談話会・数理科学講演会
過去の記録 ~05/01|次回の予定|今後の予定 05/02~
担当者 | 会田茂樹,大島芳樹,志甫淳(委員長),高田了 |
---|---|
セミナーURL | https://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html |
2024年06月21日(金)
15:30-16:30 数理科学研究科棟(駒場) 大講義室(auditorium)号室
万一感染クラスター発生時にご連絡差し上げるため、[参考URL]から参加登録をお願いいたします。
Mircea Mustaţă 氏 (The University of Michigan)
The minimal exponent of hypersurface singularities (English)
https://docs.google.com/forms/d/e/1FAIpQLSdUrEZYZ4fvi8So3pUVkxF08M2jbVdo7hTew_B1S5l-opFyzg/viewform?usp=sharing
万一感染クラスター発生時にご連絡差し上げるため、[参考URL]から参加登録をお願いいたします。
Mircea Mustaţă 氏 (The University of Michigan)
The minimal exponent of hypersurface singularities (English)
[ 講演概要 ]
The log canonical threshold of a hypersurface is an invariant of singularities that plays an important role in birational geometry, but which arises in many other contexts and admits different characterizations. A refinement of this invariant is Saito's minimal exponent, whose definition relies on the theory of b-functions, an important concept in D-module theory. The new information (by comparison with the log canonical threshold) provides a numerical measure of rational singularities. In this talk I will give an introduction to minimal exponents, highlighting recent progress and open questions.
[ 参考URL ]The log canonical threshold of a hypersurface is an invariant of singularities that plays an important role in birational geometry, but which arises in many other contexts and admits different characterizations. A refinement of this invariant is Saito's minimal exponent, whose definition relies on the theory of b-functions, an important concept in D-module theory. The new information (by comparison with the log canonical threshold) provides a numerical measure of rational singularities. In this talk I will give an introduction to minimal exponents, highlighting recent progress and open questions.
https://docs.google.com/forms/d/e/1FAIpQLSdUrEZYZ4fvi8So3pUVkxF08M2jbVdo7hTew_B1S5l-opFyzg/viewform?usp=sharing