## 過去の記録

#### 作用素環セミナー

14:45-18:00   数理科学研究科棟(駒場) 126号室
Benoit Collins 氏 (Univ. Claude Bernard Lyon 1) 14:45-16:15
Convergence of unitary matrix integrals and free probability
Roberto Longo 氏 (University of Rome) 16:30-18:00
Operator Algebras and Conformal Field Theory

### 2006年12月20日(水)

#### 代数学コロキウム

16:30-18:45   数理科学研究科棟(駒場) 117号室
2講演です
On the profinite regular inverse Galois problem
[ 講演概要 ]
Given a field $k$ and a (pro)finite group $G$, consider the
following weak version of the regular inverse Galois problem:
(WRIGP/$G$/$k$) \\textit{there exists a smooth geometrically
irreducible curve $X_{G}/k$ and a Galois extension $E/k(X_{G})$
regular over $k$ with group $G$.} (the regular inverse Galois
problem (RIGP/$G$/$k$) corresponding to the case
$X_{G}=\\mathbb{P}^{1}_{k}$). A standard descent argument shows that
for a finite group $G$ the (WRIGP/$G$/$k$) can be deduced from the
(RIGP/$G$/$k((T))$). For
profinite groups $G$, the (WRIGP/$G$/$k((T))$) has been proved for
lots of fields (including the cyclotomic closure of characteristic $0$
fields) but the descent argument no longer works.\\\\
\\indent Let $p\\geq 2$ be a prime, then a profinite group
$G$ is said to be \\textit{$p$-obstructed} if it fits in a profinite group extension
$$1\\rightarrow K\\rightarrow G\\rightarrow G_{0}\\rightarrow 1$$
with $G_{0}$ a finite group and $K\\twoheadrightarrow \\mathbb{Z}_{p}$. Typical examples of such profinite groups $G$ are
universal $p$-Frattini covers of finite $p$-perfect groups or
pronilpotent projective groups.\\\\
\\indent I will show that the (WRIGP/$G$/$k$) - even under
its weaker formulation: (WWRIGP/$G$/$k$) \\textit{there exists a
smooth geometrically irreducible curve $X_{G}/k$ and a Galois
extension $E/k(X_{G}).\\overline{k}$ with group $G$ and field of
moduli $k$.} - fails for the whole class of $p$-obstructed profinite
groups $G$ and any field $k$ which is either a finitely generated
field of characteristic $0$ or a finite field of characteristic
$\\not= p$.\\\\
\\indent The proof uses a profinite generalization of the cohomological obstruction
for a G-cover to be defined over its field of moduli and an analysis of the constrainsts
imposed on a smooth geometrically irreducible curve $X$ by a degree $p^{n}$
cyclic G-cover $X_{n}\\rightarrow X$, constrainsts which are too rigid to allow the
existence of projective systems $(X_{n}\\rightarrow X_{G})_{n\\geq 0}$ of degree $p^{n}$ cyclic G-covers
defined over $k$. I will also discuss other implicsations of these constrainsts
for the (RIGP).
Eric Friedlander 氏 (Northwestern) 17:45-18:45
An elementary perspective on modular representation theory

### 2006年12月19日(火)

#### トポロジー火曜セミナー

16:30-18:30   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム

Poisson structures on the homology of the spaces of knots
[ 講演概要 ]
We study the homological properties of the space $K$ of (framed) long knots in $\\R^n$, $n>3$, in particular its Poisson algebra structures.
We had known two kinds of Poisson structures, both of which are based on the action of little disks operad. One definition is via the action on the space $K$. Another comes from the action of chains of little disks on the Hochschild complex of an operad, which appears as $E^1$-term of certain spectral sequence converging to $H_* (K)$. The main result is that these two Poisson structures are the same.
We compute the first non-trivial example of the Poisson bracket. We show that this gives a first example of the homology class of $K$ which does not directly correspond to any chord diagrams.

[ 講演概要 ]
Suppose $F$ is an embedded closed surface in $R^4$.
We call $F$ a pseudo-ribbon surface link
if its projection is an immersion of $F$ into $R^3$
whose self-intersection set $\\Gamma(F)$ consists of disjointly embedded circles.
H. Aiso classified pseudo-ribbon sphere-knots ($F$ is a sphere.)
when $\\Gamma(F)$ consists of less than 6 circles.
when $F$ is two spheres and $\\Gamma(F)$ consists of less than 7 circles.

