談話会・数理科学講演会
過去の記録 ~12/09|次回の予定|今後の予定 12/10~
担当者 | 阿部紀行、岩木耕平、河澄響矢(委員長)、小池祐太 |
---|---|
セミナーURL | https://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html |
過去の記録
2023年10月27日(金)
15:30-16:30 数理科学研究科棟(駒場) 大講義室(auditorium)号室
数理科学研究科所属以外の方は、[参考URL]から参加登録をお願いいたします。
Jenn-Nan Wang 氏 (National Taiwan University)
Increasing stability and decreasing instability estimates for an inverse boundary value problem (English)
https://forms.gle/9xDcHfHXFFHPfsKW6
数理科学研究科所属以外の方は、[参考URL]から参加登録をお願いいたします。
Jenn-Nan Wang 氏 (National Taiwan University)
Increasing stability and decreasing instability estimates for an inverse boundary value problem (English)
[ 講演概要 ]
According to Hadamard’s definition, a well-posed problem satisfies three criteria: existence, uniqueness, and continuous dependence on the data. Most of forward problems (e.g., the boundary value problem or Calderón’s problem) can be proved to be well-posed. However, many inverse problems are known to be ill-posed, for example, the inverse boundary value problem in which one would like to determine unknown parameters from the boundary measurements. The failure of the continuous dependence on the data in Hadamard’s sense makes the feasible determination of unknown parameters rather difficult in practice. However, if one restricts the unknown parameters in a suitable subspace, one can restore the continuous dependence or stability. Nonetheless, the ill-posedness nature of the inverse problem may give rise a logarithmic type modulus of continuity. For Calderón’s problem, such logarithmic stability estimate was derived by Alessandrini and Mandache showed that this estimate is optimal by proving an instability estimate of exponential type. When we consider the time-harmonic equation, it was first proved by Isakov that the stability increases as the frequency increases. In this talk, I would like to discuss a refinement of Mandache’s idea aiming to derive explicitly the dependence of the instability estimate on the frequency. If time allows, I also want to discuss the increasing stability phenomenon from the statistical viewpoint based on the Bayes approach. The aim is to show that the posterior distribution contracts around the true parameter at a rate closely related to the decreasing instability estimate derived above.
[ 参考URL ]According to Hadamard’s definition, a well-posed problem satisfies three criteria: existence, uniqueness, and continuous dependence on the data. Most of forward problems (e.g., the boundary value problem or Calderón’s problem) can be proved to be well-posed. However, many inverse problems are known to be ill-posed, for example, the inverse boundary value problem in which one would like to determine unknown parameters from the boundary measurements. The failure of the continuous dependence on the data in Hadamard’s sense makes the feasible determination of unknown parameters rather difficult in practice. However, if one restricts the unknown parameters in a suitable subspace, one can restore the continuous dependence or stability. Nonetheless, the ill-posedness nature of the inverse problem may give rise a logarithmic type modulus of continuity. For Calderón’s problem, such logarithmic stability estimate was derived by Alessandrini and Mandache showed that this estimate is optimal by proving an instability estimate of exponential type. When we consider the time-harmonic equation, it was first proved by Isakov that the stability increases as the frequency increases. In this talk, I would like to discuss a refinement of Mandache’s idea aiming to derive explicitly the dependence of the instability estimate on the frequency. If time allows, I also want to discuss the increasing stability phenomenon from the statistical viewpoint based on the Bayes approach. The aim is to show that the posterior distribution contracts around the true parameter at a rate closely related to the decreasing instability estimate derived above.
https://forms.gle/9xDcHfHXFFHPfsKW6
2023年07月21日(金)
15:30-16:30 数理科学研究科棟(駒場) 大講義室(auditorium)号室
数理科学研究科所属以外の方は、[参考URL]から参加登録をお願いいたします。
山崎雅人 氏 (東京大学 カブリ数物連携宇宙研究機構)
数理としての場の量子論 (JAPANESE)
https://forms.gle/igR5ZB5AwginXBt49
数理科学研究科所属以外の方は、[参考URL]から参加登録をお願いいたします。
山崎雅人 氏 (東京大学 カブリ数物連携宇宙研究機構)
数理としての場の量子論 (JAPANESE)
[ 講演概要 ]
場の量子論はもともとは物理学の理論であるが,数学にとっても新しいアイデアの宝庫であると同時に,数学の諸分野を有機的に結びつける強力な動機ともなってきた.また,場の量子論そのものを数学的に定式化しようとする試みも多数存在してきた.本講演では,結び目理論や可積分系などを具体例にとって,場の量子論や超弦理論から現代数学に何がもたらされてきたのか,その成果の一端を紹介したい.
[ 参考URL ]場の量子論はもともとは物理学の理論であるが,数学にとっても新しいアイデアの宝庫であると同時に,数学の諸分野を有機的に結びつける強力な動機ともなってきた.また,場の量子論そのものを数学的に定式化しようとする試みも多数存在してきた.本講演では,結び目理論や可積分系などを具体例にとって,場の量子論や超弦理論から現代数学に何がもたらされてきたのか,その成果の一端を紹介したい.
https://forms.gle/igR5ZB5AwginXBt49
2023年06月30日(金)
15:30-16:30 数理科学研究科棟(駒場) 大講義室(auditorium)号室
数理科学研究科所属以外の方は、https://forms.gle/Pw6AHaJjqAwaHB8s9から参加登録をお願いいたします。
Guy Henniart 氏 (Université Paris-Saclay)
Did you say $p$-adic? (English)
数理科学研究科所属以外の方は、https://forms.gle/Pw6AHaJjqAwaHB8s9から参加登録をお願いいたします。
Guy Henniart 氏 (Université Paris-Saclay)
Did you say $p$-adic? (English)
[ 講演概要 ]
I am a Number Theorist and $p$ is a prime number. The $p$-adic numbers are obtained by pushing to the limit a simple idea. Suppose that you want to know which integers are sums of two squares. If an integer $x$ is odd, its square has the form $8k+1$; if $x$ is even, its square is a multiple of $4$. So the sum of two squares has the form $4k$, $4k+1$ or $4k+2$, never $4k+3$ ! More generally if a polynomial equation with integer coefficients has no integer solution if you work «modulo $N$» that is you neglect all multiples of an integer $N$, then a fortiori it has no integer solution. By the Chinese Remainder Theorem, working modulo $N$ is the same as working modulo $p^r$ where $p$ runs through prime divisors of $N$ and $p^r$ is the highest power of $p$ dividing $N$. Now work modulo $p$, modulo $p^2$, modulo $p^3$, etc. You have invented the $p$-adic integers, which are, I claim, as real as the real numbers and (nearly) as useful!
