過去の記録 ~01/25本日 01/26 | 今後の予定 01/27~



15:30-17:00   数理科学研究科棟(駒場) 122号室
Christopher Hacon 氏 (University of Utah/RIMS)
Boundedness of the KSBA functor of
SLC models (English)
[ 講演概要 ]
Let $X$ be a canonically polarized smooth $n$-dimensional projective variety over $\mathbb C$ (so that $\omega _X$ is ample), then it is well-known that a fixed multiple of the canonical line bundle defines an embedding of $X$ in projective space. It then follows easily that if we fix certain invariants of $X$, then $X$ belongs to finitely many deformation types. Since canonical models are rarely smooth, it is important to generalize this result to canonically polarized $n$-dimensional projectivevarieties with canonical singularities. Moreover, since these varieties specialize to non-normal varieties it is also important to generalize this result to semi-log canonical pairs. In this talk we will explain a strong version of the above result that applies to semi-log canonical pairs.This is joint work with C. Xu and J. McKernan
[ 講演参考URL ]


10:30-12:00   数理科学研究科棟(駒場) 126号室
早乙女 飛成 氏
The Lyapunov-Schmidt reduction for the CR Yamabe equation on the Heisenberg group (Japanese)
[ 講演概要 ]
We will study CR Yamabe equation for a CR structure on the Heisenberg group which is deformed from the standard structure. By using Lyapunov-Schmidt reduction, it is shown that the perturbation of the standard CR Yamabe solution is a solution to the deformed CR Yamabe equation, under certain conditions of the deformation.


16:50-18:20   数理科学研究科棟(駒場) 128号室
高橋 弘 氏 (日本大学理工学部)


16:30-18:00   数理科学研究科棟(駒場) 056号室
宮武勇登 氏 (名古屋大学大学院工学研究科)
ハミルトン系に対する並列エネルギー保存解法 (日本語)
[ 講演概要 ]
本講演では,ハミルトン系に対するエネルギー保存解法について考える. エネルギー保存解法の研究は,近年になってようやく高精度解法導出の アイデアが提案されつつあるが,高精度化には計算コストの大幅な増大を 伴う.そこで,本講演では,無段式ルンゲクッタ法と呼ばれる数値解法の エネルギー保存条件,次数条件,並列化可能条件をある行列を用いて表現 することで,並列化可能な高精度エネルギー保存解法を導出する.



10:00-11:30   数理科学研究科棟(駒場) 126号室
服部広大 氏 (慶應大学)
The nonuniqueness of tangent cone at infinity of Ricci-flat manifolds (Japanese)
[ 講演概要 ]
For a complete Riemannian manifold (M,g), the Gromov-Hausdorff limit of (M, r^2g) as r to 0 is called the tangent cone at infinity. By the Gromov's Compactness Theorem, there exists tangent cone at infinity for every complete Riemannian manifolds with nonnegative Ricci curvatures. Moreover, if it is Ricci-flat, with Euclidean volume growth and having at least one tangent cone at infinity with a smooth cross section, then it is uniquely determined by the result of Colding and Minicozzi. In this talk I will explain that the assumption of the volume growth is essential for their uniqueness theorem.



16:00-17:30   数理科学研究科棟(駒場) 128号室
横田智巳 氏 (東京理科大学理学部第一部数学科)
準線形退化放物・放物型Keller-Segel 系の時間大域的弱解の存在と有界性: 最大正則性原理からのアプローチ (Japanese)
[ 講演概要 ]
本研究は石田祥子氏(東京理科大学)との共同研究によるものである. Keller-Segel系は細胞性粘菌の集中現象を記述するモデルとして知られており, 近年盛んに研究されている. 本講演では, 拡散と集中を表す項を準線形化した次の方程式系の初期値問題を考える:
$u_t = \Delta u^m - \nabla \cdot (u^{q-1} \nabla v)$,
$v_t = \Delta v - v + u$.
ここで, $m \ge 1$, $q \ge 2$ とする. この問題に対する時間大域的弱解の存在については, 最初にSugiyama-Kunii (2006)によって $q \le m$ という条件が提示され, その後Ishida-Yokota (2012)によって最大正則性原理を用いたアプローチにより$q < m +2/N$ (Nは空間次元)という条件下で示された. しかし, これらの研究において, 解の時間大域的な挙動の解明という観点から重要である「解の有界性」は未解決のまま残されている. なお, $q < m +2/N$ という条件は, $m=1$, $q=2$のときに対応する通常のKeller-Segel系に対する研究から, 初期値の大きさに制限なく時間大域的弱解の存在が言える条件としては最良であると考えられる. 有界領域上のNeumann問題に対しては, Tao-Winkler (2012), Ishida-Seki-Yokota (2014)によって同様の条件の下で時間大域解の存在だけでなく解の有界性まで示されているが, Gagliardo-Nirenbergの補間不等式を繰り返し用いるために計算が複雑であり, 証明の見通しが良いとは言い難い. 本講演では, 特別な場合に対するSenba-Suzuki (2006)の方法を参考に, Ishida-Yokota (2012)による最大正則性原理を用いるアプローチに小さな修正を施すことによって, 解の有界性が容易に導かれることを示す.