### 2006年12月18日(月)

#### 複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室

Height functions and affine space regular automorphisms

### 2006年12月14日(木)

#### 応用解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 056号室

[ 講演概要 ]

を許容する存在定理の枠組みを提供する為に発展してきた。こうして

の方法論を発展させることによって試みる。また特異点周辺の面積密度の

#### 作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 126号室
Chongying Dong 氏 (UC Santa Cruz)
On uniqueness of the moonshine vertex operator algebra

#### 応用解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 056号室

(東北大学・大学院理学研究科)

[ 講演概要 ]

### 2006年12月13日(水)

#### 諸分野のための数学研究会

10:30-11:30   数理科学研究科棟(駒場) 056号室
C. M. Elliott 氏 (University of Sussex)
Computational Methods for Geometric PDEs
[ 講演概要 ]
Computational approaches to evolutionary geometric partial differential equations such as anisotropic motion by mean curvature and surface diffusion are reviewed. We consider methods based on graph, parametric , level set and phase field descriptions of the surface. We also discuss the approximation of partial differential equations which hold on the evolving surfaces. Numerical results will be presented along with some approximation results.
[ 講演参考URL ]
http://coe.math.sci.hokudai.ac.jp/sympo/various/index.html

#### 数理ファイナンスセミナー

17:30-19:00   数理科学研究科棟(駒場) 118号室

### 2006年12月12日(火)

#### トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
Maxim Kazarian 氏 (Steklov Math. Institute)
Thom polynomials for maps of curves with isolated singularities
(joint with S. Lando)
[ 講演概要 ]
Thom (residual) polynomials in characteristic classes are used in
the analysis of geometry of functional spaces. They serve as a
tool in description of classes Poincar\\'e dual to subvarieties of
functions of prescribed types. We give explicit universal
expressions for residual polynomials in spaces of functions on
complex curves having isolated singularities and
multisingularities, in terms of few characteristic classes. These
expressions lead to a partial explicit description of a
stratification of Hurwitz spaces.

### 2006年12月11日(月)

#### 複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室

Modified deficiencies of holomorphic curves and defect relation

### 2006年12月08日(金)

#### 講演会

10:30-12:00   数理科学研究科棟(駒場) 056号室
Charles M. Elliott 氏 (University of Sussex)
Computational Methods for Surface Partial Differential Equations
[ 講演概要 ]
In these lectures we discuss the formulation, approximation and applications of partial differential equations on stationary and evolving surfaces. Partial differential equations on surfaces occur in many applications. For example, traditionally they arise naturally in fluid dynamics, materials science, pattern formation on biological organisms and more recently in the mathematics of images. We will derive the conservation law on evolving surfaces and formulate a number of equations.

We propose a surface finite element method (SFEM) for the numerical solution of parabolic partial differential equations on hypersurfaces $\\Gamma$ in $\\mathbb R^{n+1}$. The key idea is based on the approximation of $\\Gamma$ by a polyhedral surface $\\Gamma_h$ consisting of a union of simplices (triangles for $n=2$, intervals for $n=1$) with vertices on $\\Gamma$. A finite element space of functions is then defined by taking the continuous functions on $\\Gamma_h$ which are linear affine on each simplex of the polygonal surface. We use surface gradients to define weak forms of elliptic operators and naturally generate weak formulations of elliptic and parabolic equations on $\\Gamma$. Our finite element method is applied to weak forms of the equations. The computation of the mass and element stiffness matrices are simple and straightforward. We give an example of error bounds in the case of semi-discretization in space for a fourth order linear problem. We extend this approach to pdes on evolving surfaces. We define an Eulerian level set method for partial differential equations on surfaces. The key idea is based on formulating the partial differential equation on all level set surfaces of a prescribed function $\\Phi$ whose zero level set is $\\Gamma$. We use Eulerian surface gradients to define weak forms
of elliptic operators which naturally generate weak formulations
of Eulerian elliptic and parabolic equations. This results in a degenerate equation formulated in anisotropic Sobolev spaces based on the level set function $\\Phi$. The resulting equation is then solved in one space dimension higher but can be solved on a fixed finite element grid.

Numerical experiments are described for several linear and Nonlinear partial differential equations. In particular the power of the method is demonstrated by employing it to solve highly nonlinear second and fourth order problems such as surface Allen-Cahn and Cahn-Hilliard equations and surface level set equations for geodesic mean curvature flow. In particular we show how surface level set and phase field models can be used to compute the motion of curves on surfaces. This is joint work with G. Dziuk(Freiburg).