I am a Number Theorist and $p$ is a prime number. The $p$-adic numbers are obtained by pushing to the limit a simple idea. Suppose that you want to know which integers are sums of two squares. If an integer $x$ is odd, its square has the form $8k+1$; if $x$ is even, its square is a multiple of $4$. So the sum of two squares has the form $4k$, $4k+1$ or $4k+2$, never $4k+3$ ! More generally if a polynomial equation with integer coefficients has no integer solution if you work «modulo $N$» that is you neglect all multiples of an integer $N$, then a fortiori it has no integer solution. By the Chinese Remainder Theorem, working modulo $N$ is the same as working modulo $p^r$ where $p$ runs through prime divisors of $N$ and $p^r$ is the highest power of $p$ dividing $N$. Now work modulo $p$, modulo $p^2$, modulo $p^3$, etc. You have invented the $p$-adic integers, which are, I claim, as real as the real numbers and (nearly) as useful!
2023年06月05日(月)
15:30-16:30 オンライン開催
Curtis T McMullen 氏 (Harvard University)
Billiards and Moduli Spaces (ENGLISH)
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZMkfu2grj4sE9ycW-1MmIQ-768hTpobQKAD
Curtis T McMullen 氏 (Harvard University)
Billiards and Moduli Spaces (ENGLISH)
[ 講演概要 ]
The moduli space M_g of compact Riemann surface of genus g has been studied from diverse mathematical viewpoints for more than a century.
In this talk, intended for a general audience, we will discuss moduli space from a dynamical perspective. We will present general rigidity results, provide a glimpse of the remarkable curves and surfaces in M_g discovered during the last two decades, and explain how these algebraic varieties are related to the dynamics of billiards in regular polygons, L-shaped tables and quadrilaterals.
A variety of open problems will be mentioned along the way.
[ 参考URL ]The moduli space M_g of compact Riemann surface of genus g has been studied from diverse mathematical viewpoints for more than a century.
In this talk, intended for a general audience, we will discuss moduli space from a dynamical perspective. We will present general rigidity results, provide a glimpse of the remarkable curves and surfaces in M_g discovered during the last two decades, and explain how these algebraic varieties are related to the dynamics of billiards in regular polygons, L-shaped tables and quadrilaterals.
A variety of open problems will be mentioned along the way.
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZMkfu2grj4sE9ycW-1MmIQ-768hTpobQKAD
2023年05月19日(金)
15:30-16:30 数理科学研究科棟(駒場) 大講義室号室
数理科学研究科所属以外の方は、https://forms.gle/n8fNfNyFSTtri1Hk8 から参加登録をお願いいたします。
増田 弘毅 氏 (東京大学大学院数理科学研究科)
局所安定型回帰モデリング (日本語)
数理科学研究科所属以外の方は、https://forms.gle/n8fNfNyFSTtri1Hk8 から参加登録をお願いいたします。
増田 弘毅 氏 (東京大学大学院数理科学研究科)
局所安定型回帰モデリング (日本語)
[ 講演概要 ]
固定期間で高頻度観測される確率過程モデルの推測問題では、非エルゴード的な構造が自然にあらわれる。モデルの特徴量が統計的に推定可能か否かは駆動ノイズの確率構造にともなって決まるが、それが非ガウス型の場合、起こり得る現象を一般的に記述することはむずかしい。本講演ではその辺の背景を踏まえ、局所安定レヴィ過程で駆動される非エルゴード的回帰モデリングに関する最近の結果を紹介する。明示的な非ガウス型擬似最尤推定量の構成、推定量の分布近似のほか、モデルの相対評価法の提案とその理論性質についても触れる。
固定期間で高頻度観測される確率過程モデルの推測問題では、非エルゴード的な構造が自然にあらわれる。モデルの特徴量が統計的に推定可能か否かは駆動ノイズの確率構造にともなって決まるが、それが非ガウス型の場合、起こり得る現象を一般的に記述することはむずかしい。本講演ではその辺の背景を踏まえ、局所安定レヴィ過程で駆動される非エルゴード的回帰モデリングに関する最近の結果を紹介する。明示的な非ガウス型擬似最尤推定量の構成、推定量の分布近似のほか、モデルの相対評価法の提案とその理論性質についても触れる。
2023年04月28日(金)
15:30-16:30 ハイブリッド開催
数理科学研究科所属以外の方は、オンラインでのご参加(参考URLから参加登録)をお願いいたします。
葉廣和夫 氏 (東京大学大学院数理科学研究科)
量子トポロジーについて (日本語)
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZIkc-Cvrz4oHNXj_kafJqhU6ZFWCABqgojM
数理科学研究科所属以外の方は、オンラインでのご参加(参考URLから参加登録)をお願いいたします。
葉廣和夫 氏 (東京大学大学院数理科学研究科)
量子トポロジーについて (日本語)
[ 講演概要 ]
私は結び目と3次元多様体の手術理論から研究を始めました。これは当時盛んに研究されていた有限型不変量と関係があり、有限型不変量の持つ情報をクラスパー手術というもので特徴づける結果を得ました。その後、整係数ホモロジー3球面の量子不変量、枠付き絡み目のKirby計算、底タングルの量子不変量、Le-Murakami-Ohtsuki不変量の関手化、3次元多様体の量子基本群と量子表現多様体、量子群の圏化のトレースなどについて研究してきました。これらの研究について振り返り、今後の展望についてもお話したいと思います。
