今後の予定

過去の記録 ~05/20本日 05/21 | 今後の予定 05/22~

2022年05月24日(火)

解析学火曜セミナー

16:00-17:30   オンライン開催
Michael Goesswein 氏 (東京大学/University of Regensburg)
Stability analysis for the surface diffusion flow on double bubbles using the Lojasiewicz-Simon (English)
[ 講演概要 ]
Many strategies for stability analysis use precise knowledge of the set of equilibria. For example, Escher, Mayer, and Simonett used center manifold analysis to study the surface diffusion flow on closed manifolds. Especially in higher dimensional situations with boundaries, this can cause problems as the set of equilibria will have a lot of degrees of freedom. In such situations approaches with a Lojasiewicz-Simon inequality gives an elegant way to avoid this problem. In this talk, we will both explain the general tools and ideas for this strategy and use them to prove the stability of standard double bubbles with respect to the surface diffusion flow. The talk is based on joint work with H. Garcke.
[ 参考URL ]
https://forms.gle/Cam3mpSSEKKVppZr9

トポロジー火曜セミナー

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Christine Vespa 氏 (IRMA, Université de Strasbourg / JSPS)
Polynomial functors associated with beaded open Jacobi diagrams (ENGLISH)
[ 講演概要 ]
The Kontsevich integral is a very powerful invariant of knots, taking values is the space of Jacobi diagrams. Using an extension of the Kontsevich integral to tangles in handlebodies, Habiro and Massuyeau construct a functor from the category of bottom tangles in handlebodies to the linear category A of Jacobi diagrams in handlebodies. The category A has a subcategory equivalent to the linearization of the opposite of the category of finitely generated free groups, denoted by $\textbf{gr}^{op}$. By restriction to this subcategory, morphisms in the linear category $\textbf{A}$ give rise to interesting contravariant functors on the category $\textbf{gr}$, encoding part of the composition structure of the category A.
In recent papers, Katada studies the functor given by the morphisms in the category A from 0. In particular, she obtains a family of polynomial functors on $\textbf{gr}^{op}$ which are outer functors, in the sense that inner automorphisms act trivially.
In this talk, I will explain these results and give extensions of Katada’s results concerning the functors given by the morphisms in the category A from any integer k. These functors give rise to families of polynomial functors on $\textbf{gr}^{op}$ which are no more outer functors. Our approach is based on an equivalence of categories given by Powell. Through this equivalence the previous polynomial functors correspond to functors given by beaded open Jacobi diagrams.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年05月25日(水)

代数学コロキウム

17:00-18:00   数理科学研究科棟(駒場) ハイブリッド号室
数理科学研究科所属以外の方は、オンラインでのご参加をお願いいたします。
松田 光智 氏 (東京大学大学院数理科学研究科)
Torsion points of elliptic curves over cyclotomic fields (JAPANESE)
[ 講演概要 ]
By Mordell--Weil theorem, the Mordell--Weil groups of elliptic curves over number fields are finitely generated, and in particular their torsion subgroups are finite. For a fixed elliptic curve, it is easy to compute its torsion subgroups. Conversely using modular curves, we can study the possible torsion subgroups of elliptic curves. More precisely, the existence of an elliptic curve with certain torsion points is essentially equivalent to the existence of certain rational points of a modular curve. In this talk, in order to study the rational points of modular curves over cyclotomic fields, we compute the Mordell--Weil ranks of their Jacobian varieties over cyclotomic fields.

2022年05月31日(火)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 128号室
磯野優介 氏 (京大数理研)
Pointwise inner automorphisms of almost periodic factors
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm

トポロジー火曜セミナー

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
植田 一石 氏 (東京大学大学院数理科学研究科)
Stable Fukaya categories of Milnor fibers (JAPANESE)
[ 講演概要 ]
We define the stable Fukaya category of a Liouville domain as the quotient of the wrapped Fukaya category by the full subcategory consisting of compact Lagrangians, and discuss the relation between the stable Fukaya categories of affine Fermat hypersurfaces and the Fukaya categories of projective hypersurfaces. We also discuss homological mirror symmetry for Milnor fibers of Brieskorn-Pham singularities along the way. This is a joint work in progress with Yanki Lekili.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

解析学火曜セミナー

16:00-17:30   数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催(対面は本学関係者のみに限定します)
岡部真也 氏 (東北大学)
Convergence of Sobolev gradient trajectories to elastica (Japanese)
[ 講演概要 ]
In this talk we consider a higher order Sobolev gradient flow for the modified elastic energy defined on closed space curves. The $L^2$-gradient flow for the modified elastic energy has been well studied, and standard results are solvability of the flow for smooth initial curve and subconvergence of solutions to elastica. Moreover, stronger convergence results, so called full limit convergence, are generally up to reparametrisation and sometimes translation. In this talk, we consider $H^2$-gradient flow for the modified elastic energy and prove (i) the solvability of the flow for initial curve in the energy class, (ii) full limit convergence to elastica by way of a Lojasiewicz—Simon gradient inequality. This talk is based on a joint work with Philip Schrader (Murdoch University).
[ 参考URL ]
https://forms.gle/wkCbqdmNuz9zr3vA8

2022年06月01日(水)