#### 代数幾何学セミナー

15:00-16:25   数理科学研究科棟(駒場) 126号室
Stefan Kebekus 氏 氏 (Mathematisches Institut
Universität zu Köln
)
Rationally connected
foliations

### 2006年12月07日(木)

#### 講演会

13:00-14:30   数理科学研究科棟(駒場) 056号室

Charles M. Elliott 氏 (University of Sussex)
Computational Methods for Surface Partial Differential Equations
[ 講演概要 ]
In these lectures we discuss the formulation, approximation and applications of partial differential equations on stationary and evolving surfaces. Partial differential equations on surfaces occur in many applications. For example, traditionally they arise naturally in fluid dynamics, materials science, pattern formation on biological organisms and more recently in the mathematics of images. We will derive the conservation law on evolving surfaces and formulate a number of equations.

We propose a surface finite element method (SFEM) for the numerical solution of parabolic partial differential equations on hypersurfaces $\\Gamma$ in $\\mathbb R^{n+1}$. The key idea is based on the approximation of $\\Gamma$ by a polyhedral surface $\\Gamma_h$ consisting of a union of simplices (triangles for $n=2$, intervals for $n=1$) with vertices on $\\Gamma$. A finite element space of functions is then defined by taking the continuous functions on $\\Gamma_h$ which are linear affine on each simplex of the polygonal surface. We use surface gradients to define weak forms of elliptic operators and naturally generate weak formulations of elliptic and parabolic equations on $\\Gamma$. Our finite element method is applied to weak forms of the equations. The computation of the mass and element stiffness matrices are simple and straightforward. We give an example of error bounds in the case of semi-discretization in space for a fourth order linear problem. We extend this approach to pdes on evolving surfaces. We define an Eulerian level set method for partial differential equations on surfaces. The key idea is based on formulating the partial differential equation on all level set surfaces of a prescribed function $\\Phi$ whose zero level set is $\\Gamma$. We use Eulerian surface gradients to define weak forms
of elliptic operators which naturally generate weak formulations
of Eulerian elliptic and parabolic equations. This results in a degenerate equation formulated in anisotropic Sobolev spaces based on the level set function $\\Phi$. The resulting equation is then solved in one space dimension higher but can be solved on a fixed finite element grid.

Numerical experiments are described for several linear and Nonlinear partial differential equations. In particular the power of the method is demonstrated by employing it to solve highly nonlinear second and fourth order problems such as surface Allen-Cahn and Cahn-Hilliard equations and surface level set equations for geodesic mean curvature flow. In particular we show how surface level set and phase field models can be used to compute the motion of curves on surfaces. This is joint work with G. Dziuk(Freiburg).
[ 講演参考URL ]
https://www.u-tokyo.ac.jp/campusmap/map02_02_j.html

#### 作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 126号室

An introduction to analytic endomotives (after Connes-Consani-Marcolli)

### 2006年12月06日(水)

#### 諸分野のための数学研究会

10:30-11:30   数理科学研究科棟(駒場) 056号室

Formation of rims surrounding a chondrule during solidification in 3- dimensions using the phase field model
[ 講演概要 ]
Chondrules are small particles of silicate material of the order of a few millimeters in radius, and are the main component of chondritic meteorite.

In this paper, we present a model of the growth starting from a seed crystal at the location of an outer part of pure melt droplet into spherical single crystal corresponding to a chondrule. The formation of rims surrounding a chondrule during solidification is simulated by using the phase field model in three dimensions. Our results display a well developed rim structure when we choose the initial temperature of a melt droplet more than the melting point under the condition of larger supercooling. Furthermore, we show that the size of a droplet plays an important role in the formation of rims during solidification.
[ 講演参考URL ]
http://coe.math.sci.hokudai.ac.jp/sympo/various/index.html

#### 代数学コロキウム

16:30-18:45   数理科学研究科棟(駒場) 117号室
2講演です
Vincent Maillot 氏 (Jussieu/京大数理研) 16:30-17:30
New applications of the arithmetic Riemann-Roch theorem
Don Blasius 氏 (UCLA) 17:45-18:45
Zariski Closures of Automorphic Galois Representations

#### 統計数学セミナー

15:00-16:10   数理科学研究科棟(駒場) 128号室
Stefano IACUS 氏 (Department of Economics Business and Statistics, University of Milan, Italy)
Inference problems for the standard and geometric telegraph process
[ 講演概要 ]
The telegraph process {X(t), t>0}, has been introduced (see Goldstein, 1951) as an alternative model to the Brownian motion B(t). This process describes a motion of a particle on the real line which alternates its velocity, at Poissonian times, from +v to -v. The density of the distribution of the position of the particle at time t solves the hyperbolic differential equation called telegraph equation and hence the name of the process. Contrary to B(t) the process X(t) has finite variation and continuous and differentiable paths. At the same time it is mathematically challenging to handle.

