過去の記録
過去の記録 ~01/14|本日 01/15 | 今後の予定 01/16~
2011年01月13日(木)
作用素環セミナー
16:30-18:00 数理科学研究科棟(駒場) 122号室
Robert Coquereaux 氏 (CNRS/CPT)
Global dimensions for fusion categories of type $(G,k)$ (ENGLISH)
Robert Coquereaux 氏 (CNRS/CPT)
Global dimensions for fusion categories of type $(G,k)$ (ENGLISH)
2011年01月12日(水)
代数学コロキウム
16:30-18:45 数理科学研究科棟(駒場) 056号室
Zhonghua Li 氏 (東京大学大学院数理科学研究科) 16:30-17:30
On regularized double shuffle relation for multiple zeta values (ENGLISH)
Spines with View Toward Modular Forms (ENGLISH)
Zhonghua Li 氏 (東京大学大学院数理科学研究科) 16:30-17:30
On regularized double shuffle relation for multiple zeta values (ENGLISH)
[ 講演概要 ]
Multiple zeta values(MZVs) are natural generalizations of Riemann zeta values. There are many rational relations among MZVs. It is conjectured that the regularized double shuffle relations contian all rational relations of MZVs. So other rational relations should be deduced from regularized dhouble shuffle relations. In this talk, we discuss some results on this problem. We define the gamma series accociated to elements satisfying regularized double shuffle relations and give some properties. Moreover we show that the Ohno-Zagier relations can be deduced from regularized double shuffle relations.
Dan Yasaki 氏 (North Carolina University) 17:45-18:45Multiple zeta values(MZVs) are natural generalizations of Riemann zeta values. There are many rational relations among MZVs. It is conjectured that the regularized double shuffle relations contian all rational relations of MZVs. So other rational relations should be deduced from regularized dhouble shuffle relations. In this talk, we discuss some results on this problem. We define the gamma series accociated to elements satisfying regularized double shuffle relations and give some properties. Moreover we show that the Ohno-Zagier relations can be deduced from regularized double shuffle relations.
Spines with View Toward Modular Forms (ENGLISH)
[ 講演概要 ]
The study of an arithmetic group is often aided by the fact that it acts naturally on a nice topological object. One can then use topological or geometric techniques to try to recover arithmetic data. For example, one often studies SL_2(Z) in terms of
its action on the upper half plane. In this talk, we will examine spines, which are the ``smallest" such spaces for a given arithmetic group. On overview of some known theoretical results and explicit computations will be given.
The study of an arithmetic group is often aided by the fact that it acts naturally on a nice topological object. One can then use topological or geometric techniques to try to recover arithmetic data. For example, one often studies SL_2(Z) in terms of
its action on the upper half plane. In this talk, we will examine spines, which are the ``smallest" such spaces for a given arithmetic group. On overview of some known theoretical results and explicit computations will be given.
2011年01月11日(火)
トポロジー火曜セミナー
16:30-18:00 数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
