今後の予定

過去の記録 ~04/25本日 04/26 | 今後の予定 04/27~

2025年04月28日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
山ノ井 克俊 氏 (大阪大学)
複素準射影多様体の双曲性と基本群の正標数体上の線形表現 (Japanese)
[ 講演概要 ]
複素準射影多様体の基本群が正標数体上のbigな線形表現を持つとき、その準射影多様体をターゲットとする大ピカール型の定理について、お話しします。また、時間があれば、無限基本群を持つ複素射影多様体の普遍被覆多様体に関するClaudon-Höring-Kollár予想の部分的解決への応用をお話しします。この講演の内容はY.Deng氏との共同研究(arXiv:2403.16199)に基づきます。
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

東京確率論セミナー

16:00-17:30   数理科学研究科棟(駒場) 126号室
15:15〜 2階のコモンルームでTea timeを行います。ぜひこちらにもご参加ください。
檜垣 充朗 氏 (神戸大学)
ランダム粗面領域における粘性流体に対するナヴィエ壁法則
[ 講演概要 ]
粗面を伴う領域における粘性流体運動の有効近似を得る経験的な手法として、工学分野では壁法則が知られてきた [cf. Nikuradse 1933]。筒状粗面領域における定常層流に対しては、壁法則により、ナヴィエ滑り境界条件に従う速度場が得られる (ナヴィエ壁法則)。本講演では、これが実際に有効近似を与えることを数学的に厳密に証明する。より正確には、粗面領域全体の標本空間を考えた際に、ある種のエルゴード性の仮定の下で、最適な近似率が得られることを報告する。証明の鍵は、粗面付近の流体運動を記述する境界層の確定的/確率的評価である。ここで我々は楕円型方程式に対する定量的確率均質化のアイディアを用いる [cf. Armstrong-Smart, Armstrong-Kuusi-Mourrat, Gloria-Neukamm-Otto, Shen]。ただし、係数行列ではなく粗面領域の標本空間を考えていることに注意されたい。なお、上述のエルゴード性としては、確率変数に対する関数不等式 (対数ソボレフ不等式やスペクトルギャップ不等式など) の成立を採用する。本講演の内容は Jinping Zhuge 氏 (Morningside Center of Mathematics, China)、Yulong Lu 氏 (University of Minnesota, USA) との共同研究に基づく。

幾何解析セミナー

15:00-16:00   数理科学研究科棟(駒場) 002号室
Junrong Yan 氏 (Northeathtern University)
Heat Kernel Expansion and Weyl's Law for Schrödinger-Type Operators on Noncompact Manifolds (英語)
[ 講演概要 ]
Motivated by the study of Landau-Ginzburg models in string theory from the viewpoint of index theorem, we explore the heat kernel expansion for Schrödinger-type operators on noncompact manifolds. This expansion leads to a local index theorem for such operators.

Unlike in the compact case, the heat kernel in the noncompact setting exhibits new behaviors. Obtaining its precise expansion and deriving a remainder estimate require careful analysis. We will first present our approach to establishing this expansion.

As a key application, we study Weyl’s law for such operators. In the compact case, such results follow from Karamata’s Tauberian theorem, but the standard Tauberian argument does not apply in the noncompact setting. To address this, we develop a new version of Karamata’s theorem.

This is joint work with Xianzhe Dai.

2025年05月01日(木)

応用解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 128号室
片山翔 氏 (東京大学大学院数理科学研究科)
Fundamental solution to the heat equation with a dynamical boundary condition (Japanese)
[ 講演概要 ]
We give an explicit representation of the fundamental solution to the heat equation on a half-space of R^N with the homogeneous dynamical boundary condition and obtain upper and lower estimates of the fundamental solution. These enable us to obtain sharp decay estimates of solutions to the heat equation with the homogeneous dynamical boundary condition. Furthermore, as an application of our decay estimates, we identify the so-called Fujita exponent for a semilinear heat equation on the half-space of R^N with the homogeneous dynamical boundary condition. This talk is based on a joint work with Kazuhiro Ishige (Univ. of Tokyo) and Tatsuki Kawakami (Ryukoku Univ.)

2025年05月02日(金)

離散数理モデリングセミナー

16:45-17:45   数理科学研究科棟(駒場) 126号室
Anton Dzhamay 氏 (BIMSA, Beijing)
On a positivity property of a solution of discrete Painlevé equations (English)
[ 講演概要 ]
We consider a particular example of a discrete Painlevé equation arising from a construction of quantum minimal surfaces by Arnlind, Hoppe and Kontsevich. Observing that this equation corresponds to a very special choice of parameters (root variables) in the Space of Initial Conditions for the differential Painlevé V equation, we show that some explicit special function solutions, written in terms of modified Bessel functions, for d-PV, yield the unique positive solution for some initial value problem for the discrete Painlevé equation needed for quantum minimal surfaces. This is a joint work with Peter Clarkson, Andy Hone, and Ben Mitchell.