16:45-18:15   数理科学研究科棟(駒場) 122号室
David Kerr 氏 (Texas A&M Univ.)
Dynamics, dimension, and $C^*$-algebras



17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
赤穂 まなぶ 氏 (首都大学東京)
完全ラグランジュはめ込みのシンプレクティックdisplacementエネルギーについて (JAPANESE)
[ 講演概要 ]
のシンプレクティック面積に関するある不等式を与える. 証明はChekanovが有理
いた技法を, ラグランジュはめ込みのFloerホモロジーに拡張して行う. また時
間が許せば, 我々の不等式とHofer--Zehnderのシンプレクティック容量に関する



10:30-12:00   数理科学研究科棟(駒場) 126号室
糟谷 久矢 氏 (東京工業大学)
Mixed Hodge structures and Sullivan's minimal models of Sasakian manifolds (Japanese)
[ 講演概要 ]
By the result of Deligne, Griffiths, Morgan and Sullivan, the Malcev completion of the fundamental group of a compact Kahler manifold is quadratically presented. This fact gives good advances in "Kahler group problem" (Which groups can be the fundamental groups of compact Kahler manifolds?) In this talk, we consider the fundamental groups of compact Sasakian manifolds. We show that the Malcev Lie algebra of the fundamental group of a compact 2n+1-dimensional Sasakian manifold with n >= 2 admits a quadratic presentation by using Morgan's bigradings of Sullivan's minimal models of mixed-Hodge diagrams.


16:50-18:20   数理科学研究科棟(駒場) 128号室
横山 聡 氏 (東京大学大学院数理科学研究科)
On a stochastic Rayleigh-Plesset equation and a certain stochastic Navier-Stokes equation



10:00-11:30   数理科学研究科棟(駒場) 126号室
四之宮佳彦 氏 (静岡大学)
Veech groups of Veech surfaces and periodic points (日本語)
[ 講演概要 ]


16:20-17:30   数理科学研究科棟(駒場) 056号室
足立高徳 氏 (立命館大学)
A Note on Algorithmic Trading based on Some Personal Experience
[ 講演概要 ]
I overview a brief history of HFT based on my 14 years' personal experience of the algorithmic trading business at a wall-street company. Starting with descriptions about layers of the algo business, I mention a stochastic index arbitrage business that I employed in some detail. After reviewing some HFT specific issues such as super short-period alpha, I try to forecast what is going on with HFT in near future.



16:45-18:15   数理科学研究科棟(駒場) 122号室
小沢登高 氏 (京大数理研)
The Furstenberg boundary and $C^*$-simplicity


14:55-16:40   数理科学研究科棟(駒場) 128演習室号室
岩田繁英 氏 (東京海洋大学大学院海洋科学技術研究科)
[ 講演概要 ]



15:30-17:00   数理科学研究科棟(駒場) 122号室
石川大蔵 氏 (早稲田)
Rank 2 weak Fano bundles on cubic 3-folds (日本語)
[ 講演概要 ]
A vector bundle on a projective variety is called weak Fano if its
projectivization is a weak Fano manifold. This is a generalization of
Fano bundles.
In this talk, we will obtain a classification of rank 2 weak Fano
bundles on a nonsingular cubic hypersurface in a projective 4-space.
Specifically, we will show that there exist rank 2 indecomposable weak
Fano bundles on it.


16:50-18:20   数理科学研究科棟(駒場) 128号室
星野 壮登 氏 (東京大学大学院数理科学研究科)
[ 講演概要 ]



17:00-18:30   数理科学研究科棟(駒場) 002号室
荒野悠輝 氏 (東大数理)
Unitary spherical representations of Drinfeld doubles (JAPANESE)
[ 講演概要 ]
It is known that the Drinfeld double of the quantized
enveloping algebra of a semisimple Lie algebra looks similar to the
quantized enveloping algebra of the complexification of the Lie algebra.
In this talk, we investigate the unitary representation theory of such
Drinfeld double via its analogy to that of the complex Lie group.
We also talk on an application to operator algebras.