河澄 響矢 氏 (東京大学大学院数理科学研究科)
The Chas-Sullivan conjecture for a surface of infinite genus (JAPANESE)
Tea: 16:00 - 16:30 コモンルーム
河澄 響矢 氏 (東京大学大学院数理科学研究科)
The Chas-Sullivan conjecture for a surface of infinite genus (JAPANESE)
[ 講演概要 ]
久野雄介氏(広島大理、学振PD)との共同研究。
\\Sigma_{\\infty,1} を境界成分 1 の向きづけられたコンパクト曲面の
帰納極限とする。この曲面 \\Sigma_{\\infty,1} の Goldman Lie 代数
の中心が定数ループで張られることを証明する。閉曲面についての
同様の定理を Chas と Sullivan が予想し、Etingof が証明している。
我々の結果は向きづけられたコード図式の Lie 代数の中心を計算
することで証明される。時間が許せば、線型コード図式の空間上の
Lie 代数の構造についても議論したい。
久野雄介氏(広島大理、学振PD)との共同研究。
\\Sigma_{\\infty,1} を境界成分 1 の向きづけられたコンパクト曲面の
帰納極限とする。この曲面 \\Sigma_{\\infty,1} の Goldman Lie 代数
の中心が定数ループで張られることを証明する。閉曲面についての
同様の定理を Chas と Sullivan が予想し、Etingof が証明している。
我々の結果は向きづけられたコード図式の Lie 代数の中心を計算
することで証明される。時間が許せば、線型コード図式の空間上の
Lie 代数の構造についても議論したい。
作用素環セミナー
16:30-18:00 数理科学研究科棟(駒場) 122号室
Raphael Ponge 氏 (Univ. Tokyo)
Noncommutative geometry and diffeomorphism-invariant geometries (ENGLISH)
Raphael Ponge 氏 (Univ. Tokyo)
Noncommutative geometry and diffeomorphism-invariant geometries (ENGLISH)
数値解析セミナー
16:30-18:00 数理科学研究科棟(駒場) 002号室
本セミナーは、グローバルCOE事業「数学新展開の研究教育拠点」(東京大学)の援助を受け、GCOEセミナーして行われています。
https://www.ms.u-tokyo.ac.jp/gcoe/index.html
木下武彦 氏 (京都大学数理解析研究所)
線形常微分作用素の逆作用素に対するノルム評価とその応用 (JAPANESE)
http://www.infsup.jp/utnas/
本セミナーは、グローバルCOE事業「数学新展開の研究教育拠点」(東京大学)の援助を受け、GCOEセミナーして行われています。
https://www.ms.u-tokyo.ac.jp/gcoe/index.html
木下武彦 氏 (京都大学数理解析研究所)
線形常微分作用素の逆作用素に対するノルム評価とその応用 (JAPANESE)
[ 講演概要 ]
計算機援用証明において線形微分作用素の逆作用素に対するノルム評価を得ることは重要である.しかし,理論的なノルム評価ではしばしば過大評価となり,計算機援用証明で用いる際に実用的な値を得ることが難しい.本講演では近似積分作用素を利用した評価手法を提案し,数値例として提案手法と理論的なノルム評価との比較を行う.また,本結果を用いた応用例として,非線形常微分方程式に対する解の検証理論について紹介する.
[ 参考URL ]計算機援用証明において線形微分作用素の逆作用素に対するノルム評価を得ることは重要である.しかし,理論的なノルム評価ではしばしば過大評価となり,計算機援用証明で用いる際に実用的な値を得ることが難しい.本講演では近似積分作用素を利用した評価手法を提案し,数値例として提案手法と理論的なノルム評価との比較を行う.また,本結果を用いた応用例として,非線形常微分方程式に対する解の検証理論について紹介する.
http://www.infsup.jp/utnas/
2010年12月22日(水)
GCOEセミナー
11:00-12:00 数理科学研究科棟(駒場) 570号室
Mourad Bellassoued 氏 (Faculté des Sciences de Bizerte)
Stability estimates for the anisotropic Schrodinger equations from the Dirichlet to Neumann map (ENGLISH)
Mourad Bellassoued 氏 (Faculté des Sciences de Bizerte)
Stability estimates for the anisotropic Schrodinger equations from the Dirichlet to Neumann map (ENGLISH)
[ 講演概要 ]
In this talk we want to obtain stability estimates for the inverse problem of determining the electric potential or the conformal factor in the Schrodinger equations in an anisotropic media with Dirichlet data from measured Neumann boundary observations. This information is enclosed in the dynamical Dirichlet-to-Neumann map associated to the Schrödinger equation. We prove in dimension $n\\geq 2$ that the knowledge of the Dirichlet to Neumann map for the Schrödinger equation measured on the boundary uniquely determines the electric potential and we prove H\\"older-type stability in determining the potential. We prove similar results for the determination of a conformal factor close to 1 (this is a joint work with David Dos Santos Ferreira).
