過去の記録

過去の記録 ~10/15本日 10/16 | 今後の予定 10/17~

2014年11月05日(水)

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 122号室
安藤浩志 氏 (Univ. Copenhagen)
On the noncommutativity of the central sequence $C^*$-algebra $F(A)$ (ENGLISH)

数理人口学・数理生物学セミナー

14:50-16:20   数理科学研究科棟(駒場) 122号室
中丸麻由子 氏 (東京工業大学大学院社会理工学研究科)
固着性生物の分裂繁殖と環境撹乱について (JAPANESE)
[ 講演概要 ]
親と子が同じ場所に留まる生物もいれば、親とは異なる場所へ子を拡散させるものもいる。環境撹乱下ではリスク回避のために拡散が進化的に有利であるという。しかし一部の生物では、環境撹乱下であっても分裂繁殖を行い、子どもを親元から離れた場所に拡散させない。例えば、コロニーを単位とする固着性生物は環境攪乱下であっても、コロニーを分割させて親コロニーと子コロニーに分かれ(分裂繁殖)、親コロニーの近くに定着する。一方、拡散する生物は少数個体で拡散する場合が多い。
 そこで、環境攪乱下での非拡散戦略が進化をする条件を探るために、分裂繁殖の際の分割比に着目した。今回の研究では、コロニーサイズを4種類にわけ、コロニーサイズが成長率に従って成長すると仮定し、サイズ構造のある差分方程式を構築した。最大のサイズ(サイズ4)になると分割するとした。分割比としては、2:2分割戦略(コロニー分割後の親と子コロニーのサイズがほぼ変わらない)と1:3分割戦略(親子のサイズ差が大きい)の2つの戦略を仮定した。
 基本モデルでは、コロニー間の闘争は無く場所を巡る競争のみとし、コロニーサイズ依存の死亡率を仮定した。死亡を免れると、すぐに次のコロニーサイズへ推移するとした。小さなコロニーの死亡率が他のコロニーサイズの死亡率と比べて非常に高い時は、2:2分割戦略が有利になり、撹乱頻度の高い環境においても有利になるという結果となった。
 次に、基本モデルにコロニーが死亡を免れてもすぐには成長せずに同じサイズの状態のままである確率を導入した。すると小コロニーの成長が他のサイズに比べて非常に遅い時に、2:2分割戦略が有利になる事を示した。
 3つ目に、分巣先の候補地にコロニーが既にある場合にコロニー間の闘争が生じる場合と基本モデルのように闘争の無い場合を比較したところ、基本モデル(闘争無し)のほうが2:2分割戦略が有利になる事を示した。
 以上により、サイズ依存性を考慮する事によって、環境攪乱下でも非拡散戦略が有利になる条件を示す事が出来た。

【参考文献】
Nakamaru, M., Takada, T., Ohtsuki, A., Suzuki, S.U., Miura, K. and Tsuji, K. (2014) Ecological conditions favoring budding in colonial organisms under environmental disturbance. PLoS ONE 9 (3), e91210.

[ 参考URL ]
https://sites.google.com/site/mayukonakamarulab/

2014年11月04日(火)

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea : 16:00-16:30 Common Room
Brian Bowditch 氏 (University of Warwick)
The coarse geometry of Teichmuller space. (ENGLISH)
[ 講演概要 ]
We describe some results regarding the coarse geometry of the
Teichmuller space
of a compact surface. In particular, we describe when the Teichmuller
space admits quasi-isometric embeddings of euclidean spaces and
half-spaces.
We also give some partial results regarding the quasi-isometric rigidity
of Teichmuller space. These results are based on the fact that Teichmuller
space admits a ternary operation, natural up to bounded distance
which endows it with the structure of a coarse median space.