[ 参考URL ]私は結び目と3次元多様体の手術理論から研究を始めました。これは当時盛んに研究されていた有限型不変量と関係があり、有限型不変量の持つ情報をクラスパー手術というもので特徴づける結果を得ました。その後、整係数ホモロジー3球面の量子不変量、枠付き絡み目のKirby計算、底タングルの量子不変量、Le-Murakami-Ohtsuki不変量の関手化、3次元多様体の量子基本群と量子表現多様体、量子群の圏化のトレースなどについて研究してきました。これらの研究について振り返り、今後の展望についてもお話したいと思います。
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZIkc-Cvrz4oHNXj_kafJqhU6ZFWCABqgojM
2023年03月13日(月)
13:00-17:00 ハイブリッド開催
オンライン参加の方は[参考URL]よりご登録下さい。対面参加希望の方は3/12 17時迄に次のフォームよりお申込み下さい(東大数理・数学科の方は申込不要)。https://forms.gle/q6aoqKUqrDhtCxuP8 (3/10更新)
金井雅彦 氏 (東京大学大学院数理科学研究科) 13:00-14:00
Mostow の剛性定理と,わたしのささやかな試みと,そして「とらぬタヌキ」たち (JAPANESE)
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZElcO2oqTgoG9a1JSawX0kFRMSFheEptcaA
稲葉寿 氏 (東京大学大学院数理科学研究科) 14:30-15:30
人口と感染症の数理40年―希望は果たされたか?― (JAPANESE)
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZIkceigrj4tEt0AydbnE8PVJmIS6xLanDAe
斎藤秀司 氏 (東京大学大学院数理科学研究科) 16:00-17:00
高次元類体論から新たなモチーフ理論まで (ENGLISH)
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZAqf-ioqz8jG9BWefiIf_zTJ1t7R7VG1beV
オンライン参加の方は[参考URL]よりご登録下さい。対面参加希望の方は3/12 17時迄に次のフォームよりお申込み下さい(東大数理・数学科の方は申込不要)。https://forms.gle/q6aoqKUqrDhtCxuP8 (3/10更新)
金井雅彦 氏 (東京大学大学院数理科学研究科) 13:00-14:00
Mostow の剛性定理と,わたしのささやかな試みと,そして「とらぬタヌキ」たち (JAPANESE)
[ 講演概要 ]
Mostow の剛性定理に出会ったのは博士課程の学生のころでした.その証明において共形幾何が重要な役割を果たしていたことに,当時微分幾何を学んでいたわたは何よりも強い感銘を受けました.さらに,解析やエルゴード理論も必要不可欠な役割を果たします.そんな大きさ・広さに魅了され,結局いままでそれに関わることに常に興味を惹かれ続けてきました.実現できたことはごくわずか,多くのもくろみはいまだそのまま残っています.そんな「とらぬタヌキ」たちについてもお話しできたらと考えています.
[ 参考URL ]Mostow の剛性定理に出会ったのは博士課程の学生のころでした.その証明において共形幾何が重要な役割を果たしていたことに,当時微分幾何を学んでいたわたは何よりも強い感銘を受けました.さらに,解析やエルゴード理論も必要不可欠な役割を果たします.そんな大きさ・広さに魅了され,結局いままでそれに関わることに常に興味を惹かれ続けてきました.実現できたことはごくわずか,多くのもくろみはいまだそのまま残っています.そんな「とらぬタヌキ」たちについてもお話しできたらと考えています.
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZElcO2oqTgoG9a1JSawX0kFRMSFheEptcaA
稲葉寿 氏 (東京大学大学院数理科学研究科) 14:30-15:30
人口と感染症の数理40年―希望は果たされたか?― (JAPANESE)
[ 講演概要 ]
日本に研究者のいない人口と感染症の数理モデルの研究をはじめて,いつのまにか40年たってしまいました.最後になって新型コロナパンデミックに遭遇することになったのも運命かと思っています.これまでの研究の動機と経緯,展望についてお話ししたいと思います.
[ 参考URL ]日本に研究者のいない人口と感染症の数理モデルの研究をはじめて,いつのまにか40年たってしまいました.最後になって新型コロナパンデミックに遭遇することになったのも運命かと思っています.これまでの研究の動機と経緯,展望についてお話ししたいと思います.
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZIkceigrj4tEt0AydbnE8PVJmIS6xLanDAe
斎藤秀司 氏 (東京大学大学院数理科学研究科) 16:00-17:00
高次元類体論から新たなモチーフ理論まで (ENGLISH)
[ 講演概要 ]
私の最初の研究は加藤和也先生と共同で行った「高次元類体論」です。もう40年も前のことです。古典的な類体論はフェルマーとガウスの偉業を源とし20世紀前半に高木貞治とEmil Artinにより完成された整数論の礎で,有限次代数体(有理数体の有限次拡大)の最大アーベル拡大のガロア群を,その体に内在的な情報(例えばイデアル類群)のみを用いて統制する理論です。類体論の高次元化とはこの理論を,有限生成体 (有理数体あるいは有限体上高い超越次数を持つ関数体)の場合へ拡張する理論です。これはスキーム論を用いて数論幾何学的問題として定式化されます。
この講演では、まず大学生でもわかる類体論の復習から始め、高次元類体論がどのように定式化されるかを専門外の方にもわかりやすく説明します。さらに2016年にKerz氏と共同で行った加藤-斎藤の高次元類体論の改良に簡単に触れ、それに触発されて最近進展している新たなモチーフ理論の一端に触れます。特にこれまでモチーフ理論とは全く交流がなかった分岐理論(斎藤毅先生が世界的なリーダー)との関係について述べます。
[ 参考URL ]私の最初の研究は加藤和也先生と共同で行った「高次元類体論」です。もう40年も前のことです。古典的な類体論はフェルマーとガウスの偉業を源とし20世紀前半に高木貞治とEmil Artinにより完成された整数論の礎で,有限次代数体(有理数体の有限次拡大)の最大アーベル拡大のガロア群を,その体に内在的な情報(例えばイデアル類群)のみを用いて統制する理論です。類体論の高次元化とはこの理論を,有限生成体 (有理数体あるいは有限体上高い超越次数を持つ関数体)の場合へ拡張する理論です。これはスキーム論を用いて数論幾何学的問題として定式化されます。
この講演では、まず大学生でもわかる類体論の復習から始め、高次元類体論がどのように定式化されるかを専門外の方にもわかりやすく説明します。さらに2016年にKerz氏と共同で行った加藤-斎藤の高次元類体論の改良に簡単に触れ、それに触発されて最近進展している新たなモチーフ理論の一端に触れます。特にこれまでモチーフ理論とは全く交流がなかった分岐理論(斎藤毅先生が世界的なリーダー)との関係について述べます。
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZAqf-ioqz8jG9BWefiIf_zTJ1t7R7VG1beV
2023年01月20日(金)
15:30-16:30 ハイブリッド開催
数理科学研究科所属以外の方は、オンラインでのご参加(参考URLから参加登録)をお願いいたします。
Mikhail Bershtein 氏 (HSE大学, Skoltech)
Kyiv formula and its applications (ENGLISH)
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZUrduioqjouG9wBfhl35VPxN_K92oa1wB4P
数理科学研究科所属以外の方は、オンラインでのご参加(参考URLから参加登録)をお願いいたします。
Mikhail Bershtein 氏 (HSE大学, Skoltech)
Kyiv formula and its applications (ENGLISH)
[ 講演概要 ]
The Kyiv formula gives the generic tau function of Painleve' equation (and more generally isomonodromy deformation equations) in terms of conformal blocks or Nekrasov partition function. I will explain the statement, examples and different approaches to the proof. If time permits, I will discuss some applications of this formula.
