過去の記録

過去の記録 ~01/25本日 01/26 | 今後の予定 01/27~

数理人口学・数理生物学セミナー

11:00-12:00   数理科学研究科棟(駒場) 123号室
Joel E. Cohen 氏 (The Rockefeller University and Columbia University)
Taylor's Law of Fluctuation Scaling
[ 講演概要 ]
A family of nonnegative random variables is said to obey Taylor's law when the variance is proportional to some power b of the mean. For example, in the family of exponential distributions, if the mean is m, then the variance is m^2, so the family of exponential distributions obeys Taylor's law exactly with b=2. Many stochastic processes and the prime numbers obey Taylor's law (exactly or asymptotically). Thousands of empirical illustrations of Taylor's law have been published in many different fields including ecology, demography, finance (stock and currency trading), cancer biology, genetics, fisheries, forestry, meteorology, agriculture, physics, cell biology, computer network engineering, and number theory. This survey talk will review some empirical and theoretical results and open problems about Taylor's law, including recently proved versions of Taylor's law for nonnegative stable laws with infinite mean.
[ 講演参考URL ]
https://www.rockefeller.edu/our-scientists/heads-of-laboratories/940-joel-e-cohen/

2019年06月28日(金)

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 118号室
いつもと曜日が異なります。
谷本 祥 氏 (熊本)
Rational curves on prime Fano 3-folds (TBA)
[ 講演概要 ]
One of important topics in algebraic geometry is the space of rational curves, e.g., the dimension and the number of components of the moduli spaces of rational curves on an algebraic variety X. One of interesting situations where this question is extensively studied is when X is a Fano variety since in this case X is rationally connected so that it does contain a lots of rational curves. In this talk I will talk about my joint work with Brian Lehmann which settles this problem for most Fano 3-folds of Picard rank 1, e.g., a general quartic 3-fold in P^4, and our approach is inspired by Manin’s conjecture which predicts the asymptotic formula for the counting function of rational points on a Fano variety. In particular we systematically use geometric invariants in Manin’s conjecture which have been studied by many mathematicians including Brian and me.

談話会・数理科学講演会

15:30-16:30   数理科学研究科棟(駒場) 056号室
木田良才 氏 (東京大学数理科学研究科)
軌道同値関係への誘い
[ 講演概要 ]
測度空間への群作用に対し,作用の軌道を同値類とする同値関係が得られる.このような軌道同値関係の研究は,古くはフォンノイマン環の研究に動機付けられ,そのため,従順性を対象とするものが多かった.現在では,非従順な対象の研究も盛んである.例えば,非従順性と自由部分群の存在の関係を問うフォンノイマンの問題が,軌道同値関係の枠組みでは(群の場合と違って)肯定的に解決され,驚くべきことに,そのアイデアはパーコレーションの理論に基づいている(Gaboriau-Lyons).講演では,これらを概観した後,講演者が近年取り組んでいる内部従順性にまつわる研究を紹介したい.

2019年06月27日(木)

情報数学セミナー

16:50-18:35   数理科学研究科棟(駒場) 128号室
高島 克幸 氏 (三菱電機/九州大学)
楕円曲線に基づく暗号の進展 (Japanese)
[ 講演概要 ]
楕円曲線に基づいた暗号は,1985年に提案されて以来,新たな応用を生み出しながら,現在まで発展している.本講演では,楕円曲線上に定義されるスカラー倍算,ペアリング演算,同種写像計算という3つの一方向性関数と,それらに基づく暗号技術の安全性・応用に焦点を当てながら,楕円曲線暗号の進展を振り返る.そして,これから3回にわたって,それらの暗号技術に関する最近のトピック,特に同種写像暗号の概要についてお話しする予定である.

2019年06月26日(水)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 126号室
吉田啓佑 氏 (北海道大学)
KMS states on operator algebras associated with self-similar group actions

2019年06月25日(火)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
Tian-Jun Li 氏 (University of Minnesota)
Geometry of symplectic log Calabi-Yau surfaces (ENGLISH)
[ 講演概要 ]
This is a survey on the geometry of symplectic log Calabi-Yau surfaces, which are the symplectic analogues of Looijenga pairs. We address the classification up to symplectic deformation, the relations between symplectic circular sequences and anti-canonical sequences, contact trichotomy, and symplectic fillings. This is a joint work with Cheuk Yu Mak.