統計数学セミナー

16:30-17:40   数理科学研究科棟(駒場) 052号室
栁原 宏和 氏 (広島大学理学系研究科)
Conditions for consistency of a log-likelihood-based information criterion in normal multivariate linear regression models under the violation of normality assumption
[ 講演概要 ]
本発表では,正規性を仮定した多変量線形回帰モデルにおいて,最大対数尤度の-2倍に罰則項を加えることで定義されるLog-Likelihood-Based Information Criterion (LLBIC) を用いた変数選択法が一致性を持つための条件について考察する.Yanagihara et al. (2012) では,LLBICを用いた変数選択法が一致性を持つために必要な条件を,真のモデルの分布が正規分布であるという仮定の下で,標本数と観測値の次元を共に大きくする高次元漸近理論により導出した.しかしながら,多変量分布において正規性を満たすことは稀であり,仮定した分布と真の分布のずれの影響を調べることは非常に重要である.本発表の目的は,候補のモデルに正規性は仮定したが真のモデルの分布が正規分布ではないという条件の下で,高次元漸近理論に基づき評価された一致性を満たすための条件がどう変化するかを調べることにある.実際には,Yanagihara et al. (2012) で得られた条件よりも若干条件が狭くなるが, ほぼ同じ条件となり,その条件は真のモデルの非正規性に依存しないことがわかった.

2014年10月29日(水)

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 122号室
Sven Raum 氏 (RIMS, Kyoto Univ.)
The classification of easy quantum groups (ENGLISH)

Lie群論・表現論セミナー

16:30-18:00   数理科学研究科棟(駒場) 118号室
Patrick Delorme 氏 (UER Scientifique de Luminy Universite d'Aix-Marseille II)
Harmonic analysis on reductive p-adic symmetric spaces. (ENGLISH)
[ 講演概要 ]
In this lecture we will review the Plancherel formula that
we got by looking to neighborhoods at infinity of the
symmetric spaces and then using the method of Sakellaridis-Venkatesh
for spherical varieties for a split group. For us the group
is not necessarily split. We will try to show what questions
are raised by this work for real spherical varieties.
We will present in the last part a joint work with Pascale
Harinck and Yiannis Sakellaridis in which we prove Paley-Wiener
theorems for symmetric spaces.

古典解析セミナー

16:00-17:00   数理科学研究科棟(駒場) 117号室
Eric Stade 氏 (University of Colorado Boulder)
Whittaker functions and Barnes-Type Lemmas (ENGLISH)
[ 講演概要 ]
In the theory of automorphic forms on GL(n,R), which concerns harmonic analysis and representation theory of this group, certain special functions known as GL(n,R) Whittaker functions play an important role. These Whittaker functions are generalizations of classical Whittaker (or, more specifically, Bessel) functions.

Mellin transforms of products of GL(n,R) Whittaker functions may be expressed as certain Barnes type integrals, or equivalently, as hypergeometric series of unit argument. The general theory of automorphic forms predicts that these Mellin transforms reduce, in certain cases, to products of gamma functions. That this does in fact occur amounts to a whole family of generalizations of the so-called Barnes' Lemma and Barnes' Second Lemma, from the theory of hypergeometric series. We will explore these generalizations in this talk.

This talk will not require any specific knowledge of automorphic forms.

2014年10月28日(火)

代数学コロキウム

16:40-18:50   数理科学研究科棟(駒場) 002号室
いつもと曜日が異なりますのでご注意下さい
Judith Ludwig 氏 (Imperial college) 16:40-17:40
A p-adic Labesse-Langlands transfer (English)
[ 講演概要 ]
Let B be a definite quaternion algebra over the rationals, G the algebraic group defined by the units in B and H the subgroup of G of norm one elements. Then the classical transfer of automorphic representations from G to H is well understood thanks to Labesse and Langlands, who proved formulas for the multiplicity of irreducible admissible representations of H(adeles) in the discrete automorphic spectrum.
The goal of this talk is to prove a p-adic version of this transfer. By this we mean an extension of the classical transfer to p-adic families of automorphic forms as parametrized by certain rigid analytic spaces called eigenvarieties. We will prove the p-adic transfer by constructing a morphism between eigenvarieties, which agrees with the classical transfer on points corresponding to classical automorphic representations.
Jan Nekovar 氏 (Université Paris 6) 17:50-18:50
Plectic cohomology (English)

2014年10月27日(月)