[ 参考URL ]The Kyiv formula gives the generic tau function of Painleve' equation (and more generally isomonodromy deformation equations) in terms of conformal blocks or Nekrasov partition function. I will explain the statement, examples and different approaches to the proof. If time permits, I will discuss some applications of this formula.
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZUrduioqjouG9wBfhl35VPxN_K92oa1wB4P
2022年11月25日(金)
15:30-16:30 ハイブリッド開催
数理科学研究科所属以外の方は、オンラインでのご参加(参考URLから参加登録)をお願いいたします。
Shane Kelly 氏 (東京大学大学院数理科学研究科)
Motivic cohomology: theory and applications
(ENGLISH)
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZErcumupjouGdXpOac2j3rcFFN545yAuoSb
数理科学研究科所属以外の方は、オンラインでのご参加(参考URLから参加登録)をお願いいたします。
Shane Kelly 氏 (東京大学大学院数理科学研究科)
Motivic cohomology: theory and applications
(ENGLISH)
[ 講演概要 ]
The motive of a smooth projective algebraic variety was originally envisaged by Grothendieck in the 60's as a generalisation of the Jacobian of a curve, and formed part of a strategy to prove the Weil conjectures. In the 90s, following conjectures of Beilinson on special values of L-functions, Voevodsky, together with Friedlander, Morel, Suslin, and others, generalised this to the A^1-homotopy type of a general algebraic variety. This A^1-homotopy theory lead to a proof of the Block-Kato conjecture (and a Fields Medal for Voevodsky).
One consequence of making things A^1-invariant is that unipotent groups (as well as wild ramification, irregular singularities, nilpotents including higher nilpotents in the sense of derived algebraic geometry, certain parts of K-theory, etc) become invisible and the last decade has seen a number of candidates for a non-A^1-invariant theory.
In this talk I will give an introduction to the classical theory and discuss some current and future research directions.
[ 参考URL ]The motive of a smooth projective algebraic variety was originally envisaged by Grothendieck in the 60's as a generalisation of the Jacobian of a curve, and formed part of a strategy to prove the Weil conjectures. In the 90s, following conjectures of Beilinson on special values of L-functions, Voevodsky, together with Friedlander, Morel, Suslin, and others, generalised this to the A^1-homotopy type of a general algebraic variety. This A^1-homotopy theory lead to a proof of the Block-Kato conjecture (and a Fields Medal for Voevodsky).
One consequence of making things A^1-invariant is that unipotent groups (as well as wild ramification, irregular singularities, nilpotents including higher nilpotents in the sense of derived algebraic geometry, certain parts of K-theory, etc) become invisible and the last decade has seen a number of candidates for a non-A^1-invariant theory.
In this talk I will give an introduction to the classical theory and discuss some current and future research directions.
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZErcumupjouGdXpOac2j3rcFFN545yAuoSb
2022年10月21日(金)
15:30-16:30 数理科学研究科棟(駒場) オンライン 号室
参加を希望される方は、談話会・数理科学講演会ウェブページ [参考URL] から参加登録をお願い申し上げます。
Neal Bez 氏 (埼玉大学 理工学研究科)
The Fourier restriction conjecture (English)
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZcudO-srjMvHtUzVhQQZF9JhDSvy-Oxu2j2
参加を希望される方は、談話会・数理科学講演会ウェブページ [参考URL] から参加登録をお願い申し上げます。
Neal Bez 氏 (埼玉大学 理工学研究科)
The Fourier restriction conjecture (English)
[ 講演概要 ]
The Fourier restriction conjecture is a central problem in modern harmonic analysis which traces back to deep observations of Elias M. Stein in the 1960s. The conjecture enjoys some remarkable connections to areas such as geometric measure theory, PDE, and number theory. In this talk, I will introduce the conjecture and discuss a few of these connections.
[ 参考URL ]The Fourier restriction conjecture is a central problem in modern harmonic analysis which traces back to deep observations of Elias M. Stein in the 1960s. The conjecture enjoys some remarkable connections to areas such as geometric measure theory, PDE, and number theory. In this talk, I will introduce the conjecture and discuss a few of these connections.
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZcudO-srjMvHtUzVhQQZF9JhDSvy-Oxu2j2
2022年07月22日(金)
15:30-16:30 ハイブリッド開催
数理科学研究科所属以外の方は、オンラインでのご参加(参考URLから参加登録)をお願いいたします。
高田了 氏 (東京大学大学院数理科学研究科)
回転成層流体に現れる分散性と異方性の数学解析 (JAPANESE)
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZYtf-iorDIiGNXBzovQXlHZjH4iXVS6QB4t
数理科学研究科所属以外の方は、オンラインでのご参加(参考URLから参加登録)をお願いいたします。
高田了 氏 (東京大学大学院数理科学研究科)
回転成層流体に現れる分散性と異方性の数学解析 (JAPANESE)
[ 講演概要 ]
回転および安定成層の影響を考慮した非圧縮性流体方程式を考察する.回転と安定成層は流れを2次元化する分散性と異方性を有することが知られている.本講演では,対応する線形時間発展作用素に対する時間減衰評価,および非粘性 Boussinesq 方程式において浮力周波数を無限大とする特異極限問題に関して,近年得られた研究成果の一部を紹介する.
[ 参考URL ]回転および安定成層の影響を考慮した非圧縮性流体方程式を考察する.回転と安定成層は流れを2次元化する分散性と異方性を有することが知られている.本講演では,対応する線形時間発展作用素に対する時間減衰評価,および非粘性 Boussinesq 方程式において浮力周波数を無限大とする特異極限問題に関して,近年得られた研究成果の一部を紹介する.
