form) and the Goldman symplectic form on moduli spaces of flat connections for general compact simple Lie groups. We shall also discuss the process which establishes that any application of Topological Recursion can be lifted to a Geometric Recursion setting involving continuous functions on Teichmüller space, where the connection back to Topological Recursion is obtained by integration over the moduli space of curve. The work
presented is joint with G. Borot and N. Orantin.
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Andersen.pdf

2018年03月23日(金)

FMSPレクチャーズ

10:00-12:00   数理科学研究科棟(駒場) 002号室
全2回講演の(1)
Jørgen Ellegaard Andersen 氏 (Aarhus University)
Geometric Recursion (ENGLISH)
[ 講演概要 ]
Geometric Recursion is a very general machinery for constructing mapping class group invariants objects associated to two dimensional surfaces. After presenting the general abstract definition we shall see how a number of constructions in low dimensional geometry and topology fits into this setting. These will include the
Mirzakhani-McShane identies, mapping class group invariant closed forms on Teichmüller space (including the Weil-Petterson symplectic form) and the Goldman symplectic form on moduli spaces of flat connections for general compact simple Lie groups. We shall also discuss the process which establishes that any application of Topological Recursion can be lifted to a Geometric Recursion setting involving continuous functions on Teichmüller space, where the connection back to Topological Recursion is obtained by integration over the moduli space of curve. The work presented is joint with G. Borot and N. Orantin.
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Andersen.pdf

2018年03月19日(月)

数理人口学・数理生物学セミナー

17:00-18:00   数理科学研究科棟(駒場) 509号室
杉山 友規 氏 (東京大学生産技術研究所)
Age構造付き増殖過程の大偏差原理を用いた解析
[ 講演概要 ]
細胞集団の“集団”としての増殖率(集団増殖率)を制御することは様々な分野で現れるユビキタスな問題である。例えば医学的分野においては、我々はがん細胞や病原性細胞の集団サイズを抗がん剤や抗生物質などを用いて抑制することを考える。一方進化生物学の文脈では、細胞集団は変動する環境の中を生き残るため、集団増殖率を最大化する。近年の実験装置の発展により、我々は細胞集団が増殖していく様を表す非常に大きな系譜(家系図)データを取ることが出来るようになった。本講演では、この系譜データを用いて集団増殖の振る舞いを解析する方法について紹介する。特にここでは、系譜上に定義される大偏差原理を用いた統計物理学的な構造が重要な役割を果たす。結果としては、集団増殖率が、細胞タイプの確率的変化を表すsemi-Markov過程上の大偏差関数のLegendre変換で評価されることが明らかになる。またこの構造を用いることにより、我々は環境変動に対する集団増殖率の応答を時間遡及的に系譜を辿ったときに得られる統計量を用いて知ることが出来る。

2018年03月15日(木)

統計数学セミナー

16:00-17:10   数理科学研究科棟(駒場) 052号室
Stefano Iacus 氏 (University of Milan)
On Hypotheses testing for discretely observed SDE (Joint work with Alessandro De Gregorio, University of Rome)
[ 講演概要 ]
In this talk we consider parametric hypotheses testing for discretely observed ergodic diffusion processes. We present the different test statistics proposed in literature and recall their asymptotic properties. We also compare the empirical performance of different tests in the case of small sample sizes.

2018年03月13日(火)

講演会

10:00-11:00   数理科学研究科棟(駒場) 126号室
高松 哲平 氏 (東大数理)
GSpにおけるDeligne-Lusztig多様体とaffine Deligne-Lusztig多様体との比較