代数幾何学セミナー

14:50-16:20   数理科学研究科棟(駒場) 122号室
いつもと開始時間が異なります。
Meng Chen 氏 (Fudan University)
On projective varieties with very large canonical volume (ENGLISH)
[ 講演概要 ]
For any positive integer n>0, a theorem of Hacon-McKernan, Takayama and Tsuji says that there is a constant c(n) so that the m-canonical map is birational onto its image for all smooth projective n-folds and all m>=c(n). We are interested in the following problem "P(n)": is there a constant M(n) so that, for all smooth projective n-fold X with Vol(X)>M(n), the m-canonical map of X is birational for all m>=c(n-1). The answer to “P_n" is positive due to Bombieri when $n=2$ and to Todorov when $n=3$. The aim of this talk is to introduce my joint work with Zhi Jiang from Universite Paris-Sud. We give a positive answer in dimensions 4 and 5.

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 126号室
小池 貴之 氏 (東大数理)
On the minimality of canonically attached singular Hermitian metrics on certain nef line bundles (JAPANESE)
[ 講演概要 ]
We apply Ueda theory to a study of singular Hermitian metrics of a (strictly) nef line bundle $L$. Especially we study minimal singular metrics of $L$, metrics of $L$ with the mildest singularities among singular Hermitian metrics of $L$ whose local weights are plurisubharmonic. In some situations, we determine a minimal singular metric of $L$. As an application, we give new examples of (strictly) nef line bundles which admit no smooth Hermitian metric with semi-positive curvature.

2014年10月25日(土)

調和解析駒場セミナー

13:30-16:30   数理科学研究科棟(駒場) 128号室
数理科学研究科の建物は基本的に土・日・祭日は施錠されています。 セミナー当日は正面の入口のみを12:30 から解錠いたします。
澤野 嘉宏 氏 (首都大学東京) 13:30-14:30
Approximation in Banach space by linear positive operators (JAPANESE)
[ 講演概要 ]
We obtain a sufficient condition for the
convergence of positive linear operators in Banach
function spaces on Rn and derive a Korovkin type
theorem for these spaces. Also, we generalized
this result via statistical sense. This is a joint
work with Professor Arash Ghorbanalizadeh.
米田 剛 氏 (東京工業大学) 15:00-16:30
Local ill-posedness of the Euler equations in a critical Besov space (JAPANESE)
[ 講演概要 ]
本研究はノートルダム大学のGerard Misiolek氏との共同
研究に基づく。オイラー方程式の局所適切性については膨大な研究
がなされてきているが、$H^{d/2+1}$や$W^{d/p+1,p}$ ($d$は
次元),$C^1$といったクリティカルな関数空間での局所適切性に
ついては未解決であった。昨年、BourgainとLiは$H^{d/2+1}$や
$W^{d/p+1,p}$でオイラー方程式が局所非適切であることを証明した。
渦度の対称性をうまく使って、リース変換(特異積分作用素)に対
するより精密な評価を進めており、実解析的にも大変興味深い。

この先駆的な結果を追うようにして、$C^1$クラスでの非適切性に関
しても3つの研究グループによって(それぞれ独自の手法によって)
示された。(Misiolek-Y2014 May 8, Elgindi-Masmoudi May 10,
Bourgain-Li May12)本講演では、解の存在と一意性が成り立って
いる$B^1_{¥infty,1}$というBesov空間(Pak-Park,2004)で
初期値に対する連続依存性が成り立たないことを報告する。

2014年10月22日(水)

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 122号室
磯野優介 氏 (京大理)
Free independence in ultraproduct von Neumann algebras and applications (ENGLISH)

数理人口学・数理生物学セミナー

14:50-16:20   数理科学研究科棟(駒場) 122号室
物部治徳 氏 (明治大学先端数理科学インスティテュート)
異なる反応項を持つある系の急速反応極限問題 (JAPANESE)
[ 講演概要 ]
本講演では、ある2成分反応拡散系の特異極限を考える。
尚、本研究は飯田雅人氏(宮崎大学)、二宮広和氏(明治大学)、村川秀樹氏(九州大学)との共同研究である。