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZYtf-iorDIiGNXBzovQXlHZjH4iXVS6QB4t
2022年06月24日(金)
15:30-16:30 ハイブリッド開催
数理科学研究科所属以外の方は、オンラインでのご参加(参考URLから参加登録)をお願いいたします。
大島芳樹 氏 (東京大学大学院数理科学研究科)
実簡約Lie群のユニタリ表現と軌道の方法 (JAPANESE)
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZIldu-vqD8tHtE0Vyl29MXHFfzp2NcC0MzR
数理科学研究科所属以外の方は、オンラインでのご参加(参考URLから参加登録)をお願いいたします。
大島芳樹 氏 (東京大学大学院数理科学研究科)
実簡約Lie群のユニタリ表現と軌道の方法 (JAPANESE)
[ 講演概要 ]
軌道の方法とは,Lie群のユニタリ表現を余随伴作用と関連づけて理解する試みである.冪単Lie群の場合には既約ユニタリ表現と余随伴軌道との間に1対1対応があり,また簡約Lie群の場合にも一方が他方の良い近似になることが知られている.この講演では軌道の方法の観点から,簡約Lie群について表現の基本的操作である誘導や制限に関する結果をお話しする.
[ 参考URL ]軌道の方法とは,Lie群のユニタリ表現を余随伴作用と関連づけて理解する試みである.冪単Lie群の場合には既約ユニタリ表現と余随伴軌道との間に1対1対応があり,また簡約Lie群の場合にも一方が他方の良い近似になることが知られている.この講演では軌道の方法の観点から,簡約Lie群について表現の基本的操作である誘導や制限に関する結果をお話しする.
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZIldu-vqD8tHtE0Vyl29MXHFfzp2NcC0MzR
2022年05月20日(金)
15:30-16:30 ハイブリッド開催
5月20日に予定されていた談話会は,ご講演者のご都合により延期となりました.
高田了 氏 (東京大学大学院数理科学研究科)
回転成層流体に現れる分散性と異方性の数学解析 (JAPANESE)
5月20日に予定されていた談話会は,ご講演者のご都合により延期となりました.
高田了 氏 (東京大学大学院数理科学研究科)
回転成層流体に現れる分散性と異方性の数学解析 (JAPANESE)
[ 講演概要 ]
回転および安定成層の影響を考慮した非圧縮性流体方程式を考察する.回転と安定成層は流れを2次元化する分散性と異方性を有することが知られている.本講演では,対応する線形時間発展作用素に対する時間減衰評価,および非粘性 Boussinesq 方程式において浮力周波数を無限大とする特異極限問題に関して,近年得られた研究成果の一部を紹介する.
回転および安定成層の影響を考慮した非圧縮性流体方程式を考察する.回転と安定成層は流れを2次元化する分散性と異方性を有することが知られている.本講演では,対応する線形時間発展作用素に対する時間減衰評価,および非粘性 Boussinesq 方程式において浮力周波数を無限大とする特異極限問題に関して,近年得られた研究成果の一部を紹介する.
2022年04月22日(金)
15:30-16:30 オンライン開催
参加を希望される方は、談話会・数理科学講演会ウェブページ [参考URL] から参加登録をお願い申し上げます。
戸田幸伸 氏 (東京大学 カブリ数物連携宇宙研究機構)
曲線の数え上げ理論と圏論化 (JAPANESE)
参加を希望される方は、談話会・数理科学講演会ウェブページ [参考URL] から参加登録をお願い申し上げます。
戸田幸伸 氏 (東京大学 カブリ数物連携宇宙研究機構)
曲線の数え上げ理論と圏論化 (JAPANESE)
[ 講演概要 ]
3次元カラビヤウ多様体上の曲線の数え上げ理論には Gromov-Witten 不変量、Donaldson-Thomas 不変量、Pandharipande-Thomas 不変量、Gopakumar-Vafa 不変量など様々な理論が存在する。これらは互いに関連していると予想されているが、その多くは今だ未解決である。本講演ではこれら曲線の数え上げ理論の研究に関する最近の進展について概説する。時間が許せば、講演者が近年取り組んでいる数え上げ理論の圏論化についても解説する。
3次元カラビヤウ多様体上の曲線の数え上げ理論には Gromov-Witten 不変量、Donaldson-Thomas 不変量、Pandharipande-Thomas 不変量、Gopakumar-Vafa 不変量など様々な理論が存在する。これらは互いに関連していると予想されているが、その多くは今だ未解決である。本講演ではこれら曲線の数え上げ理論の研究に関する最近の進展について概説する。時間が許せば、講演者が近年取り組んでいる数え上げ理論の圏論化についても解説する。
2022年03月26日(土)
16:00-17:00 オンライン開催
参加登録を締め切りました.3月17日:金井先生の講演は体調不良により延期(または中止)させて頂きます.
金井雅彦 氏 (東京大学大学院数理科学研究科) -
時弘哲治 氏 (東京大学大学院数理科学研究科) 16:00-17:00
血管新生の数理モデル--応用数学雑感
参加登録を締め切りました.3月17日:金井先生の講演は体調不良により延期(または中止)させて頂きます.
金井雅彦 氏 (東京大学大学院数理科学研究科) -
時弘哲治 氏 (東京大学大学院数理科学研究科) 16:00-17:00
血管新生の数理モデル--応用数学雑感
[ 講演概要 ]
私が物理工学分野から徐々に数理科学分野の研究に移っていった経緯と,最近研究している血管新生の数理モデルの解説を通じて,応用数学の一面をお話ししたいと思います.
私が物理工学分野から徐々に数理科学分野の研究に移っていった経緯と,最近研究している血管新生の数理モデルの解説を通じて,応用数学の一面をお話ししたいと思います.
2022年01月21日(金)
15:30-16:30 オンライン開催
参加登録を締め切りました(1月21日12:00)。
緒方 芳子 氏 (東京大学大学院数理科学研究科)
量子スピン系における基底状態にギャップを持ったハミルトニアンの分類問題について (JAPANESE)
参加登録を締め切りました(1月21日12:00)。
緒方 芳子 氏 (東京大学大学院数理科学研究科)
量子スピン系における基底状態にギャップを持ったハミルトニアンの分類問題について (JAPANESE)
[ 講演概要 ]
量子系において時間発展はハミルトニアンという自己共役作用素によって与えられる.
量子スピン系と呼ばれる量子系において, 物理的に要請される局所性を持ったハミルトニアンで,
最低固有値との間にスペクトルギャップをもつものの分類問題が近年広く研究されている.
本講演では作用素環による量子統計力学の枠組みの中でのこの分類問題の研究についてお話ししたい.
量子系において時間発展はハミルトニアンという自己共役作用素によって与えられる.
量子スピン系と呼ばれる量子系において, 物理的に要請される局所性を持ったハミルトニアンで,
最低固有値との間にスペクトルギャップをもつものの分類問題が近年広く研究されている.