2019年06月24日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
山盛 厚伺 氏 (工学院大学)
A certain holomorphic invariant and its applications (Japanese)
[ 講演概要 ]
In this talk, we first explain a Bergman geometric proof of inequivalence of the unit ball and the bidisk. In this proof, the homogeneity of the domains plays a substantial role. We next explain a recent attempt to extend our method for non-homogeneous cases.

2019年06月21日(金)

情報数学セミナー

16:50-18:35   数理科学研究科棟(駒場) 128号室
岡本 龍明 氏 (NTT)
関数型暗号 (Japanese)
[ 講演概要 ]
前回は公開鍵暗号が発展した新しい暗号概念として完全準同型暗号の紹介を行った。今回はもう一つの発展した暗号として、関数型暗号の紹介を行う。関数型暗号は秘匿性を保証したまま高度な演算やデータ検索を可能とする.さまざまなタイプの関数型暗号があることを示し、代表的な方式として双線形写像や格子暗号を用いた方式を紹介する。

2019年06月20日(木)

応用解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 118号室
北川 潤 氏 (ミシガン州立大学)
最適輸送問題における自由境界の正則性および安定性について (Japanese)
[ 講演概要 ]
最適輸送(モンジュ・カントロビッチ)問題では台が連結な測度を台が非連結なものへと輸送した場合、輸送写像はもちろん不連続である.このような場合に発生する不連続点の集合はモンジュ・アンペール方程式の特異点集合と一致し、一種の自由境界としてとらえられる.このような特異点集合の正則性、次元、および安定性について話す.本講演はR. McCann氏(Univ. of Toronto)との共同研究に基づく.

数理人口学・数理生物学セミナー

16:00-17:00   数理科学研究科棟(駒場) 056号室
Eric Foxall 氏 (University of Alberta)
Diffusion limit for the partner model at the critical value (ENGLISH)
[ 講演概要 ]
The partner model is a stochastic SIS model of infection spread over a dynamic network of monogamous partnerships. In previous work, Edwards, Foxall and van den Driessche identify a threshold in parameter space for spread of the infection and show the time to extinction of the infection is of order log(N) below the threshold, where N is population size, and grows exponentially in N above the
threshold. Later, Foxall shows the time to extinction at threshold is of order sqrt(N). Here we go further and derive a single-variable diffusion limit for the number of infectious individuals rescaled by sqrt(N) in both population and time, and show convergence in distribution of the rescaled extinction time. Since the model has effectively four variables and two relevant time scales, the proof features a succession of probability estimates to control trajectories, as well as an averaging result to contend with the fast partnership dynamics.

2019年06月19日(水)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 126号室
佐藤僚亮 氏 (名古屋大学)
Type classification of extreme quantized characters

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 118号室
今学期は基本水曜日とします。部屋も去年度と異なります。
鈴木文顕 氏 (イリノイ州立シカゴ大学)
A pencil of Enriques surfaces with non-algebraic integral Hodge classes (TBA)
[ 講演概要 ]
The integral Hodge conjecture is the statement that the integral Hodge classes are algebraic on smooth complex projective varieties. It is known that the conjecture can fail in general. There are two types of counterexamples, ones with non-algebraic integral Hodge classes of torsion-type and of non-torsion type, the first of which were given by Atiyah-Hirzebruch and Kollar, respectively.

In this talk, we exhibit a pencil of Enriques surfaces defined over Q with non-algebraic integral Hodge classes of non-torsion type. This construction relates to certain questions concerning rational points of algebraic varieties.

This gives the first example of a threefold with the trivial Chow group of zero-cycles on which the integral Hodge conjecture fails. As an application, we construct a fourfold which gives the negative answer to a classical question on the universality of the Abel-Jacobi maps.

This is a joint work with John Christian Ottem.