特異極限は、反応拡散系(Allen-Cahn方程式やFitzHugh-Nagumo方程式など)を解析する上で重要な手法の一つであり、その極限方程式は方程式の形やパラメータの場所に依存して、界面方程式や自由境界問題などが導き出される。反応拡散系の解のダイナミクスを考察するために特異極限を用いたり、また逆の立場で、界面方程式や自由境界問題を反応拡散系で近似するために特異極限を用いられることもある。

近年、D. Hilhorstらにより\cite{HHP1}, \cite{HHP2}反応拡散系における``急速反応極限"の解析が進められ,様々な方程式において極限問題が考察されている。この解析の発展により、線型拡散を持つ反応拡散系と自由境界問題がある意味で繋がりを持つことが確認されている。しかしながら、それらのほとんどの結果は、反応項に対称性があり、非対称の場合に関する急速反応極限の解析結果はほとんど確認されていない。そこで、我々は最初のステップとして次のような単純な非対称な多項式を持つ反応拡散系の急速極限を考察し、多項式の指数の組み合わせと極限問題の関係について考察を行った:
例えば、ロトカ・ボルテラモデルのある急速反応極限としては、を含む数理もモデル
\[
({\rm P})^k
\left\{
\begin{array}{ll}
u_t=\Delta u- ku^{m_1}v^{m_3} \quad\quad & \mbox{in} \ Q_T:=\Omega \times (0, T), \\

v_t= -ku^{m_2}v^{m_4} \quad\quad&\mbox{in} \ Q_T, \\

\dfrac{\partial u}{\partial \nu}=0 \quad\quad&\mbox{on} \ S_T:=\partial \Omega \times (0, T), \\
u(x,0)=u_{0}(x),\quad v(x,0)=v_{0}(x) \quad\quad&\mbox{in} \ \Omega, \\
\end{array}
\right.
\]

ただし、$\Omega$は$\mathbf{R}^n$の有界領域, $T$は正定数, $\nu$は$\partial \Omega$上の外向き単位法線ベクトル、$m_i(i=1,2,3,4)$は$1$より大きい正定数、$u_0, v_0$は非負の初期値を表す。このとき、適当な初期条件のもとで$k\to \infty$としたとき、次のような結果を得た(詳細は講演内で述べる):
\[
\begin{array}{cll}
&\mbox{ (Case I)}\quad & {\bf m}=(m_1, 1, 1, 1)かつm_1> 3 \
&\Rightarrow \ uは\mbox{$\Omega$}上の熱方程式の解に近づく \\

&\mbox{ (Case II)}& {\bf m}=(1, m_2, 1, 1) かつm_2 >2 \
&\Rightarrow \ uは{\rm supp}\, u_0上の熱方程式の解に近づく \\

&\mbox{ (Case III)}& {\bf m}=(1, 1, m_3, 1)かつm_3> 0
&\Rightarrow \ uは一相{\rm Stefan}問題の解に近づく \\

&\mbox{ (Case IV)}& {\bf m}=(1, 1, 1, m_4)かつ2>m_4> 1
&\Rightarrow \ uは一相{\rm Stefan}問題の解に近づく \\
\end{array}
\]

2014年10月21日(火)

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
秋田 利之 氏 (北海道大学)
Vanishing theorems for p-local homology of Coxeter groups and their alternating subgroups (JAPANESE)
[ 講演概要 ]
Given a prime number $p$, we estimate vanishing ranges of $p$-local homology groups of Coxeter groups (of possibly infinite order) and alternating subgroups of finite reflection groups. Our results generalize those by Nakaoka for symmetric groups and Kleshchev-Nakano and Burichenko for alternating groups. The key ingredient is the equivariant homology of Coxeter complexes.