In this talk we want to obtain stability estimates for the inverse problem of determining the electric potential or the conformal factor in the Schrodinger equations in an anisotropic media with Dirichlet data from measured Neumann boundary observations. This information is enclosed in the dynamical Dirichlet-to-Neumann map associated to the Schrödinger equation. We prove in dimension $n\\geq 2$ that the knowledge of the Dirichlet to Neumann map for the Schrödinger equation measured on the boundary uniquely determines the electric potential and we prove H\\"older-type stability in determining the potential. We prove similar results for the determination of a conformal factor close to 1 (this is a joint work with David Dos Santos Ferreira).
代数学コロキウム
16:30-17:30 数理科学研究科棟(駒場) 056号室
原隆 氏 (東京大学大学院数理科学研究科)
総実代数体の羃指数p型非可換p拡大に対するp-進ゼータ関数の帰納的構成 (JAPANESE)
原隆 氏 (東京大学大学院数理科学研究科)
総実代数体の羃指数p型非可換p拡大に対するp-進ゼータ関数の帰納的構成 (JAPANESE)
[ 講演概要 ]
総実代数体の非可換岩澤理論に於けるp-進ゼータ関数の構成及び
主予想の証明について、特別な場合に解説する。
総実代数体の非可換岩澤主予想は、David Burns 及び加藤和也による
「ゼータ関数の貼り合わせ」の手法を用いて加藤、Mahesh Kakde 及び
講演者によって特別な場合に証明されてきた (Jurgen Ritter,
Alfred Weiss も異なる定式化の下で主予想が成立する例を構成している)。
本講演では拡大のガロワ群がp進整数環と羃指数pの有限群の直積と
同型の場合に、Burns-加藤の手法と帰納的な議論を組み合わせることで
非可換岩澤主予想が証明できることを紹介する。
なお、総実代数体の非可換岩澤主予想は、2010年に
Ritter-Weiss 及び Kakde によって一般の場合にも
解決されていることを注記しておく。
総実代数体の非可換岩澤理論に於けるp-進ゼータ関数の構成及び
主予想の証明について、特別な場合に解説する。
総実代数体の非可換岩澤主予想は、David Burns 及び加藤和也による
「ゼータ関数の貼り合わせ」の手法を用いて加藤、Mahesh Kakde 及び
講演者によって特別な場合に証明されてきた (Jurgen Ritter,
Alfred Weiss も異なる定式化の下で主予想が成立する例を構成している)。
本講演では拡大のガロワ群がp進整数環と羃指数pの有限群の直積と
同型の場合に、Burns-加藤の手法と帰納的な議論を組み合わせることで
非可換岩澤主予想が証明できることを紹介する。
なお、総実代数体の非可換岩澤主予想は、2010年に
Ritter-Weiss 及び Kakde によって一般の場合にも
解決されていることを注記しておく。
2010年12月21日(火)
Lie群論・表現論セミナー
16:30-18:00 数理科学研究科棟(駒場) 126号室
直井克之 氏 (東京大学大学院数理科学研究科)
Some relation between the Weyl module and the crystal basis of the tensor product of fudamental representations (ENGLISH)
直井克之 氏 (東京大学大学院数理科学研究科)
Some relation between the Weyl module and the crystal basis of the tensor product of fudamental representations (ENGLISH)
[ 講演概要 ]
The Lie algebra defined by the tensor product of a simple Lie algebra and a polynomial ring is called the current algebra, and the Weyl module is defined by a finite dimensional module of the current algebra having some universal property.
The fundamental representation is a irreducible, finite dimensional, level zero integrable representation of the quantized affine algebra, and it is known that this module has a crystal basis.
If the simple Lie algebra is of ADE type, Fourier and Littelamnn has shown that the Weyl module is isomorphic to a module called the Demazure module.
Using this fact, we can easily see that the (\\mathbb{Z}-graded) characters of the Weyl module and the crystal basis of the tensor product of fundamental representations coincides.
In my talk, I will introduce the generalization of this result in the non-simply laced case.
In this case, the result of Fourier and Littelmann does not necessarily true, but we can show the characters of two objects also coincide in this case.
This fact is shown using the Demazure modules and its ``crystal basis'' called the Demazure crystals.
The Lie algebra defined by the tensor product of a simple Lie algebra and a polynomial ring is called the current algebra, and the Weyl module is defined by a finite dimensional module of the current algebra having some universal property.