本講演では作用素環による量子統計力学の枠組みの中でのこの分類問題の研究についてお話ししたい.
2021年12月17日(金)
15:30-16:30 オンライン開催
参加登録を締め切りました(12月17日12:00)。
Jun-Muk Hwang 氏 (Center for Complex Geometry, IBS, Korea)
Growth vectors of distributions and lines on projective hypersurfaces (ENGLISH)
参加登録を締め切りました(12月17日12:00)。
Jun-Muk Hwang 氏 (Center for Complex Geometry, IBS, Korea)
Growth vectors of distributions and lines on projective hypersurfaces (ENGLISH)
[ 講演概要 ]
For a distribution on a manifold, its growth vector is a finite sequence of integers measuring the dimensions of the directions spanned by successive Lie brackets of local vector fields belonging to the distribution. The growth vector is the most basic invariant of a distribution, but it is sometimes hard to compute. As an example, we discuss natural distributions on the spaces of lines covering hypersurfaces of low degrees in the complex projective space. We explain the ideas in a joint work with Qifeng Li where the growth vector is determined for lines on a general hypersurface of degree 4 and dimension 5.
For a distribution on a manifold, its growth vector is a finite sequence of integers measuring the dimensions of the directions spanned by successive Lie brackets of local vector fields belonging to the distribution. The growth vector is the most basic invariant of a distribution, but it is sometimes hard to compute. As an example, we discuss natural distributions on the spaces of lines covering hypersurfaces of low degrees in the complex projective space. We explain the ideas in a joint work with Qifeng Li where the growth vector is determined for lines on a general hypersurface of degree 4 and dimension 5.
2021年11月26日(金)
15:30-16:30 オンライン開催
参加登録を締め切りました(11月26日12:00)。
Gang Tian 氏 (BICMR, Peking University)
Ricci flow on Fano manifolds (ENGLISH)
参加登録を締め切りました(11月26日12:00)。
Gang Tian 氏 (BICMR, Peking University)
Ricci flow on Fano manifolds (ENGLISH)
[ 講演概要 ]
Ricci flow was introduced by Hamilton in early 80s. It preserves the Kahlerian structure and has found many applications in Kahler geometry. In this expository talk, I will focus on Ricci flow on Fano manifolds. I will first survey some results in recent years, then I will discuss my joint work with Li and Zhu. I will also discuss the connection between the long time behavior of Ricci flow and some algebraic geometric problems for Fano manifolds.
Ricci flow was introduced by Hamilton in early 80s. It preserves the Kahlerian structure and has found many applications in Kahler geometry. In this expository talk, I will focus on Ricci flow on Fano manifolds. I will first survey some results in recent years, then I will discuss my joint work with Li and Zhu. I will also discuss the connection between the long time behavior of Ricci flow and some algebraic geometric problems for Fano manifolds.
2021年10月29日(金)
15:30-16:30 オンライン開催
参加登録を締め切りました(10月29日12:00)
柏原崇人 氏 (東京大学大学院数理科学研究科)
非定常な摩擦型・Signorini型境界条件問題の適切性について (JAPANESE)
参加登録を締め切りました(10月29日12:00)
柏原崇人 氏 (東京大学大学院数理科学研究科)
非定常な摩擦型・Signorini型境界条件問題の適切性について (JAPANESE)
[ 講演概要 ]
摩擦型およびSignorini型条件は,流体や弾性体の問題に現れる非線形境界条件の一種として知られている.時間に依存しない定常問題の場合,これらは楕円型変分不等式によって定式化され,偏微分方程式の解析および数値解析が多くなされてきた.一方で,非定常問題の場合は,解の存在・一意性といった偏微分方程式レベルでの基本的な解析がそれほど進んでおらず,先行研究も少ないように思われる.本講演の前半では,摩擦型型境界条件を課した非定常Navier-Stokes方程式に対して,L^2最大正則性のクラスに属する強解の構成法を紹介する.この手の研究で頻繁に使われるGalerkin法でなく,時間離散化法(Rothe法)を用いることがポイントである.後半では,ある修正を加えたSignorini型境界条件のもとで,線形弾性体方程式の解の存在と一意性が得られることを述べる.
摩擦型およびSignorini型条件は,流体や弾性体の問題に現れる非線形境界条件の一種として知られている.時間に依存しない定常問題の場合,これらは楕円型変分不等式によって定式化され,偏微分方程式の解析および数値解析が多くなされてきた.一方で,非定常問題の場合は,解の存在・一意性といった偏微分方程式レベルでの基本的な解析がそれほど進んでおらず,先行研究も少ないように思われる.本講演の前半では,摩擦型型境界条件を課した非定常Navier-Stokes方程式に対して,L^2最大正則性のクラスに属する強解の構成法を紹介する.この手の研究で頻繁に使われるGalerkin法でなく,時間離散化法(Rothe法)を用いることがポイントである.後半では,ある修正を加えたSignorini型境界条件のもとで,線形弾性体方程式の解の存在と一意性が得られることを述べる.
2021年10月01日(金)
14:30-17:00 オンライン開催
参加登録を締め切りました(10月1日12:00)。
小島 定吉 氏 (早稲田大学理工学術院) 14:30-15:30
コンピュータ支援数学の研究倫理 (JAPANESE)
数学・物理分野の女性が少ないのはなぜか (JAPANESE)
参加登録を締め切りました(10月1日12:00)。
小島 定吉 氏 (早稲田大学理工学術院) 14:30-15:30
コンピュータ支援数学の研究倫理 (JAPANESE)
[ 講演概要 ]
4色問題の解決以来,情報技術の著しい進展を背景に,コンピュータ支援による数学研究の裾野が広がっている.その中で,数学研究倫理を考える際の基本である「証明とは何か?」が問われて続けている.本講演では,この問いに対する今日までの議論を紹介し,将来の見通しについて論じたい.
横山 広美 氏 (カブリ数物連携宇宙研究機構) 16:00-17:004色問題の解決以来,情報技術の著しい進展を背景に,コンピュータ支援による数学研究の裾野が広がっている.その中で,数学研究倫理を考える際の基本である「証明とは何か?」が問われて続けている.本講演では,この問いに対する今日までの議論を紹介し,将来の見通しについて論じたい.