2014年10月20日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 126号室
馬 昭平 氏 (東京工業大学)
IV型モジュラー多様体の小平次元 (JAPANESE)
[ 講演概要 ]
符号(2、15以上)の偶格子(つまり整数係数2次形式)の安定直交群から定まるモジュラー多様体は有限個を除いて一般型であることを証明する。極大格子に限定すれば、同様の有限性定理を全直交群に対しても証明できる。証明の副産物として、グリツェンコとニクリンの鏡映的モジュラー形式に関する有限性予想に応用がある。

数値解析セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
周冠宇 氏 (東京大学大学院数理科学研究科)
Finite element method with various types of penalty on domain/boundary (ENGLISH)
[ 講演概要 ]
We are concerned with several penalty methods (on domain/boundary)
combining with finite element method to solve some partial differential equations. The penalty methods are very useful and widely applied to various problems. For example, to solve the Navier-Stokes equations in moving boundary domain, the finite element method requires to construct the boundary fitted mesh at every times step, which is very time-consuming. The fictitious domain method is proposed to tackle this problem. It is to reformulate the equation to a larger fixed domain, called the fictitious domain, to which we can take a uniform mesh independent on the original moving boundary. The reformulation is based on a penalty method on do- main. Some penalty methods are proposed to approximate the boundary conditions which are not easy to handle with general FEM, such as the slip boundary condition to Stokes/Navier-Stokes equations, the unilateral boundary condition of Signorini’s type to Stokes equations, and so on. It is known that the variational crimes occurs if the finite element spaces or the implementation methods are not chosen properly for slip boundary condition. By introducing a penalty term to the normal component of velocity on slip boundary, we can solve the equations in FEM easily. For the boundary of Signorini’s type, the variational form is an inequality, to which the FEM is not easy to applied. However, we can approximate the variational inequality by a variation equation with penalty term, which can be solve by FEM directly. In above, we introduced several penalty methods with finite element approximation. In this work, we investigate the well-posedness of those penalty method, and obtain the error estimates of penalty; moreover, we consider the penalty methods combining with finite element approximation and show the error estimates.

2014年10月17日(金)

幾何コロキウム

10:00-11:30   数理科学研究科棟(駒場) 126号室
開始時間と開催場所などは変更されることがあるので, セミナーごとにご確認ください.
北別府 悠 氏 (京都大学)
A finite diameter theorem on RCD spaces (JAPANESE)
[ 講演概要 ]
本講演では有限次元とは限らない RCD 空間の直径の有限性定理について述べる. RCD 空間とは Ricci 曲率が下に有界な多様体の一般化である. Savar¥’e は self-improving property と呼ばれるものを RCD 空間上 Gamma calculus によって得た. 彼の結果及び桑田の双対定理を用いることで heat kernels のL^{¥infty}-contraction と呼ばれるものを得ることが出来る. この contraction property とある単純な補題から結果が導けることを示す.

2014年10月15日(水)

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 122号室
嶌田洸一 氏 (Univ. Tokyo)
Classification of actions of compact abelian groups on subfactors with index less than 4 (ENGLISH)

2014年10月14日(火)

諸分野のための数学研究会

10:30-11:30   数理科学研究科棟(駒場) 056号室
神部 勉 氏 (東京大学)
Fluid flow and electromagnetic fields, from viewpoint of theoretical physics -- Is the Navier-Stokes Equation sufficient to describe turbulence at very high Reynolds numbers? -- (JAPANESE)
[ 講演概要 ]
There exists analogy between the fluid flow and electromagnetic fields with respect to their mathematical representations. This is reasonable because both are continuous physical fields having energy and momentum in space-time. In particular, fluid’s vorticity is analogous to magnetic field.

On the other hand, for simulation of atmospheric global motion on the giant computer Earth Simulator, many empirical physical parameters must be introduced in order to obtain realistic results for weather prediction, etc. This implies that the present system of equations of fluid flows may not be sufficient to describe fluid motions of large scales at very high Reynolds numbers. We consider whether the above-mentioned analogy is useful for improvement of the theory of turbulence at very high Reynolds numbers.

代数学コロキウム

17:30-18:30   数理科学研究科棟(駒場) 002号室
いつもと曜日が違いますのでご注意ください.
Fabrizio Andreatta 氏 (Università Statale di Milano)
A p-adic criterion for good reduction of curves (ENGLISH)
[ 講演概要 ]
Given a curve over a dvr of mixed characteristic 0-p with smooth generic fiber and with semistable reduction, I will present a criterion for good reduction in terms of the (unipotent) p-adic étale fundamental group of its generic fiber.