2019年06月18日(火)

統計数学セミナー

11:00-12:10   数理科学研究科棟(駒場) 052号室
Xiaohui Chen 氏 (University of Illinois at Urbana–Champaign)
Gaussian and bootstrap approximations of high-dimensional U-statistics with applications and extensions ※変更の可能性あり

[ 講演概要 ]
We shall first discuss the Gaussian approximation of high-dimensional and non-degenerate U-statistics of order two under the supremum norm. A two-step Gaussian approximation procedure that does not impose structural assumptions on the data distribution is proposed. Subject to mild moment conditions on the kernel, we establish the explicit rate of convergence that decays polynomially in sample size for a high-dimensional scaling limit, where the dimension can be much larger than the sample size. We also provide computable approximation methods for the quantiles of the maxima of centered U-statistics. Specifically, we provide a unified perspective for the empirical, the randomly reweighted, and the multiplier bootstraps as randomly reweighted quadratic forms, all asymptotically valid and inferentially first-order equivalent in high-dimensions.

The bootstrap methods are applied on statistical applications for high-dimensional non-Gaussian data including: (i) principled and data-dependent tuning parameter selection for regularized estimation of the covariance matrix and its related functionals; (ii) simultaneous inference for the covariance and rank correlation matrices. In particular, for the thresholded covariance matrix estimator with the bootstrap selected tuning parameter, we show that the Gaussian-like convergence rates can be achieved for heavy-tailed data, which are less conservative than those obtained by the Bonferroni technique that
ignores the dependency in the underlying data distribution. In addition, we also show that even for subgaussian distributions, error bounds of the bootstrapped thresholded covariance matrix estimator can be much tighter than those of the minimax estimator with a universal threshold.

Time permitting, we will discuss some extensions to the infinite-dimensional version (i.e., U-processes of increasing complexity) and to the randomized inference via the incomplete U-statistics whose computational cost can be made independent of the order.

PDE実解析研究会

10:30-11:30   数理科学研究科棟(駒場) 056号室
Piotr Rybka 氏 (University of Warsaw)
Ways to treat a diffusion problem with the fractional Caputo derivative
[ 講演概要 ]
The problem
\[
u_t = (D^\alpha u)_x + f
\]
augmented with initial and boundary data appear in model of subsurface flows. Here, $D^\alpha u$ denotes the fractional Caputo derivative of order $\alpha \in (0,1)$.

We offer three approaches:
1) from the point of view of semigroups;
2) from the point of view of the theory of viscosity solutions;
3) from the point of view of numerical simulations.

This is a joint work with T. Namba, K. Ryszewska, V. Voller.

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
谷口 正樹 氏 (東京大学大学院数理科学研究科)
Filtered instanton homology and the homology cobordism group (JAPANESE)
[ 講演概要 ]
We give a new family of real-valued invariants {r_s} of oriented homology 3-spheres. The invariants are defined by using some filtered version of instanton Floer homology. The invariants are closely related to the existence of solutions to ASD equations on Y×R for a given homology sphere Y. We show some properties of {r_s} containing a connected sum formula and a negative definite inequality. As applications of such properties of {r_s}, we obtain several new results on the homology cobordism group and the knot concordance group. As one of such results, we show that if the 1-surgery of a knot has the Froyshov invariant negative, then all positive 1/n-surgeries of the knot are linearly independent in the homology cobordism group. This theorem gives a generalization of the theorem shown by Furuta and Fintushel-Stern in ’90. Moreover, we estimate the values of {r_s} for a hyperbolic manifold Y with an error of at most 10^{-50}. It seems the values are irrational. If the values are irrational, we can conclude that the homology cobordism group is not generated by Seifert homology spheres. This is joint work with Yuta Nozaki and Kouki Sato.

2019年06月17日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
Andrei Pajitnov 氏 (Universite de Nantes)
Inoue surfaces and their generalizations (English)
[ 講演概要 ]
In 1972 M. Inoue constructed complex non-algebraic surfaces that proved very important for classification of surfaces via the Enriques-Kodaira scheme. Inoue surface is the quotient of H ¥times C by action of a discreet group associated to a given matrix in SL(3, Z). In 2005 K. Oeljeklaus and M. Toma generalized Inoue’s construction to higher dimensions. Oeljeklaus-Toma manifold is the quotient of H^s ¥times C^n by action of a discreet group, associated to the maximal order of a given algebraic number field.
In this talk, I will give a brief overview of these works and related results. Then I will discuss a new generalization of Inoue surfaces to higher dimensions. The manifold in question is the quotient of H ¥times C^n by action of a discreet group associated to a given matrix in SL(2n+1, Z). This is joint work with Hisaaki Endo.