The fundamental representation is a irreducible, finite dimensional, level zero integrable representation of the quantized affine algebra, and it is known that this module has a crystal basis.
If the simple Lie algebra is of ADE type, Fourier and Littelamnn has shown that the Weyl module is isomorphic to a module called the Demazure module.
Using this fact, we can easily see that the (\\mathbb{Z}-graded) characters of the Weyl module and the crystal basis of the tensor product of fundamental representations coincides.
In my talk, I will introduce the generalization of this result in the non-simply laced case.
In this case, the result of Fourier and Littelmann does not necessarily true, but we can show the characters of two objects also coincide in this case.
This fact is shown using the Demazure modules and its ``crystal basis'' called the Demazure crystals.
2010年12月20日(月)
複素解析幾何セミナー
10:30-12:00 数理科学研究科棟(駒場) 128号室
山口 博史 氏 (滋賀大学*)
ホップ曲面の擬凸状領域について (JAPANESE)
山口 博史 氏 (滋賀大学*)
ホップ曲面の擬凸状領域について (JAPANESE)
[ 講演概要 ]
2つの複素数a, b (1<|a|\\le|b|)に関するホップ曲面をHとする. Hの実解析的滑らかな境界を持つ擬凸状領域Dのロバン函数 ¥Lambda[z,w] は多重劣調和近似函数であることを示し, 上田の予想について述べる.
2つの複素数a, b (1<|a|\\le|b|)に関するホップ曲面をHとする. Hの実解析的滑らかな境界を持つ擬凸状領域Dのロバン函数 ¥Lambda[z,w] は多重劣調和近似函数であることを示し, 上田の予想について述べる.
代数幾何学セミナー
16:40-18:10 数理科学研究科棟(駒場) 126号室
権業 善範 氏 (東大数理)
On the minimal model theory from a viewpoint of numerical invariants (JAPANESE)
権業 善範 氏 (東大数理)
On the minimal model theory from a viewpoint of numerical invariants (JAPANESE)
[ 講演概要 ]
I will introduce the numerical Kodaira dimension for pseudo-effective divisors after N. Nakayama and explain the minimal model theory of numerical Kodaira dimension zero. I also will talk about the applications. ( partially joint work with B. Lehmann.)
I will introduce the numerical Kodaira dimension for pseudo-effective divisors after N. Nakayama and explain the minimal model theory of numerical Kodaira dimension zero. I also will talk about the applications. ( partially joint work with B. Lehmann.)
2010年12月16日(木)
作用素環セミナー
16:30-18:00 数理科学研究科棟(駒場) 122号室
Marco Merkli 氏 (Memorial Univ. Newfoundland)
Evolution of Quantum Dynamical Systems (ENGLISH)
Marco Merkli 氏 (Memorial Univ. Newfoundland)
Evolution of Quantum Dynamical Systems (ENGLISH)
作用素環セミナー
15:15-16:15 数理科学研究科棟(駒場) 122号室
Nicolas Monod 氏 (EPFL)
Fixed point theorems and derivations (ENGLISH)
Nicolas Monod 氏 (EPFL)
Fixed point theorems and derivations (ENGLISH)
講演会
13:00-14:30 数理科学研究科棟(駒場) 123号室
Sebastien Hitier 氏 (BNP Paribas, Head of Quantitative Research, Credit Asia)
Credit Derivatives Modelling and the concept of Background Intensity I (ENGLISH)
Sebastien Hitier 氏 (BNP Paribas, Head of Quantitative Research, Credit Asia)
Credit Derivatives Modelling and the concept of Background Intensity I (ENGLISH)
[ 講演概要 ]
Session 1: Introducing background intensity models
- Motivation for the concept of background intensity
- The default realisation marker
- Definition of background filtration and background intensity
- Reformulating the H hypothesis, and Kusuoka’s “remark”
- Generalised HJM formula and Credit Risk neutral dynamics
Session 2: Five useful properties of background intensity models
- Generalised HJM formula for credit
- Definition of conditionally independent defaults
- Diversification effects: results on forward loss distribution
- Stronger conditional independence effect for spot loss
- Existence of a canonical copula
- Properties of the portfolio loss copula
Session 1: Introducing background intensity models
- Motivation for the concept of background intensity
- The default realisation marker
