過去の記録 ~01/25本日 01/26 | 今後の予定 01/27~


14:15-15:30   数理科学研究科棟(駒場) 118号室
小寺 諒介 氏 (東京大学大学院数理科学研究科)
Extensions between finite-dimensional simple modules over a generalized current Lie algebra(一般化されたカレントリー代数上の有限次元単純加群の間の拡大) (JAPANESE)


09:45-11:00   数理科学研究科棟(駒場) 122号室
見村 万佐人 氏 (東京大学大学院数理科学研究科)
Rigidity theorems for universal and symplectic universal lattices(普遍格子と斜交普遍格子の剛性定理) (JAPANESE)


11:00-12:15   数理科学研究科棟(駒場) 122号室
山下 真 氏 (東京大学大学院数理科学研究科)
Deformation of torus equivariant spectral triples(トーラス同変なスペクトラル三つ組の変形) (JAPANESE)


14:15-15:30   数理科学研究科棟(駒場) 122号室
張 欽 氏 (東京大学大学院数理科学研究科)
Noncommutative Maximal Ergodic Inequality For Non-tracial L1-spaces(非トレース的L1空間に対する非可換極大エルゴード不等式) (JAPANESE)


14:15-15:30   数理科学研究科棟(駒場) 128号室
水谷 治哉 氏 (東京大学大学院数理科学研究科)
Dispersive and Strichartz estimates for Schrödinger equations(シュレディンガー方程式に対する分散型及びストリッカーツ評価) (JAPANESE)


15:45-17:00   数理科学研究科棟(駒場) 128号室
川本 敦史 氏 (東京大学大学院数理科学研究科)
Conditional stability by Carleman estimates for inverse problems : coefficient inverse problems for the Dirac equation, the determination of subboundary by the heat equation and the continuation of solution of the Euler equation(逆問題に対するカーレマン評価による条件付き安定性: ディラック方程式に対する係数逆問題,熱方程式による部分境界の決定とオイラー方程式に対する解の接続性) (JAPANESE)



16:30-17:30   数理科学研究科棟(駒場) 002号室
Yong Jung Kim 氏 (Korea Advanced Institute of Science and Technology (KAIST))
Connectedness of a level set and a generalization of Oleinik and Aronson-Benilan type one-sided inequalities (ENGLISH)
[ 講演概要 ]
The one-sided Oleinik inequality provides the uniqueness and a sharp regularity of solutions to a scalar conservation law. The Aronson-Benilan type one-sided inequalities also play a similar role. We will discuss about their generalization to a general setting.


15:15-16:15   数理科学研究科棟(駒場) 002号室
Guanghui ZHANG (張光輝) 氏 (東京大学大学院数理科学研究科)
Regularity of two dimensional capillary gravity water waves (ENGLISH)
[ 講演概要 ]
We consider the two-dimensional steady capillary water waves with vorticity. In the case of zero surface tension, it is well known that the free surface of a wave of maximal amplitude is not smooth at a free surface point of maximal height, but forms a sharp crest with an angle of 120 degrees. When the surface tension is not zero, physical intuition suggests that the corner singularities should disappear. In this talk we prove that for suitable weak solutions, the free surfaces are smooth. On a technical level, solutions of our problem are closely related to critical points of the Mumford-Shah functional, so that our main task is to exclude cusps pointing into the water phase. This is a joint work with Georg Weiss.


15:00-16:10   数理科学研究科棟(駒場) 006号室
三浦 良造 氏 (一橋大学)
An Attempt to formalize Statistical Inferences for Weakly Dependent Time-Series Data and Some Trials for Statistical Analysis of Financial Data (JAPANESE)
[ 講演概要 ]

事例は、時系列データ解析におけるスムージング(Locally Weighted Regression)、ヘッジ



: (1).weakly dependent caseの経験分布関数とVon Mises Functional.


:(2)One Sample Problem.

Signed Rank Statistics. (Shibata/Miura’s decomposition?).

:(3)Two Sample Problem.


:Time-Map Scattered Plot と順位相関との比較同等性?

:Two Sample Wilcoxon
[ 講演参考URL ]



16:40-18:10   数理科学研究科棟(駒場) 126号室
Sukmoon Huh 氏 (KIAS)
Restriction maps to the Coble quartic (ENGLISH)
[ 講演概要 ]
The Coble sixfold quartic is the moduli space of semi-stable vector bundle of rank 2 on a non-hyperelliptic curve of genus 3 with canonical determinant. Considering the curve as a plane quartic, we investigate the restriction of the semi-stable sheaves over the projective plane to the curve. We suggest a positive side of this trick in the study of the moduli space of vector bundles over curves by showing several examples such as Brill-Noether loci and a few rational subvarieties of the Coble quartic. In a later part of the talk, we introduce the rationality problem of the Coble quartic. If the time permits, we will apply the same idea to the moduli space of bundles over curves of genus 4 to derive some geometric properties of the Brill-Noether loci in the case of genus 4.