統計数学セミナー

13:30-14:30   数理科学研究科棟(駒場) 126号室
ハイブリッド開催、ベイズ計算セミナーとの共催
今井 竣祐 氏 (京大経済)
General Bayesian Semiparametric Inference with Hyvärinen Score (Japanese)
[ 講演概要 ]
This paper proposes a novel framework for semiparametric Bayesian inference on finite-dimensional parameters under existence of nuisance functions. Based on a pseudo-model defined by (profiled) loss functions for the finite dimensional parameters and the Hyv\"arinen score, we propose a general posterior distribution, named semiparametric Hyv\"arinen (SH) posterior. The SH posterior enables us to make inference on the parameters of interest with taking account of uncertainty in the estimation/selection of tuning parameters in estimating the unknown nuisance functions. We establish its theoretical justification of the SH posterior under large samples, and provide posterior computation algorithm. As concrete examples, we provide the posterior inference of partial linear models and single index models, and demonstrate the performance through simulation.
[ 参考URL ]
https://us06web.zoom.us/meeting/register/3XxtsHwaQVSN7BuINu6E8g

2025年05月09日(金)

幾何解析セミナー

10:00-11:00   数理科学研究科棟(駒場) 056号室
Paolo Salani 氏 (Università degli Studi di Firenze) -
Preservation of concavity properties by the Dirichlet heat flow and applications (英語)
[ 講演概要 ]
This talk is based on joint works with K. Ishige, Q. Liu and A. Takatsu.

It is well known that heat flow preserves the log-concavity of the initial datum, in the following sense: if $\phi\geq0$ is log-concave (i.e., $\log\phi$ is concave), and u is the (bounded) solution of $u_t=\Delta u$ in $R^n\times(0,+\infty)$ with $u(x,0)=\phi$, then $u(\cdot,t)$ is log-concave for every $t\geq 0$.

Together with Ishige and Takatsu, we investigated on the optimality of this property and considered the more general concept of F-.concavity, discovering that, in a suitable sense, log-concavity is the weakest concavity property preserved by the heat flow, while the strongest is what we call "hot concavity".

For our investigation we use only pdes techniques, while the original proof of the preservation of log-concavity by the heat flow, due to Brascamp and Lieb, is easily obtained as an application of a functional-geometric inequality known as Prekòpa-Leindler inequality. It is interesting to notice that is is also possible to do the way back, retrieving PL inequality (and the whole family opf Borell-Brascamp-Lieb inequalities) thanks to the concavity preservation properties of parabolic equations, so establishing a perfect equivalence between these two apparently separated worlds. This investigation was done in collaboration with Ishige and Liu.
辻 寛 氏 (埼玉大学) 11:30-12:30
The Gaussian correlation inequality for centered convex sets (英語)
[ 講演概要 ]
This talk is based on a joint work with Shohei Nakamura. The Gaussian correlation inequality, a result known in probability theory and convex geometry, gives a comparison between the Gaussian measure of the intersection of two symmetric convex sets and the product of the Gaussian measures of each set. This inequality was proven by Pitt in the case $n=2$ and later extended to all dimensions by Royen. Recently E. Milman gave another simple proof by the observation that the Gaussian correlation inequality may be regarded as an example of the inverse Brascamp—Lieb inequality.

In this talk, building on Milman's observation, we prove that the Gaussian correlation inequality holds true for centered convex sets. Furthermore we give an extension of the Gaussian correlation inequality formulated by Szarek—Werner.

2025年05月12日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
神田 秀峰 氏 (東京大学)
LCK幾何学におけるOeljeklaus-Toma多様体の特徴づけ (Japanese)
[ 講演概要 ]
Oeljeklaus–Toma(OT)多様体はKähler計量を持たない複素多様体の例として知られ, 井上曲面の高次元への一般化とみなされている. OT多様体は数論的データを用いて構成される可解多様体であり, いくつかのOT多様体は局所共形Kähler(LCK)計量を持つ. これによりLCK計量を持つ可解多様体が大量に構成されたことになり, OT多様体はLCK幾何における重要な例として盛んに研究されてきた. その構成は技巧的に見えるが, LCK計量をもつ可解多様体はこれまでOT多様体を除いて簡単なものしか知られていない.
本講演では, ある種の可解多様体がLCK計量を持つならば, それは本質的にOT多様体と一致することを示す. 幾何学的な制約から数論が現れることから, 本結果はある種の可解多様体の構成において, 数論的議論を用いることの必然性を示唆していると言える.
本講演はプレプリントarXiv:2502.12500の内容に基づく.
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2025年05月13日(火)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 117号室
崔瀷瀚 氏 (東大数理)
Haagerup's problems on normal weights
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm

Lie群論・表現論セミナー

15:45-16:45   数理科学研究科棟(駒場) 128号室
上田衛 氏 (東大数理)
アファインヤンギアンと非長方形型W代数 (Japanese)
[ 講演概要 ]
ヤンギアンはDrinfeldにより導入された量子群であり、有限型の場合にはカレントリー代数の変形となる。近年、ヤンギアンは頂点代数の一種であるW代数の研究で重要な役割を果たしている。
その代表的な成果の一つとして、BrundanとKleshchevがA型有限W代数をシフト型ヤンギアンの商代数として書き下したことで挙げられる。シフト型ヤンギアンはA型有限型ヤンギアンを部分代数として含んでいる。De Sole-Kac-ValeriはLax作用素を用いてこの部分代数からA型有限W代数への写像を構成した。