[ 講演概要 ]
Deligne-Lusztig理論とは、有限体上の簡約代数群の有理点の表現を、Deligne-Lusztig多様体と呼ばれる代数多様体のエタールコホモロジーに実現する理論であった。Lusztigは、この理論の非Archimedes的局所体K上での類似の存在を予想した。しかし、Deligne-Lusztig多様体の局所体上の直接の類似物は、アプリオリにはscheme構造を持たないという問題がある。
他方で、局所体K上の簡約代数群に対して、affine Deligne-Lusztig多様体とよばれるDeligne-Lusztig多様体の岩堀類似物が存在し、それらはKの剰余体の閉包上のscheme構造を持つことが知られている。
本講演では、Chan-IvanovのGLの場合での研究の方針にならい、GSpの場合に、Deligne-Lusztig多様体及びaffine Deligne-Lusztig多様体のσ線形代数的記述を示し、その応用としてDeligne-Lusztig多様体にpro-scheme構造を入れられることを説明する。

2018年03月12日(月)

Lie群論・表現論セミナー

15:00-16:30   数理科学研究科棟(駒場) 126号室
Christian Ikenmeyer 氏 (Max-Planck-Institut fur Informatik)
Plethysms and Kronecker coefficients in geometric complexity theory
[ 講演概要 ]
Research on Kronecker coefficients and plethysms gained significant momentum when the topics were connected with geometric complexity theory, an approach towards computational complexity lower bounds via algebraic geometry and representation theory. This talk is about several recent results that were obtained with geometric complexity theory as motivation, namely the NP-hardness of deciding the positivity of Kronecker coefficients and an inequality between rectangular Kronecker coefficients and plethysm coefficients. While the proof of the former statement is mainly combinatorial, the proof of the latter statement interestingly uses insights from algebraic complexity theory. As far as we know algebraic complexity theory has never been used before to prove an inequality between representation theoretic multiplicities.

2018年03月10日(土)

談話会・数理科学講演会

11:00-12:00   数理科学研究科棟(駒場) 大講義室号室
新井仁之 氏 (東大数理)
視知覚の数理科学 (JAPANESE)
[ 講演概要 ]
本講演では、脳内の視覚情報処理の数理モデルとその応用に関して、講演者による結果を中心に述べる。まず数理モデルを作るために考案したかざぐるまフレームレットについて概略を述べ、それを基礎に構成した視覚情報処理の非線形モデルを概説する。さらにこれらを用いて行った各種の錯視の解析を示す。錯視は人の視知覚のメカニズムを解明する上で鍵となる極めて重要な知覚現象であると考えている。先端的な数学を用いることにより、錯視に関して従来の方法では得られなかったような多くの新しい知見が導かれる。このほか、本研究の応用として得られるさまざまな画像処理技術についても、実例を交えながらいくつかの結果を示す。

談話会・数理科学講演会

13:00-14:00   数理科学研究科棟(駒場) 大講義室号室
二木昭人 氏 (東大数理)
K安定性と幾何学的非線形問題 (JAPANESE)
[ 講演概要 ]
K安定性は代数幾何における幾何学的不変式論(GIT)の安定性として定式化されたものであるが,アイデアの端緒は Kazdan-Warner が見出したある非線形偏微分方程式の可解性の障害にある.この非線形問題は微分幾何学的に表現すると,2次元単位球面に滑らかな関数 k を任意に与えたとき,計量 g に適当な正の関数 f をかけて得られる計量 fg が k をガウス曲率になるように,f を決めることができるか,という問題である.これは Nirenberg の問題と呼ばれ,現時点でも完全な答えは得られていない.2次元球面を1次元複素射影空間とみなし,更に Fano 多様体の特別な場合とみなして,Fano 多様体の GIT 安定性として定式化したのは Gang Tian であり(1997),さらに一般の偏極多様体に一般化したのは Simon K. Donaldson である(2002).GIT 安定性はモーメント写像を用いた描像があり,有限次元シンプレクティック幾何の形式的議論が,非線形偏微分方程式を解くにあたっての関数空間における無限次元シンプレクティック幾何的な議論の適切な方向を探る指針を与える.Fano 多様体においては,K安定性がモンジュ・アンペール方程式の可解性と同値であり,従ってケーラー・アインシュタイン計量の存在と同値であることが2012年頃,Chen-Donaldson-Sun と Tian によって証明された.モーメント写像を用いた描像を用いると,他の色々な非線形問題においても同じパターンで,K安定性と可解性の同値性を証明する問題として定式化される.