Kavli IPMU Komaba Seminar

16:30-18:00   数理科学研究科棟(駒場) 002号室
Kwok-Wai Chan 氏 (IPMU, the University of Tokyo)
Mirror symmetry for toric Calabi-Yau manifolds from the SYZ viewpoint (ENGLISH)
[ 講演概要 ]
In this talk, I will discuss mirror symmetry for toric
Calabi-Yau (CY) manifolds from the viewpoint of the SYZ program. I will
start with a special Lagrangian torus fibration on a toric CY manifold,
and then construct its instanton-corrected mirror by a T-duality modified
by quantum corrections. A remarkable feature of this construction is that
the mirror family is inherently written in canonical flat coordinates. As
a consequence, we get a conjectural enumerative meaning for the inverse
mirror maps. If time permits, I will explain the verification of this
conjecture in several examples via a formula which computes open
Gromov-Witten invariants for toric manifolds.


10:30-12:00   数理科学研究科棟(駒場) 128号室
Damian Brotbek 氏 (Rennes Univ.)
Varieties with ample cotangent bundle and hyperbolicity (ENGLISH)
[ 講演概要 ]
Varieties with ample cotangent bundle satisfy many interesting properties and are supposed to be abundant, however relatively few concrete examples are known. In this talk we will construct such examples as complete intersection surfaces in projective space, and explain how this problem is related to the study of hyperbolicity properties for hypersurfaces.



16:30-17:30   数理科学研究科棟(駒場) 117号室
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)。

白井朋之 氏 (九州大学)
確率論における共形不変性 (JAPANESE)
[ 講演概要 ]
「2次元ブラウン運動のパスの(定数でない)正則関数による像は,また2次元ブラウン運動である」.このブラウン運動の共形不変性が,確率論においてあらわれる共形不変性でもっとも基本的なものである.2000年以降,ブラウン運動とは異なる確率モデルで共形不変性をキーワードに注目されているのが,Werner(2006年)とSmirnov(2010年)のフィールズ賞受賞業績とも密接に関係するSLE(Schramm-Loewner Evolution)である.本講演では,SLEとランダム解析関数の零点分布を、共形不変性があらわれるモデルとしてその背景や関連の結果などとあわせて紹介する


14:45-16:15   数理科学研究科棟(駒場) 122号室
勝良健史 氏 (慶応大学)
Semiprojectivity of graph algebras (ENGLISH)



16:30-18:00   数理科学研究科棟(駒場) 122号室
高井博司 氏 (首都大学東京)
Entire Cyclic Cohomology of Noncommutative Riemann Surfaces (JAPANESE)


16:00-17:30   数理科学研究科棟(駒場) 002号室
Nitsan Ben-Gal 氏 (The Weizmann Institute of Science)
Attraction at infinity: Constructing non-compact global attractors in the slowly non-dissipative realm (ENGLISH)
[ 講演概要 ]
One of the primary tools for understanding the much-studied realm of reaction-diffusion equations is the global attractor, which provides us with a qualitative understanding of the governing behaviors of solutions to the equation in question. Nevertheless, the classic global attractor for such systems is defined to be compact, and thus attractor theory has previously excluded such analysis from being applied to non-dissipative reaction-diffusion equations.
In this talk I will present recent results in which I developed a non-compact analogue to the classical global attractor, and will discuss the methods derived in order to obtain a full decomposition of the non-compact global attractor for a slowly non-dissipative reaction-diffusion equation. In particular, attention will be paid to the nodal property techniques and reduction methods which form a critical underpinning of asymptotics research in both dissipative and non-dissipative evolutionary equations. I will discuss the concepts of the ‘completed inertial manifold’ and ‘non-compact global attractor’, and show how these in particular allow us to produce equivalent results for a class of slowly non-dissipative equations as have been achieved for dissipative equations. Additionally, I will address the behavior of solutions to slowly non-dissipative equations approaching and at infinity, the realm which presents both the challenges and rewards of removing the necessity of dissipativity.



16:30-17:30   数理科学研究科棟(駒場) 056号室
小林真一 氏 (東北大学)
楕円曲線の超特異素点におけるp-進Gross-Zagier公式 (JAPANESE)
[ 講演概要 ]
p進Gross-Zagier公式は, 楕円曲線のp進L関数の微分値をHeegner点のp進高さで記述する公式である. 楕円曲線がpで通常還元をもつときは, 20年以上前にPerrin-Riouによって証明されていた. 最近, pで超特異還元をもつときにも証明できたのでそれを紹介する. この講演では特に証明の解説に重点をおいて話したい.