2019年06月13日(木)

情報数学セミナー

16:50-18:35   数理科学研究科棟(駒場) 128号室
岡本 龍明 氏 (NTT)
完全準同型暗号 (Japanese)
[ 講演概要 ]
21世紀に入り、公開鍵暗号が発展した新しい暗号概念として完全準同型暗号と関数型暗号が研究されるようになった.これら暗号では,暗号は単に秘匿性を保証するだけではなく,秘匿性を保証したまま様々な演算や高度なデータ検索を可能とする.いわば,暗号化したままクラウド計算やビックデータ検索を行うといったことが可能となる.
今回は完全準同型暗号の紹介を行う。この完全準同型暗号を実現するために前回紹介した格子暗号が使われることを紹介する。

2019年06月12日(水)

代数学コロキウム

17:00-18:00   数理科学研究科棟(駒場) 056号室
笠浦一海 氏 (東京大学数理科学研究科)
On extension of overconvergent log isocrystals on log smooth varieties (Japanese)
[ 講演概要 ]
Kを混標数の完備な非アルキメデス付値体とし,kをその剰余体とする.
Kedlayaおよび志甫の研究により,k上の滑らかな代数多様体Xとその上の単純正規交叉因子Zについて,X ¥setminus Z上の過収束アイソクリスタルのうちZの周りである種のモノドロミーを持つものは,XにZから定まる対数的構造を入れた対数的代数多様体上の収束対数的アイソクリスタルに延長できることが知られている.
本講演では,この結果の,適当な条件を満たす一般の対数的に滑らかな代数多様体と,その対数的構造から定められる部分スキーム上の過収束対数的アイソクリスタルへの拡張について議論する.

2019年06月11日(火)

解析学火曜セミナー

16:50-18:20   数理科学研究科棟(駒場) 128号室
Antonio De Rosa 氏 (クーラン数理科学研究所)
Solutions to two conjectures in branched transport: stability and regularity of optimal paths (English)
[ 講演概要 ]
Models involving branched structures are employed to describe several supply-demand systems such as the structure of the nerves of a leaf, the system of roots of a tree and the nervous or cardiovascular systems. The transportation cost in these models is proportional to a concave power $\alpha \in (0,1)$ of the intensity of the flow. We focus on the stability of the optimal transports, with respect to variations of the source and target measures. The stability was known when $\alpha$ is bigger than a critical threshold, but we prove it for every exponent $\alpha \in (0,1)$ and we provide a counterexample for $\alpha=0$. Thus we completely solve a conjecture of the book Optimal transportation networks by Bernot, Caselles and Morel. Moreover the robustness of our proof allows us to get the stability for more general lower semicontinuous functional. Furthermore, we prove the stability for the mailing problem, which was completely open in the literature, solving another conjecture of the aforementioned book. We use the latter result to show the regularity of the optimal networks. (Joint works with Maria Colombo and Andrea Marchese)

2019年06月06日(木)

情報数学セミナー

16:50-18:35   数理科学研究科棟(駒場) 128号室
岡本 龍明 氏 (NTT)
格子暗号 (Japanese)
[ 講演概要 ]
前回(談話会)は、「ポスト量子」暗号の研究の取り組みとして、いくつかの代表的なアプローチがあることを紹介した。その中でも最も有力視されているアプローチが,格子に基づく暗号(格子暗号)である。今回は、この格子暗号の特長、安全性およびその代表的な構成方法などの紹介を行う.

2019年06月05日(水)

代数学コロキウム

17:30-18:30   数理科学研究科棟(駒場) 056号室
服部新 氏 (東京都市大学)
Duality of Drinfeld modules and P-adic properties of Drinfeld modular forms (English)
[ 講演概要 ]
Let p be a rational prime, q>1 a p-power and P a non-constant irreducible polynomial in F_q[t]. The notion of Drinfeld modular form is an analogue over F_q(t) of that of elliptic modular form. Numerical computations suggest that Drinfeld modular forms enjoy some P-adic structures comparable to the elliptic analogue, while at present their P-adic properties are less well understood than the p-adic elliptic case. In 1990s, Taguchi established duality theories for Drinfeld modules and also for a certain class of finite flat group schemes called finite v-modules. Using the duality for the latter, we can define a function field analogue of the Hodge-Tate map. In this talk, I will explain how the Taguchi's theory and our Hodge-Tate map yield results on Drinfeld modular forms which are classical to elliptic modular forms e.g. P-adic congruences of Fourier coefficients imply p-adic congruences of weights.