数学・物理分野の女性が少ないのはなぜか (JAPANESE)
[ 講演概要 ]
日本では理学系の中では数学、物理などの分野で女子学生の割合が低い。アメリカの教育心理学のグループは、大きく分けて3つの要因があると論じている。我々はこのモデルを拡張し、ジェンダー不平等の社会風土の要因が日本とイングランドで数学物理の男性イメージに影響していることを確認した。社会と科学をテーマにする、科学技術社会論の学際研究を紹介する。
日本では理学系の中では数学、物理などの分野で女子学生の割合が低い。アメリカの教育心理学のグループは、大きく分けて3つの要因があると論じている。我々はこのモデルを拡張し、ジェンダー不平等の社会風土の要因が日本とイングランドで数学物理の男性イメージに影響していることを確認した。社会と科学をテーマにする、科学技術社会論の学際研究を紹介する。
2021年07月30日(金)
15:30-16:30 オンライン開催
参加登録を締め切りました(7月30日12:00)。
望月 拓郎 氏 (京都大学数理解析研究所)
戸田方程式と調和束 (JAPANESE)
参加登録を締め切りました(7月30日12:00)。
望月 拓郎 氏 (京都大学数理解析研究所)
戸田方程式と調和束 (JAPANESE)
[ 講演概要 ]
$2$次元戸田方程式は、曲面論、可積分系、$tt^{\ast}$-幾何学、非可換ホッジ理論など、さまざまな題材との関係から興味深い研究がなされてきました。本講演では、Qiongling Liさんとの共同研究に基づいて、調和束の観点から戸田方程式の解の分類について概説します。
戸田方程式はリーマン面上の$r$-微分に対して定義されます。コンパクトリーマン面上の有理型な$r$-微分の場合には、調和束の分類理論(小林-ヒッチン対応)を用いて戸田方程式の解を分類できます。一般の$r$-微分の場合にはそのような議論を適用できないのですが、劣調和関数に関する古典的な結果を調和束の理論と組み合わせることで、ある種の超越的な孤立特異点を持つような$r$-微分の場合にも戸田方程式の解を分類できます。また、より一般の$r$-微分の場合も含めて、"完備"という漸近条件を課すと、解の存在と一意性が得られます。このような結果について紹介する予定です。
$2$次元戸田方程式は、曲面論、可積分系、$tt^{\ast}$-幾何学、非可換ホッジ理論など、さまざまな題材との関係から興味深い研究がなされてきました。本講演では、Qiongling Liさんとの共同研究に基づいて、調和束の観点から戸田方程式の解の分類について概説します。
戸田方程式はリーマン面上の$r$-微分に対して定義されます。コンパクトリーマン面上の有理型な$r$-微分の場合には、調和束の分類理論(小林-ヒッチン対応)を用いて戸田方程式の解を分類できます。一般の$r$-微分の場合にはそのような議論を適用できないのですが、劣調和関数に関する古典的な結果を調和束の理論と組み合わせることで、ある種の超越的な孤立特異点を持つような$r$-微分の場合にも戸田方程式の解を分類できます。また、より一般の$r$-微分の場合も含めて、"完備"という漸近条件を課すと、解の存在と一意性が得られます。このような結果について紹介する予定です。
2021年06月25日(金)
15:30-16:30 オンライン開催
参加登録を締め切りました(6月25日12:00)。
岡本 久 氏 (学習院大学理学部)
プラントル・バチェラー理論のコルモゴロフ問題への応用 (JAPANESE)
参加登録を締め切りました(6月25日12:00)。
岡本 久 氏 (学習院大学理学部)
プラントル・バチェラー理論のコルモゴロフ問題への応用 (JAPANESE)
[ 講演概要 ]
この談話会では、流体力学についてお話しします。まず、ナヴィエ・ストークス方程式の簡単な歴史を紹介し、それが数学や物理学においてどういう役割を果たしてきたか、振り返って見ます。そして、2次元と3次元の質的な違いを紹介し、2次元に特有の問題としてコルモゴロフの問題について述べます。コルモゴロフの問題は数値的にはよく調べられるようになり、いろんな現象が見つかりました。中には数学的に証明可能と思える命題もありますが、漠然とした言い方しかできないものも多いです。こうした数値実験の紹介を行い、最後に、Prandtl-Batchelor理論を紹介してそれを使って数値実験の結果(の一部)を数学的に説明することを試みます。最後に、open problem をいくつか紹介して談話会らしく終わる予定です。
この談話会では、流体力学についてお話しします。まず、ナヴィエ・ストークス方程式の簡単な歴史を紹介し、それが数学や物理学においてどういう役割を果たしてきたか、振り返って見ます。そして、2次元と3次元の質的な違いを紹介し、2次元に特有の問題としてコルモゴロフの問題について述べます。コルモゴロフの問題は数値的にはよく調べられるようになり、いろんな現象が見つかりました。中には数学的に証明可能と思える命題もありますが、漠然とした言い方しかできないものも多いです。こうした数値実験の紹介を行い、最後に、Prandtl-Batchelor理論を紹介してそれを使って数値実験の結果(の一部)を数学的に説明することを試みます。最後に、open problem をいくつか紹介して談話会らしく終わる予定です。
2021年05月28日(金)
15:30-16:30 オンライン開催
参加登録を締め切りました(5月28日12:00)。
立川 裕二 氏 (カブリ数物連携宇宙研究機構)
Physics and algebraic topology (ENGLISH)
参加登録を締め切りました(5月28日12:00)。
立川 裕二 氏 (カブリ数物連携宇宙研究機構)
Physics and algebraic topology (ENGLISH)
[ 講演概要 ]
Although we often talk about the "unreasonable effectiveness of mathematics in the natural sciences", there are great disparities in the relevance of various subbranches of mathematics to individual fields of natural sciences. Algebraic topology was a subject whose influence to physics remained relatively minor for a long time, but in the last several years, theoretical physicists started to appreciate the effectiveness of algebraic topology more seriously. For example, there is now a general consensus that the classification of the symmetry-protected topological phases, which form a class of phases of matter with a certain particularly simple property, is done in terms of generalized cohomology theories.
In this talk, I would like to provide a historical overview of the use of algebraic topology in physics, emphasizing a few highlights along the way. If the time allows, I would also like to report my struggle to understand the anomaly of heterotic strings, using the theory of topological modular forms.
Although we often talk about the "unreasonable effectiveness of mathematics in the natural sciences", there are great disparities in the relevance of various subbranches of mathematics to individual fields of natural sciences. Algebraic topology was a subject whose influence to physics remained relatively minor for a long time, but in the last several years, theoretical physicists started to appreciate the effectiveness of algebraic topology more seriously. For example, there is now a general consensus that the classification of the symmetry-protected topological phases, which form a class of phases of matter with a certain particularly simple property, is done in terms of generalized cohomology theories.