談話会・数理科学講演会

14:30-15:30   数理科学研究科棟(駒場) 大講義室号室
川又雄二郎 氏 (東大数理)
双有理幾何学と導来圏 (JAPANESE)
[ 講演概要 ]
極小モデル理論によれば、代数多様体の間の双有理写像は基本的な双有理写像(フリップや因子収縮写像)に分解され、双有理幾何学は双正則幾何学に帰着される。その際の道案内になるのが標準因子Kである。代数多様体上の幾何学はその上の連接層によって表現されるが、連接層全体のなすアーベル圏から、複体を考え局所化することによって対称性がアップした導来圏Dが得られる。Kの変化とDの変化の間には思いがけず密接な関係が観測された。一方、有限群による商特異点の極小特異点解消(幾何学)とその群の表現(代数)の間には隠れた関係(マッカイ対応)が観測される。これらを総合した予想としてDK予想がある。最近の進展について解説する。

談話会・数理科学講演会

16:00-17:00   数理科学研究科棟(駒場) 大講義室号室
俣野 博 氏 (東大数理)
反応拡散方程式の定性的理論
(JAPANESE)
[ 講演概要 ]
反応拡散方程式は,非線形偏微分方程式の重要なクラスの一つであり,粒子の拡散を表す項と,粒子の生成消滅を表す非線形項を組み合わせた形で表される.この方程式は,物理学,生物学,化学など広い分野 に応用があるため,過去数十年間にわたって盛んに研究が進められてきた.とくに,1960年代後半から70年代にかけて,反応拡散方程式の解の定性的なふるまいを無限次元力学系の視点から解き明かす研究が少しずつ始まり,その後,大きな流れになっていった.近年は,特異摂動法など種々の解析手法の発展と相まって,反応拡散方程式の解の性質についての理解はますます深まり,応用範囲も広がっている.本講演では,1970年代後半に始めた私自身の研究も振り返りながら,この分野の半世紀にわたる発展の歴史の一部を概観する.

2018年03月09日(金)

講演会

13:30-14:30   数理科学研究科棟(駒場) 056号室
Luc Illusie 氏 (パリ南大学名誉教授)
Sliced nearby cycles and duality, after W. Zheng (ENGLISH)
[ 講演概要 ]
In the early 1980's Gabber proved duality for nearby cycles and, by a different method, Beilinson proved duality for vanishing cycles in the strictly local case (up to a twist of the inertia action on the tame part). Recently W. Zheng found a simple proof of a result, conjectured by Deligne, which implies them both, and extended it over finite dimensional excellent bases. I will explain the main ideas of his work, which relies on new developments, due to him, of Deligne's theory of fibered and oriented products.

2018年03月02日(金)

統計数学セミナー

15:00-16:10   数理科学研究科棟(駒場) 270号室
Arnaud Gloter 氏 (Université d'Evry Val d'Essonne)
"Estimating functions for SDE driven by stable Lévy processes"
Joint work with Emmanuelle Clément (Ecole Centrale)
[ 講演概要 ]
In this talk we will discuss about parametric inference for a stochastic differential equation driven by a pure-jump Lévy process, based on high frequency observations on a fixed time period. Assuming that the Lévy measure of the driving process behaves like that of an α-stable process around zero, we propose an estimating functions based method which leads to asymptotically efficient estimators for any value of α ∈ (0, 2).