2019年06月04日(火)

PDE実解析研究会

10:30-11:30   数理科学研究科棟(駒場) 056号室
Giuseppe Mingione 氏 (Università di Parma)
Recent progresses in nonlinear potential theory (English)
[ 講演概要 ]
Nonlinear Potential Theory aims at studying the fine properties of solutions to nonlinear, potentially degenerate nonlinear elliptic and parabolic equations in terms of the regularity of the give data. A major model example is here given by the $p$-Laplacean equation
$$ -\operatorname{div}(|Du|^{p-2}Du) = \mu \quad\quad p > 1, $$
where $\mu$ is a Borel measure with finite total mass. When $p = 2$ we find the familiar case of the Poisson equation from which classical Potential Theory stems. Although many basic tools from the classical linear theory are not at hand - most notably: representation formulae via fundamental solutions - many of the classical information can be retrieved for solutions and their pointwise behaviour. In this talk I am going to give a survey of recent results in the field. Especially, I will explain the possibility of getting linear and nonlinear potential estimates for solutions to nonlinear elliptic and parabolic equations which are totally similar to those available in the linear case. I will also draw some parallels with what is nowadays called Nonlinear Calderón-Zygmund theory.

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
福田 瑞季 氏 (東京学芸大学)
Gluck twist on branched twist spins (JAPANESE)
[ 講演概要 ]
Branched twist spin とは4次元球面上の円作用の特異点集合として定義される埋め込まれた2次元球面であり,スパン結び目やツイストスパン結び目などの2次元結び目の一般化となっている.Gluck は4次元多様体内の2次元結び目に沿った向きを保つ手術は微分同相類を除いて2種類のみであることを示しており,自明でない手術を Gluck twist と呼ぶ.一般に Gluck twist が全空間の微分同相を保つかどうかは知られていないが,Pao によって branched twist spin に沿った Gluck twist は 再び4次元球面と微分同相になることが知られている.本講演では,Pao の結果の別証明として円作用を用いて4次元球面の分解を与え,各ピースが Gluck twist を通してどのように変化するかを説明する.また,2次元結び目に注目したとき,Gluck twist によって branched twist spin は再び branched twist spin になることを証明する.

2019年05月29日(水)

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 118号室
今学期は基本水曜日とします。部屋も去年度と異なります。
江辰 氏 (Fudan/MSRI)
Minimal log discrepancies of 3-dimensional non-canonical singularities (English)
[ 講演概要 ]
Canonical and terminal singularities, introduced by Reid, appear naturally in minimal model program and play important roles in the birational classification of higher dimensional algebraic varieties. Such singularities are well-understood in dimension 3, while the property of non-canonical singularities is still mysterious. We investigate the difference between canonical and non-canonical singularities via minimal log discrepancies (MLD). We show that there is a gap between MLD of 3-dimensional non-canonical singularities and that of 3-dimensional canonical singularities, which is predicted by a conjecture of Shokurov.
This result on local singularities has applications to global geometry of Calabi–Yau 3-folds. We show that the set of all non-canonical klt Calabi–Yau 3-folds are bounded modulo flops, and the global indices of all klt Calabi–Yau 3-folds are bounded from above.

代数学コロキウム

17:00-18:00   数理科学研究科棟(駒場) 056号室
沖泰裕 氏 (東京大学数理科学研究科)
On supersingular loci of Shimura varieties for quaternion unitary groups of degree 2 (Japanese)
[ 講演概要 ]
PEL型志村多様体のp進整数環上の整モデルは, Abel多様体と付加構造のモジュライ空間として定義される. その幾何的特殊ファイバーのうち, 超特異Abel多様体に対応する点からなる閉部分スキームを超特異部分という. 超特異部分の構造の明示的な記述は, arithmetic intersectionをはじめとする整数論への応用をもつことが知られている.
本講演では, 2次四元数ユニタリ群に対する志村多様体の超特異部分の明示的記述に関して, 講演者が得た結果を紹介する. また, 関連するRapoport-Zink空間の底空間に対する同様の結果についても言及する.

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 次へ >