In this talk, I would like to provide a historical overview of the use of algebraic topology in physics, emphasizing a few highlights along the way. If the time allows, I would also like to report my struggle to understand the anomaly of heterotic strings, using the theory of topological modular forms.
2021年04月30日(金)
15:30-16:30 オンライン開催
参加登録を締め切りました(4月30日12:00)。
石井 志保子 氏 (東京大学)
Uniform bound of the number of weighted blow-ups to compute the minimal log discrepancy for smooth 3-folds (Talk in Japanese, Slide in English)
参加登録を締め切りました(4月30日12:00)。
石井 志保子 氏 (東京大学)
Uniform bound of the number of weighted blow-ups to compute the minimal log discrepancy for smooth 3-folds (Talk in Japanese, Slide in English)
[ 講演概要 ]
In the talk I will show that the minimal log discrepancy of every pair consisting of a smooth 3-fold and a "general" real ideal is computed by the divisor obtained by at most two weighted blow ups. Our proof suggests the following conjecture:
Every pair consisting of a smooth N-fold and a "general" real ideal is computed by a divisor obtained by at most N-1 weighted blow ups.
This is regarded as a weighted blow up version of Mustata-Nakamura's conjecture. The condition "general" is slightly weakened from the version presented in ZAG Seminar.
In the talk I will show that the minimal log discrepancy of every pair consisting of a smooth 3-fold and a "general" real ideal is computed by the divisor obtained by at most two weighted blow ups. Our proof suggests the following conjecture:
Every pair consisting of a smooth N-fold and a "general" real ideal is computed by a divisor obtained by at most N-1 weighted blow ups.
This is regarded as a weighted blow up version of Mustata-Nakamura's conjecture. The condition "general" is slightly weakened from the version presented in ZAG Seminar.
2021年03月19日(金)
15:00-17:30 オンライン開催
定員500名に達したので、登録を締め切りました。(2021年3月18日14時)
儀我 美一 氏 (東京大学大学院数理科学研究科) 15:00-16:00
微分方程式で表現される粘性や拡散の効果 (JAPANESE)
高次圏におけるモノドロミー表現と反復積分 (JAPANESE)
定員500名に達したので、登録を締め切りました。(2021年3月18日14時)
儀我 美一 氏 (東京大学大学院数理科学研究科) 15:00-16:00
微分方程式で表現される粘性や拡散の効果 (JAPANESE)
[ 講演概要 ]
微分方程式は、科学や技術の諸現象を記述するために広く用いられています。粘性のある流体の運動を記述するナヴィエ・ストークス方程式や、拡散現象を記述する拡散方程式など、さまざまな例があります。また近年、微分幾何学で注目されている平均曲率流方程式は、もともとは金属の結晶表面(粒界)の形状変化を記述するために導入された拡散型の微分方程式です。粘性や拡散からは状況を平滑化(スムージング)する効果が想像されますが、一方で液滴がちぎれるような特異点が生じる場合もあります。このような現象を微分方程式で捉えるためには、微分できない関数を微分方程式の解とみなす必要があります。また、画像からノイズを除去するために用いられる全変動流型方程式のような特異拡散方程式については、何をもって解とすればよいかは自明ではありません。
本講演では、方程式の解をどのように定義したらよいかという問題を含めて、多様な拡散効果の扱い方を、講演者が携わってきた数学解析を中心に、その考え方を概説します。さらに、結晶成長分野、画像処理分野、さらにデータサイエンス分野への応用について触れます。
河野 俊丈 氏 (明治大学総合数理学部・東京大学大学院数理科学研究科) 16:30-17:30微分方程式は、科学や技術の諸現象を記述するために広く用いられています。粘性のある流体の運動を記述するナヴィエ・ストークス方程式や、拡散現象を記述する拡散方程式など、さまざまな例があります。また近年、微分幾何学で注目されている平均曲率流方程式は、もともとは金属の結晶表面(粒界)の形状変化を記述するために導入された拡散型の微分方程式です。粘性や拡散からは状況を平滑化(スムージング)する効果が想像されますが、一方で液滴がちぎれるような特異点が生じる場合もあります。このような現象を微分方程式で捉えるためには、微分できない関数を微分方程式の解とみなす必要があります。また、画像からノイズを除去するために用いられる全変動流型方程式のような特異拡散方程式については、何をもって解とすればよいかは自明ではありません。
本講演では、方程式の解をどのように定義したらよいかという問題を含めて、多様な拡散効果の扱い方を、講演者が携わってきた数学解析を中心に、その考え方を概説します。さらに、結晶成長分野、画像処理分野、さらにデータサイエンス分野への応用について触れます。
高次圏におけるモノドロミー表現と反復積分 (JAPANESE)
[ 講演概要 ]
1980年代半ばのJones多項式の発見以降,結び目と3次元多様体の位相不変量の研究に関する新たな手法が発展し,位相幾何学のみならず,量子群の表現論,共形場理論,可解格子模型などの数理物理の分野,数論におけるガロア表現など広範な領域と関わって発展してきた.KZ方程式のモノドロミー表現の量子群による対称性は,この分野の発展において重要な役割を果たしている.講演者がこのような研究に関わってきた動機の一つは,基本群を微分形式の立場から理解するということがあり,その手法の一つとしてK. T. Chenによる反復積分の手法があげられる.本講演では,Chenのホモロジー接続の手法によってモノドロミー表現を高次圏に拡張して,組みひもの間のコボルディズムの圏の表現などに応用することについて述べる.
1980年代半ばのJones多項式の発見以降,結び目と3次元多様体の位相不変量の研究に関する新たな手法が発展し,位相幾何学のみならず,量子群の表現論,共形場理論,可解格子模型などの数理物理の分野,数論におけるガロア表現など広範な領域と関わって発展してきた.KZ方程式のモノドロミー表現の量子群による対称性は,この分野の発展において重要な役割を果たしている.講演者がこのような研究に関わってきた動機の一つは,基本群を微分形式の立場から理解するということがあり,その手法の一つとしてK. T. Chenによる反復積分の手法があげられる.本講演では,Chenのホモロジー接続の手法によってモノドロミー表現を高次圏に拡張して,組みひもの間のコボルディズムの圏の表現などに応用することについて述べる.