2018年02月23日(金)

談話会・数理科学講演会

15:30-16:30   数理科学研究科棟(駒場) 002号室
田中公 氏 (東大数理)
正標数における極小モデル理論について (JAPANESE)
[ 講演概要 ]
極小モデル理論は代数多様体の分類理論である。20世紀の初頭に確立された代数
曲面論に端を発し、1980年代に爆発的に進展した。特に、標数ゼロの三次元代数
多様体に対する極小モデル理論がこの頃に完成し、近年では正標数の世界におい
ても大きく進展している。本講演では、極小モデル理論について概説した後、時
間が許せば正標数特有の問題等についても触れたい。

FMSPレクチャーズ

13:30-15:00   数理科学研究科棟(駒場) 002号室
全3回講演の(3)
Etienne Ghys 氏 (ENS de Lyon)
The topology of singular points of real analytic curves (ENGLISH)
[ 講演概要 ]
In the neighborhood of a singular point, a germ of real analytic curve in the plane consists of a finite number of branches. Each of these branches intersects a small circle around the singular point in two points. Therefore, the local topology is described by a chord diagram : an even number of points on a circle paired two by two. Not all chord diagrams come from a singular point. The main purpose of this mini course is to give an complete description of those ‘’analytic ? chord diagrams. On our way, we shall meet some interesting concepts from computer science, graph theory and operads.
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Ghys.pdf

2018年02月22日(木)

FMSPレクチャーズ

15:00-16:30   数理科学研究科棟(駒場) 117号室
全3回講演の(2)
Etienne Ghys 氏 (ENS de Lyon)
The topology of singular points of real analytic curves (ENGLISH)
[ 講演概要 ]
In the neighborhood of a singular point, a germ of real analytic curve in the plane consists of a finite number of branches. Each of these branches intersects a small circle around the singular point in two points. Therefore, the local topology is described by a chord diagram : an even number of points on a circle paired two by two. Not all chord diagrams come from a singular point. The main purpose of this mini course is to give an complete description of those ‘’analytic ? chord diagrams. On our way, we shall meet some interesting concepts from computer science, graph theory and operads.
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Ghys.pdf

2018年02月21日(水)

FMSPレクチャーズ

15:00-16:30   数理科学研究科棟(駒場) 117号室
全3回講演の(1)
Etienne Ghys 氏 (ENS de Lyon)
The topology of singular points of real analytic curves (ENGLISH)
[ 講演概要 ]
In the neighborhood of a singular point, a germ of real analytic curve in the plane consists of a finite number of branches. Each of these branches intersects a small circle around the singular point in two points. Therefore, the local topology is described by a chord diagram : an even number of points on a circle paired two by two. Not all chord diagrams come from a singular point. The main purpose of this mini course is to give an complete description of those ‘’analytic ? chord diagrams. On our way, we shall meet some interesting concepts from computer science, graph theory and operads.
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Ghys.pdf

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 122号室
Tea: Common Room 16:30-17:00
Gwénaël Massuyeau 氏 (Université de Bourgogne)
The category of bottom tangles in handlebodies, and the Kontsevich integral (ENGLISH)
[ 講演概要 ]
Habiro introduced the category B of « bottom tangles in handlebodies », which encapsulates the set of knots in the 3-sphere as well as the mapping class groups of 3-dimensional handlebodies. There is a natural filtration on the category B defined using an appropriate generalization of Vassiliev invariants. In this talk, we will show that the completion of B with respect to the Vassiliev filtration is isomorphic to a certain category A which can be defined either in a combinatorial way using « Jacobi diagrams », or by a universal property via the notion of « Casimir Hopf algebra ». Such an isomorphism will be obtained by extending the Kontsevich integral (originally defined as a knot invariant) to a functor Z from B to A. This functor Z can be regarded as a refinement of the TQFT-like functor derived from the LMO invariant and, if time allows, we will evoke the topological interpretation of the « tree-level » of Z. (This is based on joint works with Kazuo Habiro.)