- Definition of background filtration and background intensity
- Reformulating the H hypothesis, and Kusuoka’s “remark”
- Generalised HJM formula and Credit Risk neutral dynamics
Session 2: Five useful properties of background intensity models
- Generalised HJM formula for credit
- Definition of conditionally independent defaults
- Diversification effects: results on forward loss distribution
- Stronger conditional independence effect for spot loss
- Existence of a canonical copula
- Properties of the portfolio loss copula
講演会
14:40-16:10 数理科学研究科棟(駒場) 123号室
Sebastien Hitier 氏 (BNP Paribas, Head of Quantitative Research, Credit Asia)
Credit Derivatives Modelling and the concept of Background Intensity II (ENGLISH)
Sebastien Hitier 氏 (BNP Paribas, Head of Quantitative Research, Credit Asia)
Credit Derivatives Modelling and the concept of Background Intensity II (ENGLISH)
[ 講演概要 ]
Session 1: Introducing background intensity models
- Motivation for the concept of background intensity
- The default realisation marker
- Definition of background filtration and background intensity
- Reformulating the H hypothesis, and Kusuoka’s “remark”
- Generalised HJM formula and Credit Risk neutral dynamics
Session 2: Five useful properties of background intensity models
- Generalised HJM formula for credit
- Definition of conditionally independent defaults
- Diversification effects: results on forward loss distribution
- Stronger conditional independence effect for spot loss
- Existence of a canonical copula
- Properties of the portfolio loss copula
Session 1: Introducing background intensity models
- Motivation for the concept of background intensity
- The default realisation marker
- Definition of background filtration and background intensity
- Reformulating the H hypothesis, and Kusuoka’s “remark”
- Generalised HJM formula and Credit Risk neutral dynamics
Session 2: Five useful properties of background intensity models
- Generalised HJM formula for credit
- Definition of conditionally independent defaults
- Diversification effects: results on forward loss distribution
- Stronger conditional independence effect for spot loss
- Existence of a canonical copula
- Properties of the portfolio loss copula
2010年12月14日(火)
トポロジー火曜セミナー
16:30-18:00 数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
Kenneth Schackleton 氏 (IPMU)
On the coarse geometry of Teichmueller space (ENGLISH)
Tea: 16:00 - 16:30 コモンルーム
Kenneth Schackleton 氏 (IPMU)
On the coarse geometry of Teichmueller space (ENGLISH)
[ 講演概要 ]
We discuss the synthetic geometry of the pants graph in
comparison with the Weil-Petersson metric, whose geometry the
pants graph coarsely models following work of Brock’s. We also
restrict our attention to the 5-holed sphere, studying the Gromov
bordification of the pants graph and the dynamics of pseudo-Anosov
mapping classes.
We discuss the synthetic geometry of the pants graph in
comparison with the Weil-Petersson metric, whose geometry the
pants graph coarsely models following work of Brock’s. We also
restrict our attention to the 5-holed sphere, studying the Gromov
bordification of the pants graph and the dynamics of pseudo-Anosov
mapping classes.
2010年12月13日(月)
複素解析幾何セミナー
10:30-12:00 数理科学研究科棟(駒場) 128号室
山ノ井 克俊 氏 (東工大理工)
第二主要定理の等式評価 (JAPANESE)
山ノ井 克俊 氏 (東工大理工)
第二主要定理の等式評価 (JAPANESE)
[ 講演概要 ]
有理型関数の第二主要定理は有理関数に対するリーマン・フルヴィッツの公式の拡張とみなすことができるが、リーマン・フルヴィッツの公式は等式であるのに対して、第二主要定理は不等式である、という大きな違いもある.そこで第二主要定理を等式にする一つの方法について議論する.
有理型関数の第二主要定理は有理関数に対するリーマン・フルヴィッツの公式の拡張とみなすことができるが、リーマン・フルヴィッツの公式は等式であるのに対して、第二主要定理は不等式である、という大きな違いもある.そこで第二主要定理を等式にする一つの方法について議論する.