(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

2014年10月11日(土)

保型形式の整数論月例セミナー

13:30-16:00   数理科学研究科棟(駒場) 123号室
織田孝幸 氏 (東京大学数理科学研究科) 13:30-14:30
$SU(3,1)$ の離散系列表現の第2種の行列係数について(宮崎直君の計算に基づく) (JAPANESE)
[ 講演概要 ]
Whittaker関数の場合、「第2種」と呼んでいるものがある。少なくとも正則でない離散系列表現の場合にも同等なものがあるように見える。それについて簡単に問題を述べる
高柳秀史 氏 (作新学院大学) 15:00-16:00
$Sp(2, R)$ 上の保型形式のFourier展開に向けて (JAPANESE)
[ 講演概要 ]
(largeと呼ばれる)正則でない離散系列表現を生成する尖点形式の極小放物型部分群に対するFourier展開を考えます。Fourier展開を構成する関数(の空間)は,偏微分方程式系で特徴付けられることが知られています。ここでは,既に得られているWhittaker関数以外の部分について,偏微分方程式系を満たす具体的な関数が見つかったので紹介します。これらは,ある条件の下では,定数倍を除き一意的であることがわかります

2014年10月10日(金)

談話会・数理科学講演会

16:30-17:30   数理科学研究科棟(駒場) 002号室
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)
三枝 洋一 氏 (東京大学大学院数理科学研究科)
局所志村多様体のエタールコホモロジーと局所ラングランズ対応 (JAPANESE)
[ 講演概要 ]
志村多様体は対称空間の算術商として得られる代数体上の代数多様体であり,そのエタールコホモロジーは大域ラングランズ対応と深い繋がりを持つ.
本講演では,この話の局所類似(p進体類似)について考える.
まず,志村多様体の局所類似がどのようなものか,また,そのエタールコホモロジーが局所ラングランズ対応とどのように関係すると期待されているかについて,なるべく平易に述べる.
後半では,局所志村多様体が比較的小さい古典群に対応する場合に,講演者によって得られた結果を紹介する.

2014年10月08日(水)

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 122号室
鈴木悠平 氏 (東大数理/京大数理研)
Realization of hyperbolic group $C^*$-algebras as decreasing intersection of Cuntz algebras $O_2$ (ENGLISH)

数理人口学・数理生物学セミナー

14:50-16:20   数理科学研究科棟(駒場) 128号室
江夏洋一 氏 (東京大学大学院数理科学研究科)
再生方程式による感染症流行ダイナミクスの定性解析およびその周辺 (JAPANESE)
[ 講演概要 ]
本講演では, Bolyai Institute, University of Szeged (セゲド大学ボリアイ研究所) とのオープンパートナーシップ共同研究に基づく, Epidelay Research Group との研究交流の報告を行う.
感受性個体の新規感染を規定する incidence rate に関する再生方程式や, 対応する偏微分方程式系の解の漸近挙動に関する近年の結果を述べながら, cyclic な個体の性質変化が与える感染平衡解の安定性に関する open problem も議論する. また, 感受性個体への感染力を保ったまま, 病原体が産生する毒素
が無毒化される効果を含めた系のダイナミクスも, 現地での研究討論によって得た課題として併せて紹介する.

2014年10月07日(火)

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
入江 慶 氏 (京都大学数理解析研究所)
Transversality problems in string topology and de Rham chains (JAPANESE)
[ 講演概要 ]
ストリング・トポロジーの出発点は,多様体の自由ループ空間のホモロジーの上にBatalin-Vilkovisky(BV)代数の構造を発見したChas-Sullivanの仕事である.
この結果を精密化して鎖レベルの構造を定義することは重要な問題であるが,まだ決定版の解答は得られていない.困難の一つは,交叉積を鎖レベルで定義する際に現れる,横断正則性の問題である.
講演では,de Rham 鎖というものを用いることでこの困難を回避し,鎖レベルの構造が部分的に実現できるということを説明したい.

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 次へ >