2018年02月19日(月)

数値解析セミナー

15:00-16:00   数理科学研究科棟(駒場) 056号室
Michael Plum 氏 (Karlsruhe Insitute of Technology)
Existence, multiplicity, and orbital stability for travelling waves in a nonlinearly supported beam (English)
[ 講演概要 ]
For a nonlinear beam equation with exponential nonlinearity, we prove existence of at least 36 travelling wave solutions for the specific wave speed c=1.3. Our proof makes heavy use of computer assistance: starting from numerical approximations, we use a fixed point argument to prove existence of solutions "close to" the approximate ones. Furthermore we investigate the orbital stability of these solutions by making use of both analytical and computer-assisted techniques.

数値解析セミナー

16:15-17:15   数理科学研究科棟(駒場) 056号室
長藤かおり 氏 (Karlsruhe Insitute of Technology)
An approach to computer-assisted existence proofs for nonlinear space-time fractional parabolic problems (English)
[ 講演概要 ]
We consider an initial boundary value problem for a space-time fractional parabolic equation, which includes the fractional Laplacian, i.e. a nonlocal operator. We treat a corresponding local problem which is obtained by the Caffarelli-Silvestre extension technique, and show how to enclose a solution of the extended problem by computer-assisted means.

2018年02月14日(水)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 126号室
Valerio Proietti 氏 (Copenhagen Univ.)
Index theory on the Mishchenko bundle (English)

2018年02月06日(火)

東京無限可積分系セミナー

15:00-17:30   数理科学研究科棟(駒場) 002号室
桂 法称 氏 (東大理物) 15:00-16:00
1次元量子臨界系のサイン二乗変形 (ENGLISH)
[ 講演概要 ]
サイン二乗変形(SSD)とは、量子系のハミルトニアンの局所的エネルギースケールを、サイン二乗関数にしたがって空間的方向に変調させる変形操作である。SSDにより、一様周期境界条件を課した系のハミルトニアンは、開放境界条件を課した空間的に非一様なハミルトニアンへと変形される。しかしながら、空間次元1次元で系が臨界的な場合には、この変形後のハミルトニアンの基底状態は、変形前の一様周期的な基底状態からほとんど変化しないということが、現在までに明らかにされている。特に講演者は、臨界的なXYスピン鎖や横磁場Ising模型においては、両者の基底状態が厳密に一致することを示している
[1,2,3]。また、ディラック・フェルミオン系や一般の(1+1)次元の共形場理論についても、適切にSSDを定義すれば、やはり一様周期系とSSD系の基底状態が一致するという結果を紹介する。時間が許せば、その他の最近の結果
[4,5] や、SSD系の励起状態についての結果についても紹介する。

[1] H. Katsura, J. Phys. A: Math. Theor. 44, 252001 (2011).
[2] H. Katsura, J. Phys. A: Math. Theor. 45, 115003 (2012).
[3] I. Maruyama, H. Katsura, T. Hikihara, Phys. Rev. B 84, 165132 (2011).
[4] K. Okunishi and H. Katsura, J. Phys. A: Math. Theor. 48, 445208 (2015).
[5] S. Tamura and H. Katsura, Prog. Theor. Exp. Phys 2017, 113A01 (2017).
佐藤 僚 氏 (東大数理) 16:30-17:30
モジュラー不変性をもつ $N=2$ 頂点作用素超代数の表現に
ついて (ENGLISH)
[ 講演概要 ]
よいクラスの頂点作用素超代数の表現の指標はモジュラー不変性という顕著な性質を示す.この性質の応用として,中心電荷が$c_{p,1}=3(1-2/p)$である$N=2$頂点作用素超代数のフュージョン則は,モジュラー$S$行列から Verlinde公式によって計算されることが知られている(脇本実氏とD. Adamovic氏の結果による).本セミナーでは,互いに素な$2$以上の整数組$(p,p')$を用いて中心電荷が$c_{p,p'}:=3(1-2p'/p)$と表わされる場合に,然るべき意味でモジュラー不変性を示す新たな$N=2$頂点作用素超代数の表現族を紹介する.また,Creutzig--Ridoutによって提案されたVerlinde公式の一般化を踏まえて,フュージョン則の計算への応用を議論する.

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 次へ >