10:30-11:30   数理科学研究科棟(駒場) 056号室
Jong-Shenq Guo 氏 (Department of Mathematics, Tamkang University
Quenching Problem Arising in Micro-electro Mechanical Systems

[ 講演概要 ]
In this talk, we shall present some recent results on quenching problems which arise in Micro-electro Mechanical Systems.
We shall also give some open problems in this research area.


15:00-16:10   数理科学研究科棟(駒場) 002号室
廣瀬 勇一 氏 (Victoria University of Wellington)
Semi-parametric profile likelihood estimation and implicitly defined functions (JAPANESE)
[ 講演概要 ]
The object of talk is the differentiability of implicitly defined functions which we
encounter in the profile likelihood estimation of parameters in semi-parametric models. Scott and Wild
(1997, 2001) and Murphy and Vaart (2000) developed methodologies that can avoid dealing with such implicitly
defined functions by reparametrizing parameters in the profile likelihood and using an approximate least
favorable submodel in semi-parametric models. Our result shows applicability of an alternative approach
developed in Hirose (2010) which uses the differentiability of implicitly defined functions.
[ 講演参考URL ]



16:30-17:30   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
春田 力 氏 (東京大学大学院数理科学研究科)
シート数が小さい曲面結び目の自明化について (JAPANESE)
[ 講演概要 ]
A connected surface smoothly embedded in ${\\mathbb R}^4$ is called a surface-knot. In particular, if a surface-knot $F$ is homeomorphic to the $2$-sphere or the torus, then it is called an $S^2$-knot or a $T^2$-knot, respectively. The sheet number of a surface-knot is an invariant analogous to the crossing number of a $1$-knot. M. Saito and S. Satoh proved some results concerning the sheet number of an $S^2$-knot. In particular, it is known that an $S^2$-knot is trivial if and only if its sheet number is $1$, and there is no $S^2$-knot whose sheet number is $2$. In this talk, we show that there is no $S^2$-knot whose sheet number is $3$, and a $T^2$-knot is trivial if and only if its sheet number is $1$.



10:30-12:00   数理科学研究科棟(駒場) 128号室
加藤 昌英 氏 (上智大学)
Toward a complex analytic 3-dimensional Kleinian group theory (JAPANESE)
[ 講演概要 ]



16:30-18:00   数理科学研究科棟(駒場) 122号室
見村万佐人 氏 (東大数理)
Property (TT)/T and homomorphism rigidity into Out$(F_n)$ (JAPANESE)
[ 講演概要 ]

「$G$を普遍格子SL$_m(Z[x_1,...,x_k])$ ($m$は3以上)または斜交普遍格子Sp$_{2m}(Z[x_1,...,x_k])$ ($m$は2以上)の指数有限の部分群とする ($k$は任意の自然数). このとき, $G$から曲面(コンパクトで向きづけ可能)の写像類群への; または, 有限生成自由群の(外部)自己同型群への準同型は有限の像をもつ.」

証明のキーとなるのが ``性質(TT)/T'' なる群の性質である. (Kazhdanの性質(T)をご存知の方は, それをある方向に強めたものとお考えください. ) この性質にスポットを当てて, 結果の証明のあらすじを説明する.



10:30-11:30   数理科学研究科棟(駒場) 056号室
小笠原 義仁 氏 (早稲田大学 理工学術院)
Mullins方程式の本質への探求 (JAPANESE)
[ 講演概要 ]


15:00-16:10   数理科学研究科棟(駒場) 000号室
清水 泰隆 氏 (大阪大学)
Notes on estimating the probability of ruin and some generalization (JAPANESE)
[ 講演概要 ]
保険数学において,破産確率の評価は最も重要な話題の一つである. 本講演では,古典的リスクモデル(Cramer-Lundberg model)の下での破産確率の確率論的評価法をいくつか紹介し, それらに基づく統計推測法について,理論と数値計算上の両方の観点からそれらの手法の比較を行う. また,破産確率のリスク測度としての使用法や,より一般的なレヴィ・リスク過程への一般化, 破産リスクの一般化として近年注目されている割引罰則関数など,最近の話題についても概観する.
[ 講演参考URL ]



16:30-18:00   数理科学研究科棟(駒場) 118号室
Claude-Alain Pillet 氏 (Univ. de Toulon et du Var)
Scattering induced current in a tight binding band (ENGLISH)

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 次へ >