代数幾何学セミナー
16:40-18:10 数理科学研究科棟(駒場) 126号室
Sergey Fomin 氏 (University of Michigan)
Enumeration of plane curves and labeled floor diagrams (ENGLISH)
Sergey Fomin 氏 (University of Michigan)
Enumeration of plane curves and labeled floor diagrams (ENGLISH)
[ 講演概要 ]
Floor diagrams are a class of weighted oriented graphs introduced by E. Brugalle and G. Mikhalkin. Tropical geometry arguments yield combinatorial descriptions of (ordinary and relative) Gromov-Witten invariants of projective spaces in terms of floor diagrams and their generalizations. In the case of the projective plane, these descriptions can be used to obtain new formulas for the corresponding enumerative invariants. In particular, we give a proof of Goettsche's polynomiality conjecture for plane curves, and enumerate plane rational curves of given degree passing through given points and having maximal tangency to a given line. On the combinatorial side, we show that labeled floor diagrams of genus 0 are equinumerous to labeled trees, and therefore counted by the celebrated Cayley's formula. The corresponding bijections lead to interpretations of the Kontsevich numbers (the genus-0 Gromov-Witten invariants of the projective plane) in terms of certain statistics on trees.
This is joint work with Grisha Mikhalkin.
Floor diagrams are a class of weighted oriented graphs introduced by E. Brugalle and G. Mikhalkin. Tropical geometry arguments yield combinatorial descriptions of (ordinary and relative) Gromov-Witten invariants of projective spaces in terms of floor diagrams and their generalizations. In the case of the projective plane, these descriptions can be used to obtain new formulas for the corresponding enumerative invariants. In particular, we give a proof of Goettsche's polynomiality conjecture for plane curves, and enumerate plane rational curves of given degree passing through given points and having maximal tangency to a given line. On the combinatorial side, we show that labeled floor diagrams of genus 0 are equinumerous to labeled trees, and therefore counted by the celebrated Cayley's formula. The corresponding bijections lead to interpretations of the Kontsevich numbers (the genus-0 Gromov-Witten invariants of the projective plane) in terms of certain statistics on trees.
This is joint work with Grisha Mikhalkin.
2010年12月10日(金)
談話会・数理科学講演会
16:30-17:30 数理科学研究科棟(駒場) 117号室
-紫綬褒章受章を祝して-
部屋がいつもと異なります。ご注意ください。
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)。
儀我 美一 氏 (東京大学大学院数理科学研究科)
ハミルトン・ヤコビ方程式と結晶成長 (JAPANESE)
-紫綬褒章受章を祝して-
部屋がいつもと異なります。ご注意ください。
お茶&Coffee&お菓子: 16:00~16:30 (コモンルーム)。
儀我 美一 氏 (東京大学大学院数理科学研究科)
ハミルトン・ヤコビ方程式と結晶成長 (JAPANESE)
[ 講演概要 ]
成長する結晶表面の挙動を、巨視的な視点で記述する最も単純なモデルはハミルトン
・ヤコビ方程式を用いるものである。成長に伴いファセットと呼ばれる平らな面が平らな
まま成長できるかどうか安定性の問題は、複雑な形状が生み出されるかといった形態形成
の問題として重要であるが、半導体のような産業技術の問題としても重要である。ハミル
トン・ヤコビ方程式で記述される場合、数学的には時間大域的な解の挙動の問題と考えら
れる。ハミルトニアンが強圧的な場合は力学系的に言えばエルゴード性があることはよく
知られている。しかし、上述の問題由来のハミルトニアンは強圧的ではなく、新しい数学
的課題、現象が次々にみつかっている。例えば「エルゴード性」は空間の一部でしか成立
しないことがわかる。このような数学的成果に触れつつ、結晶成長の問題に対してどのよ
うな貢献ができるかについて述べる。
成長する結晶表面の挙動を、巨視的な視点で記述する最も単純なモデルはハミルトン
・ヤコビ方程式を用いるものである。成長に伴いファセットと呼ばれる平らな面が平らな
まま成長できるかどうか安定性の問題は、複雑な形状が生み出されるかといった形態形成
の問題として重要であるが、半導体のような産業技術の問題としても重要である。ハミル
トン・ヤコビ方程式で記述される場合、数学的には時間大域的な解の挙動の問題と考えら
れる。ハミルトニアンが強圧的な場合は力学系的に言えばエルゴード性があることはよく
知られている。しかし、上述の問題由来のハミルトニアンは強圧的ではなく、新しい数学