16:45-18:15   数理科学研究科棟(駒場) 122号室
John F. R. Duncan 氏 (Case Western Reserve Univ.)
Vertex operator algebras in umbral Moonshine


17:00-18:00   数理科学研究科棟(駒場) 056号室
長町一平 氏 (東京大学数理科学研究科)
On a good reduction criterion for polycurves with sections (Japanese)



17:00-18:30   数理科学研究科棟(駒場) 122号室
小木曽岳義 氏 (城西大学)
Clifford quartic forms の局所関数等式とhomaloidal EKP-polynomials
[ 講演概要 ]
局所関数等式が正則概均質ベクトル空間の基本相対不変式とその双対空間の多項式のペアから与えられることは知られている。我々は Clifford quartic form と呼ばれるある4次斉次多項式を構成し, それが概均質ベクトル空間の相対不変式ではないにも関わらず局所関数等式を満たすことを示した。局所関数等式を満たす多項式を特徴付ける問題は興味深い未解決問題であるが, この問題に関連し、 Etingof, Kazhdan, Polishchuk は(もっと一般的な設定で)ある予想を提示した。我々は、 Clifford quartic form を用いて, この予想に反例があることを示した。 (この講演は佐藤文広氏との共同研究に基づいている。)


17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
久我 健一 氏 (千葉大学)
Introduction to formalization of topology using a proof assistant. (JAPANESE)
[ 講演概要 ]
Although the program of formalization goes back to David
Hilbert, it is only recently that we can actually formalize
substantial theorems in modern mathematics. It is made possible by the
development of certain type theory and a computer software called a
proof assistant. We begin this talk by showing our formalization of
some basic geometric topology using a proof assistant COQ. Then we
introduce homotopy type theory (HoTT) of Voevodsky et al., which
interprets type theory from abstract homotopy theoretic perspective.
HoTT proposes "univalent" foundation of mathematics which is
particularly suited for computer formalization.



10:30-12:00   数理科学研究科棟(駒場) 126号室
久本 智之 氏 (名古屋大学)
On uniform K-stability (Japanese)
[ 講演概要 ]
It is a joint work with Sébastien Boucksom and Mattias Jonsson. We first introduce functionals on the space of test configurations, as non-Archimedean analogues of classical functionals on the space of Kähler metrics. Then, uniform K-stability is defined as a counterpart of K-energy's coercivity condition. Finally, reproving and strengthening Y. Odaka's results, we study uniform K-stability of Kähler-Einstein manifolds.


15:30-17:00   数理科学研究科棟(駒場) 122号室
松本雄也 氏 (東大数理)
Good reduction of K3 surfaces (日本語 or English)
[ 講演概要 ]
We consider degeneration of K3 surfaces over a 1-dimensional base scheme
of mixed characteristic (e.g. Spec of the p-adic integers).
Under the assumption of potential semistable reduction, we first prove
that a trivial monodromy action on the l-adic etale cohomology group
implies potential good reduction, where potential means that we allow a
finite base extension.
Moreover we show that a finite etale base change suffices.
The proof for the first part involves a mixed characteristic
3-dimensional MMP (Kawamata) and the classification of semistable
degeneration of K3 surfaces (Kulikov, Persson--Pinkham, Nakkajima).
For the second part, we consider flops and descent arguments. This is a joint work with Christian Liedtke.
[ 講演参考URL ]


16:50-18:20   数理科学研究科棟(駒場) 128号室
北別府 悠 氏 (京都大学大学院理学研究科)
A finite diameter theorem on RCD spaces



16:00-17:00   数理科学研究科棟(駒場) 056号室
Tea:15:30~16:00 コモンルーム
Gunnar Carlsson  氏 (Stanford University, Ayasdi INC)
The Shape of Data
[ 講演概要 ]
There is a tremendous amount of attention being paid to the notion of
"Big Data". In many situations, however, the problem is not so much the
size of the data but rather its complexity. This observation shows that
it is now important to find methods for representing complex data in a
compressed and understandable fashion. Representing data by shapes
turns out to be useful in many situations, and therefore topology, the
mathematical sub discipline which studies shape, becomes quite
relevant. There is now a collection of methods based on topology for
analyzing complex data, and in this talk we will discuss these methods,
with numerous examples.
[ 講演参考URL ]

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 次へ >