In this talk we will discuss inference problems for the estimation of the intensity of the Poisson process, either homogeneous and non homogeneous, from continuous and discrete time observations of X(t). We further discuss estimation problems for the geometric telegraph process S(t) = S(0) * exp{m - 0.5 * s^2) * t + s X(t)} where m is a known constant and s>0 and the intensity of the underlying Poisson process are two parameter of interest to be estimated. The geometric telegraph process has been recently introduced in Mathematical Finance to describe the dynamics of assets as an alternative to the usual geometric Brownian motion.

For discrete time observations we consider the "high frequency" approach, which means that data are collected at n+1 equidistant time points Ti=i * Dn, i=0,1,..., n, n*Dn = T, T fixed and such that Dn shrinks to 0 as n increases.

The process X(t) in non Markovian, non stationary and not ergodic thus we use approximation arguments to derive estimators. Given the complexity of the equations involved only estimators on the standard telegraph process can be studied analytically. We will also present a Monte Carlo study on the performance of the estimators for small sample size, i.e. Dn not shrinking to 0.
[ 講演参考URL ]
https://www.ms.u-tokyo.ac.jp/~kengok/statseminar/2006/16.html

### 2006年12月04日(月)

#### 代数幾何学セミナー

16:30-18:00   数理科学研究科棟(駒場) 126号室
Professor Burt Totaro

(University of Cambridge)

When does a curve move on a surface, especially over a finite field?

#### 複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室

Invariant CR-Laplacian type operator on the Silov boundary of a Siegel domain of rank one

### 2006年12月02日(土)

#### 東京無限可積分系セミナー

13:30-14:30   数理科学研究科棟(駒場) 117号室

Spin Hall effect in metals and in insulators
[ 講演概要 ]
We theoretically predicted that by applying an electric field
to a nonmagnetic system, a spin current is induced in a transverse
direction [1,2]. This is called a spin Hall effect. After its
theoretical predictions on semiconductors [1,2], it has been
extensively studied theoretically and experimentally, partly due
to a potential application to spintronics devices.
In particular, one of the topics of interest is quantum spin
Hall systems, which are spin analogues of the quantum Hall systems.
These systems are insulators in bulk, and have gapless edge states
which carry a spin current. These edge states are characterized
by a Z_2 topological number  of a bulk Hamiltonian.
If the topological number is odd, there appear gapless edge states
which carry spin current. In my talk I will briefly review the
spin Hall effect including its experimental results and present
understanding. Then I will focus on the quantum spin Hall systems,
and explain various properties of the Z_2 topological number and
its relation to edge states.
 S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348 (2003).
 J. Sinova et al., Phys. Rev. Lett. 92, 126603 (2004)
 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802, 226801 (2005)

#### 東京無限可積分系セミナー

15:00-16:00   数理科学研究科棟(駒場) 117号室
Yshai Avishai 氏 (Ben-Gurion Univ. , 東大物工)
Disorder in Quantum Spin Hall Systems
[ 講演概要 ]
The quantum spin Hall phase is a novel state of matter with
topological properties. It might be realized in graphene and
probably also in type III semiconductors quantum wells.
Most recent theoretical treatments of this phase discuss its
occurrence in clean systems with perfect crystal symmetry.
In this seminar I will report on a recent work (in collaboration
with N. Nagaosa and M. Onoda) on disordered quantum spin Hall
systems. Following a brief introduction and background I will
discuss the persistence of topological terms also in disordered
systems (following a recent work of Sheng and Haldane) and
then present our results on the localization problem in two
dimensional systems. Due to spin-orbit interaction, there
is a metallic phase as is well known
for the symplectic ensemble. Together with the existence of
a topological term it leads to some surprising results regarding
the scaling theory of localization.

### 2006年12月01日(金)

#### 講演会

16:00-18:00   数理科学研究科棟(駒場) 126号室

von Neumann 環上の群作用
[ 講演参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/mt.htm

#### 談話会・数理科学講演会

16:30-17:30   数理科学研究科棟(駒場) 123号室
お茶&Coffee&お菓子: 16:00～16:30(コモンルーム)
James McKernan 氏 (UC Santa Barbara)
Finite generation of the canonical ring
[ 講演概要 ]
One of the most fundamental invariants of any smooth projective variety is the canonical ring, the graded ring of all global pluricanonical holomorphic n-forms. We explain some of the recent ideas behind the proof of finite generation of the canonical ring and its connection with the programme of Iitaka and Mori in the classification of algebraic varieties.

### 2006年11月30日(木)

#### 講演会

16:00-18:00   数理科学研究科棟(駒場) 126号室

von Neumann 環上の群作用
[ 講演参考URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/mt.htm