的課題、現象が次々にみつかっている。例えば「エルゴード性」は空間の一部でしか成立
しないことがわかる。このような数学的成果に触れつつ、結晶成長の問題に対してどのよ
うな貢献ができるかについて述べる。
2010年12月09日(木)
作用素環セミナー
16:30-18:00 数理科学研究科棟(駒場) 122号室
Ryszard Nest 氏 (Univ. Copenhagen)
Spectral flow associated to KMS states with periodic KMS group action (ENGLISH)
Ryszard Nest 氏 (Univ. Copenhagen)
Spectral flow associated to KMS states with periodic KMS group action (ENGLISH)
2010年12月07日(火)
トポロジー火曜セミナー
16:30-18:00 数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
Raphael Ponge 氏 (東京大学大学院数理科学研究科)
Diffeomorphism-invariant geometries and noncommutative geometry (ENGLISH)
Tea: 16:00 - 16:30 コモンルーム
Raphael Ponge 氏 (東京大学大学院数理科学研究科)
Diffeomorphism-invariant geometries and noncommutative geometry (ENGLISH)
[ 講演概要 ]
In many geometric situations we may encounter the action of
a group $G$ on a manifold $M$, e.g., in the context of foliations. If
the action is free and proper, then the quotient $M/G$ is a smooth
manifold. However, in general the quotient $M/G$ need not even be
Hausdorff. Furthermore, it is well-known that a manifold has structure
invariant under the full group of diffeomorphisms except the
differentiable structure itself. Under these conditions how can one do
diffeomorphism-invariant geometry?
Noncommutative geometry provides us with the solution of trading the
ill-behaved space $M/G$ for a non-commutative algebra which
essentially plays the role of the algebra of smooth functions on that
space. The local index formula of Atiyah-Singer ultimately holds in
the setting of noncommutative geometry. Using this framework Connes
and Moscovici then obtained in the 90s a striking reformulation of the
local index formula in diffeomorphism-invariant geometry.
An important part the talk will be devoted to reviewing noncommutative
geometry and Connes-Moscovici's index formula. We will then hint to on-
going projects about reformulating the local index formula in two new
geometric settings: biholomorphism-invariant geometry of strictly
pseudo-convex domains and contactomorphism-invariant geometry.
In many geometric situations we may encounter the action of
a group $G$ on a manifold $M$, e.g., in the context of foliations. If
the action is free and proper, then the quotient $M/G$ is a smooth
manifold. However, in general the quotient $M/G$ need not even be
Hausdorff. Furthermore, it is well-known that a manifold has structure
invariant under the full group of diffeomorphisms except the
differentiable structure itself. Under these conditions how can one do
diffeomorphism-invariant geometry?
Noncommutative geometry provides us with the solution of trading the
ill-behaved space $M/G$ for a non-commutative algebra which
essentially plays the role of the algebra of smooth functions on that
space. The local index formula of Atiyah-Singer ultimately holds in
the setting of noncommutative geometry. Using this framework Connes
and Moscovici then obtained in the 90s a striking reformulation of the
local index formula in diffeomorphism-invariant geometry.
An important part the talk will be devoted to reviewing noncommutative
geometry and Connes-Moscovici's index formula. We will then hint to on-
going projects about reformulating the local index formula in two new
geometric settings: biholomorphism-invariant geometry of strictly
pseudo-convex domains and contactomorphism-invariant geometry.