東京名古屋代数セミナー

10:30-12:00   オンライン開催
オンライン開催の詳細は講演参考URLをご覧ください。
吉永 正彦 氏 (大阪大学)
超平面配置の特性準多項式 I (Japanese)
[ 講演概要 ]
n ベクトル空間内の (n-1) 次元(アフィン)部分空間のいくつかの集まりを超平面配置という。ルート系、コクセター群、配置空間など様々な文脈で自然に表れる対象である。超平面配置の重要な不変量の一つとして「特性多項式」が挙げられる。特性多項式は(実配置の)部屋数、(複素配置の)補集合のポアンカレ多項式、(有限体上の)点の数など様々な情報を持っている。本講演では、アフィンルート系のある種の有限部分配置を主な対象に、特性多項式の性質や計算方法を、特に 2007年に Kamiya-Takemura-Terao により導入された「特性準多項式」に焦点をあてて紹介する。特性準多項式は特性多項式の精密化であるだけでなく、当初から多面体のEhrhart理論(格子点の数え上げ理論)との密接な関係が示唆されていた。特性多項式よりは複雑で扱いにくい側面もあるが、その複雑さの中に、代数的トーラス内のトーラス配置の位相幾何的情報や多面体の対称性に関する情報が見えてくるという最近の研究を紹介したい。
[ 参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2022年06月07日(火)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 128号室
曽我部太郎 氏 (東大数理)
Kirchberg algebras sharing the same homotopy groups of their automorphism groups
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm

トポロジー火曜セミナー

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
山口 祥司 氏 (Yoshikazu Yamaguchi)
Dynamical zeta functions for geodesic flows and the higher-dimensional Reidemeister torsion for Fuchsian groups (JAPANESE)
[ 講演概要 ]
本講演では2次元双曲オービフォールド上の測地線流が定める力学系のゼータ関数の値とオービフォールドの単位接束におけるライデマイスタートーションの漸近挙動の関係を紹介する. 双曲オービフォールドの単位接束はPSL(2, R)の普遍被覆空間が幾何構造を定めるザイフェルト多様体とみなせる. また幾何構造が定める基本群のSL(2,R)表現が存在する.ここでライデマイスタートーションの漸近挙動とは, 基本群のSL(2,R)表現から誘導される基本群のSL(n, R)表現の系列を利用して定めるライデマイスタートーションの系列における主要係数の極限を意味する. 双曲3次元多様体においては, ライデマイスタートーションの漸近挙動から双曲体積を導出できることが力学系のゼータ関数を用いた考察で明らかにされてきた. 2次元双曲オービフォールドの単位接束は双曲3次元多様体ではないが, オービフォールド上の測地線流から定まる力学系のゼータ関数を用いてライデマイスタートーションの漸近挙動が考察でき, 主要係数の極限からオービフォールドのオービフォールド・オイラー標数が導出できることを紹介したい.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年06月08日(水)

東京名古屋代数セミナー

10:30-12:00   オンライン開催
オンライン開催の詳細は講演参考URLをご覧ください。
吉永 正彦 氏 (大阪大学)
超平面配置の特性準多項式 II (Japanese)
[ 講演概要 ]
n ベクトル空間内の (n-1) 次元(アフィン)部分空間のいくつかの集まりを超平面配置という。ルート系、コクセター群、配置空間など様々な文脈で自然に表れる対象である。超平面配置の重要な不変量の一つとして「特性多項式」が挙げられる。特性多項式は(実配置の)部屋数、(複素配置の)補集合のポアンカレ多項式、(有限体上の)点の数など様々な情報を持っている。本講演では、アフィンルート系のある種の有限部分配置を主な対象に、特性多項式の性質や計算方法を、特に 2007年に Kamiya-Takemura-Terao により導入された「特性準多項式」に焦点をあてて紹介する。特性準多項式は特性多項式の精密化であるだけでなく、当初から多面体のEhrhart理論(格子点の数え上げ理論)との密接な関係が示唆されていた。特性多項式よりは複雑で扱いにくい側面もあるが、その複雑さの中に、代数的トーラス内のトーラス配置の位相幾何的情報や多面体の対称性に関する情報が見えてくるという最近の研究を紹介したい。
[ 参考URL ]
http://www.math.nagoya-u.ac.jp/~aaron.chan/TNAseminar.html

2022年06月15日(水)

代数学コロキウム

17:00-18:00   数理科学研究科棟(駒場) ハイブリッド号室
数理科学研究科所属以外の方は、オンラインでのご参加をお願いいたします。
小泉 淳之介 氏 (東京大学大学院数理科学研究科)
Steinberg symbols and reciprocity sheaves (JAPANESE)
[ 講演概要 ]
The norm residue symbol and the differential symbol are known to satisfy the common relation $(a,1-a)=0$ which is called the Steinberg relation. Hu-Kriz showed that the Steinberg relation can be understood as a relation between certain morphisms in the stable motivic homotopy category. On the other hand, there is also an “additive variant” of the Steinberg relation, namely $(a,a)+(1-a,1-a)=0$, for which the classical motivic theory is no longer applicable. In this talk we will explain how the theory of reciprocity sheaves due to Kahn-Saito-Yamazaki can be utilized to generalize the theory of Hu-Kriz to include the additive Steinberg relation.

2022年07月05日(火)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 128号室
及川瑞稀 氏 (東大数理)
Frobenius algebras associated with the $\alpha$-induction for twisted modules of conformal nets
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm

2022年07月26日(火)

解析学火曜セミナー

16:00-17:30   数理科学研究科棟(駒場) 126号室
対面・オンラインハイブリッド開催(対面は本学関係者のみに限定します)
熊谷隆 氏 (早稲田大学)
TBA (Japanese)
[ 講演概要 ]
TBA
[ 参考URL ]
https://forms.gle/ewZEy1jAXrAhWx1Q8