代数幾何学セミナー
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
開催情報 | 金曜日 13:30~15:00 数理科学研究科棟(駒場) 118号室 |
---|---|
担当者 | 權業 善範、河上 龍郎 、榎園 誠 |
2015年06月15日(月)
15:30-17:00 数理科学研究科棟(駒場) 122号室
Christopher Hacon 氏 (University of Utah/RIMS)
Boundedness of the KSBA functor of
SLC models (English)
http://www.math.utah.edu/~hacon/
Christopher Hacon 氏 (University of Utah/RIMS)
Boundedness of the KSBA functor of
SLC models (English)
[ 講演概要 ]
Let $X$ be a canonically polarized smooth $n$-dimensional projective variety over $\mathbb C$ (so that $\omega _X$ is ample), then it is well-known that a fixed multiple of the canonical line bundle defines an embedding of $X$ in projective space. It then follows easily that if we fix certain invariants of $X$, then $X$ belongs to finitely many deformation types. Since canonical models are rarely smooth, it is important to generalize this result to canonically polarized $n$-dimensional projectivevarieties with canonical singularities. Moreover, since these varieties specialize to non-normal varieties it is also important to generalize this result to semi-log canonical pairs. In this talk we will explain a strong version of the above result that applies to semi-log canonical pairs.This is joint work with C. Xu and J. McKernan
[ 参考URL ]Let $X$ be a canonically polarized smooth $n$-dimensional projective variety over $\mathbb C$ (so that $\omega _X$ is ample), then it is well-known that a fixed multiple of the canonical line bundle defines an embedding of $X$ in projective space. It then follows easily that if we fix certain invariants of $X$, then $X$ belongs to finitely many deformation types. Since canonical models are rarely smooth, it is important to generalize this result to canonically polarized $n$-dimensional projectivevarieties with canonical singularities. Moreover, since these varieties specialize to non-normal varieties it is also important to generalize this result to semi-log canonical pairs. In this talk we will explain a strong version of the above result that applies to semi-log canonical pairs.This is joint work with C. Xu and J. McKernan
http://www.math.utah.edu/~hacon/