数値解析セミナー
16:30-18:00 数理科学研究科棟(駒場) 002号室
本セミナーは、グローバルCOE事業「数学新展開の研究教育拠点」(東京大学)の援助を受け、GCOEセミナーして行われています。
https://www.ms.u-tokyo.ac.jp/gcoe/index.html
高安亮紀 氏 (早稲田大学大学院基幹理工学部)
楕円型非線形偏微分方程式のDirichlet境界値問題に対する精度保証付き数値計算法
(JAPANESE)
http://www.infsup.jp/utnas/
本セミナーは、グローバルCOE事業「数学新展開の研究教育拠点」(東京大学)の援助を受け、GCOEセミナーして行われています。
https://www.ms.u-tokyo.ac.jp/gcoe/index.html
高安亮紀 氏 (早稲田大学大学院基幹理工学部)
楕円型非線形偏微分方程式のDirichlet境界値問題に対する精度保証付き数値計算法
(JAPANESE)
[ 講演概要 ]
本講演では楕円型非線形偏微分方程式のDirichlet境界値問題の解に対する精度保証付き数値計算方法について述べる.提案手法は先行研究とは違う新しい精度保証方法である.Newton-Kantorovichの定理を使用し,真の解の存在証明とその近似解との誤差を数学的に正しく計算する.講演では我々の提案手法の詳細と今後の課題について説明する.
[ 参考URL ]本講演では楕円型非線形偏微分方程式のDirichlet境界値問題の解に対する精度保証付き数値計算方法について述べる.提案手法は先行研究とは違う新しい精度保証方法である.Newton-Kantorovichの定理を使用し,真の解の存在証明とその近似解との誤差を数学的に正しく計算する.講演では我々の提案手法の詳細と今後の課題について説明する.
http://www.infsup.jp/utnas/
2010年12月06日(月)
複素解析幾何セミナー
10:30-12:00 数理科学研究科棟(駒場) 128号室
小野 肇 氏 (東京理科大)
偏極トーリック多様体のチャウ半安定性について (JAPANESE)
小野 肇 氏 (東京理科大)
偏極トーリック多様体のチャウ半安定性について (JAPANESE)
[ 講演概要 ]
偏極多様体の幾何学的不変式論の意味での安定性は、定スカラー曲率ケーラー計量の存在問題と密接に関係している。例えばDonaldsonは、自己同型群が離散群である場合に、定スカラー曲率ケーラー多様体は漸近的チャウ安定であることを示した。本講演では滑らかなトーリック偏極多様体がチャウ半安定であるための必要条件をいくつか紹介する。その応用として、漸近的チャウ不安定なトーリックケーラー・アインシュタイン多様体が存在することがわかる。
偏極多様体の幾何学的不変式論の意味での安定性は、定スカラー曲率ケーラー計量の存在問題と密接に関係している。例えばDonaldsonは、自己同型群が離散群である場合に、定スカラー曲率ケーラー多様体は漸近的チャウ安定であることを示した。本講演では滑らかなトーリック偏極多様体がチャウ半安定であるための必要条件をいくつか紹介する。その応用として、漸近的チャウ不安定なトーリックケーラー・アインシュタイン多様体が存在することがわかる。
2010年12月04日(土)
古典解析セミナー
09:30-10:30 数理科学研究科棟(駒場) 056号室
松木敏彦 氏 (京都大学)
多重旗多様体の軌道分解と quiver の表現 (JAPANESE)
松木敏彦 氏 (京都大学)
多重旗多様体の軌道分解と quiver の表現 (JAPANESE)
古典解析セミナー
10:40-11:40 数理科学研究科棟(駒場) 056号室
竹村剛一 氏 (中央大学)
ホインの微分方程式における積分変換とその応用 (JAPANESE)
竹村剛一 氏 (中央大学)
ホインの微分方程式における積分変換とその応用 (JAPANESE)
古典解析セミナー
13:00-14:00 数理科学研究科棟(駒場) 056号室
廣惠一希 氏 (東大)
二重合流型Heun方程式のWeyl群対称性 (JAPANESE)
廣惠一希 氏 (東大)
二重合流型Heun方程式のWeyl群対称性 (JAPANESE)
< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 次へ >