本講演では、De Sole-Kac-Valeriの結果のアファイン版に相当する、A型アファインヤンギアンからA型非長方形型W代数への写像を構成する方法について解説する。この写像は、AGT予想の一般化に繋がると期待されている。

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
池 祐一 氏 (東京大学大学院数理科学研究科)
Interleaving distance for sheaves and its application to symplectic geometry (JAPANESE)
[ 講演概要 ]
The Interleaving distance was first introduced in the context of the stability of persistent homology and is now used in various fields. It was adapted to sheaves by the pioneering work of Curry, and later in the derived setting by Kashiwara and Schapira. In this talk, I will explain that the interleaving distance for sheaves is related to the energy of Hamiltonian actions on cotangent bundles. Moreover, I will show that the derived interleaving distance is complete, which enables us to treat non-smooth objects in symplectic geometry using sheaf-theoretic methods. This is based on joint work with Tomohiro Asano, Stéphane Guillermou, Vincent Humilière, and Claude Viterbo.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2025年05月15日(木)

幾何解析セミナー

15:30-16:30   数理科学研究科棟(駒場) 002号室
Kobe Marshall-Stevens 氏 (Johns Hopkins University)
Gradient flow of phase transitions with fixed contact angle (英語)
[ 講演概要 ]
The Allen-Cahn equation is closely related to the area functional on hypersurfaces and provides a means to investigate both its critical points (minimal hypersurfaces) and gradient flow (mean curvature flow). I will discuss various properties of the gradient flow of the Allen-Cahn equation with a fixed boundary contact angle condition, which is used to gain insight into an appropriate formulation for mean curvature flow with fixed boundary contact angle. This is based on joint work with M. Takada, Y. Tonegawa, and M. Workman.

2025年05月19日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
安福 悠 氏 (早稲田大学 )
TBA (Japanese)
[ 講演概要 ]
TBA
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2025年05月20日(火)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 117号室
佐藤ふたば 氏 (東大数理)
Heat semigroups on quantum automorphism groups of finite dimensional C$^*$-algebras
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm

2025年05月26日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
松村 慎一 氏 (東北大学)
TBA (Japanese)
[ 講演概要 ]
TBA
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2025年06月03日(火)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 117号室
森孟彦 氏 (千葉大)
Application of Operator Theory for the Collatz Conjecture
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm

2025年06月05日(木)

幾何解析セミナー

14:00-15:00   数理科学研究科棟(駒場) 002号室
Chao Li 氏 (New York University) -
On the topology of stable minimal hypersurfaces in a homeomorphic $S^4$ (英語)
[ 講演概要 ]
Given an $n$-dimensional manifold (with $n$ at least $4$), it is generally impossible to control the topology of a homologically minimizing hypersurface $M$. In this talk, we construct stable (or locally minimizing) hypersurfaces with optimal restrictions on its topology in a $4$-manifold $X$ with natural curvature conditions (e.g. positive scalar curvature), provided that $X$ admits certain embeddings into a homeomorphic $S^4$. As an application, we obtain black hole topology theorems in such $4$-dimensional asymptotically flat manifolds with nonnegative scalar curvature. This is based on joint work with Boyu Zhang.
Ruobing Zhang 氏 (University of Wisconsin–Madison) 15:30-16:30
TBA (英語)
[ 講演概要 ]
TBA

2025年06月10日(火)

数値解析セミナー

16:30-18:00   数理科学研究科棟(駒場) 002号室
大島伸行 氏 (北海道大学大学院工学研究院)
壁境界が埋め込まれた流れ方程式とその応用 (Japanese)
[ 講演概要 ]
界面を表現するレベルセット法やフェーズフィールド法を流れ解析へ導入・応用する研究の一環として、壁境界が埋め込まれた流れ方程式(Immersed-boundary Navier-Stokes)を提案した。その導出の考え方、数値検証例を示すとともに、工学応用事例として画像データが駆動する流れシミュレーション(image-data driven flow simulation)の構築について紹介する。
参考:
1. N.Oshima, J. Fluid Sci. Tech., Vol.19, No.3, (2024) 10.1299/jfst.2024jfst0026, Vol.18, No.4, (2023) 10.1299/fst.2023jfsr0034
2. N. Nakamichi, et al., Mech. Eng. J. , Vol.11, No.6, (2024) 10.1299/mej.24-00196

2025年06月17日(火)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 117号室
粟津光 氏 (東大数理)
Amenability of group actions on compact spaces and the associated Banach algebras
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm

2025年06月24日(火)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 117号室
George Elliott 氏 (Univ. Toronto)
TBA
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm

2025年07月01日(火)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 117号室
星野真生 氏 (東大数理)
A tensor categorical aspect of quantum group actions
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm