談話会・数理科学講演会

過去の記録 ~03/28次回の予定今後の予定 03/29~

担当者 阿部紀行、岩木耕平、河澄響矢(委員長)、小池祐太
セミナーURL https://www.ms.u-tokyo.ac.jp/seminar/colloquium/index.html

過去の記録

2019年11月08日(金)

15:30-16:30   数理科学研究科棟(駒場) 056号室
斎藤秀司 氏 (東大数理)
モチーフ理論と分岐理論への応用 (日本語)
[ 講演概要 ]
モチーフ理論とは,代数多様体の普遍的コホモロジー理論の構成を目的とする理論である.
すでに1970年代にGrothendieckがさまざまなコホモロジー理論の背後に潜むものとしてその存在を予見し,1980年にBeilinsonがそれを正確に定式化し予想として提出した.
それ以来、モチーフ理論は哲学的指導原理として多くの優れた研究を導びきつつ発展してきた.
最も大きな進展は、今世紀初頭にVoevodskyが構成した特異点を持たない多様体にたいしては望まれた性質を持つモチーフ理論である(彼はその応用としてBloch-加藤予想を解決しフィールズ賞を受賞している).
しかし一般の場合のモチーフ理論の構成(Beilinson予想)は未解決である.
本講演では、Voevodskyの理論を拡張することによりBeilinson予想の解決に向けた
最近の進展を解説し、その応用として、加藤和也氏と斎藤毅氏たちが牽引する分岐理論を新しい視点から再構成し一般化する試みを紹介したい.

2019年10月25日(金)

15:30-16:30   数理科学研究科棟(駒場) 123号室
Yves Benoist 氏 ( CNRS, Paris-Sud)
Arithmeticity of discrete subgroups (英語)
[ 講演概要 ]
By a theorem of Borel and Harish-Chandra,
an arithmetic group in a semisimple Lie group is a lattice.
Conversely, by a celebrated theorem of Margulis,
in a higher rank semisimple Lie group G
any irreducible lattice is an arithmetic group.

The aim of this lecture is to survey an
arithmeticity criterium for discrete subgroups
which are not assumed to be lattices.
This criterium, obtained with Miquel,
generalizes works of Selberg and Hee Oh
and solves a conjecture of Margulis. It says:
a discrete irreducible Zariski-dense subgroup
of G that intersects cocompactly at least one
horospherical subgroup of G is an arithmetic group.

2019年06月28日(金)

15:30-16:30   数理科学研究科棟(駒場) 056号室
木田良才 氏 (東京大学数理科学研究科)
軌道同値関係への誘い
[ 講演概要 ]
測度空間への群作用に対し,作用の軌道を同値類とする同値関係が得られる.このような軌道同値関係の研究は,古くはフォンノイマン環の研究に動機付けられ,そのため,従順性を対象とするものが多かった.現在では,非従順な対象の研究も盛んである.例えば,非従順性と自由部分群の存在の関係を問うフォンノイマンの問題が,軌道同値関係の枠組みでは(群の場合と違って)肯定的に解決され,驚くべきことに,そのアイデアはパーコレーションの理論に基づいている(Gaboriau-Lyons).講演では,これらを概観した後,講演者が近年取り組んでいる内部従順性にまつわる研究を紹介したい.

2019年05月24日(金)

15:30-16:30   数理科学研究科棟(駒場) 002号室
岡本龍明 氏 (NTT)
「ポスト量子」暗号と格子暗号 (日本語)
[ 講演概要 ]
将来(大規模)量子計算機が実現すると,現在ネットワークで利用されている公開鍵暗号のほとんどが解読される.そのような量子計算機がいつごろできるかは予測できないが,量子計算機が実現しても安全であると考えられている(公開鍵)暗号は「ポスト量子」暗号とよばれており活発に研究が進められている.
本講演では,「ポスト量子」暗号の研究のいくつかの代表的な取り組みについて紹介し、その中でも最も有望視されている格子に基づく暗号(格子暗号)によるアプローチの特長および格子暗号について紹介する.

2019年04月26日(金)

15:30-16:30   数理科学研究科棟(駒場) 056号室
吉田善章 氏 (東京大学新領域創成科学研究科)
Lie-Poisson代数の「変形」とカイラルな場の理論 (日本語)
[ 講演概要 ]
物理の理論は「物」と「時空」の二つを使って記述される.物の特性は「エネルギー」の数学的表現(ハミルトニアン)に還元される.他方,時空の特性はその「幾何学」を特徴づける群の構造として定式化される.物の奇妙な運動(例えば回転方向に好き嫌い=カイラリティーをもつラトルバックというコマ)は,エネルギーが変な形をしているか,あるいは時空が変な法則をもっているかのいずれかに起因すると考えるのだが,ここでは後者の可能性を追求する.カイラリティー(Krein対称性の破れ)をもつPoisson多様体(Hamilton力学系)の構造を,その基底にあるLie代数の変形に帰着して考える理論を紹介する.

2019年03月22日(金)

13:00-17:00   数理科学研究科棟(駒場) 大講義室号室
中村 周 氏 (東京大学大学院数理科学研究科) 13:00-14:00
量子力学の数学的構造と古典力学 (日本語)
[ 講演概要 ]
一般に、自然界のほとんどの物理現象は、究極的には量子力学によって説明されると考えられています。具体的には、極端に高いエネルギー・レベルでない限り、シュレディンガー方程式が自然界の基礎方程式となります。一方、量子力学は、物理学として直感的な理解が難しい理論でもあり、数学的にも、きちんと理解するのは、ごく単純な系であっても、決して簡単ではありません。量子力学を理解しようとする試みの一つが、古典力学系(ニュートン方程式)の解の振る舞いを通じて量子力学を記述する、(広い意味での)半古典解析です。半古典解析を中心に、量子力学の数学的理論の(ごく小さな)一端についてお話ししたいと思います。
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~shu/
寺杣 友秀 氏 (東京大学大学院数理科学研究科) 14:30-15:30
代数的サイクル、周期そして動機 (日本語)
[ 講演概要 ]
古典的な数学の対象であるアーベル積分は数学者の心の故郷であるが、より現代的にはホッジ理論を枠組みのなかで代数多様体の周期積分として捉えられ、代数的サイクルとの関連、数論的関数及びその特殊値などのとの観点から指導原理といえるいくつかの大予想が提起されてきた。大きく立ち向かっている山を前にして、この山の正体は一体何なのかということをいろいろな側面から考えることは楽しいことである。
「新しい発見は… 思い切り手を伸ばした 1ミリ先にある!」
[ 参考URL ]
http://gauss.ms.u-tokyo.ac.jp/index-j.html
坪井 俊 氏 (東京大学大学院数理科学研究科) 16:00-17:00
同相写像の群をめぐって (日本語)
[ 講演概要 ]
空間の同相写像の全体は群を成しますが、それを考えるのは荒唐無稽な印象を受けます。可算集合となることもありますが、普通に考える空間では非可算濃度の群です。葉層構造の不変量の研究に関係して、空間の同相写像の群や多様体の微分同相写像の群の研究をしてきました。群作用の力学系的性質が群のホモロジーに関係することなどを見出すことができました。同相写像の群の交換子群についてもまだ知りたいことが残されています。また、群の形状についてもう少し考えていきたいと思っています。このような同相写像の群を巡る話題についてお話ししたいと思います。
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~tsuboi/

2018年11月30日(金)

15:30-16:30   数理科学研究科棟(駒場) 002号室
三竹大寿 氏 (東京大学大学院数理科学研究科)
粘性解理論とAubry-Mather理論 (日本語)
[ 講演概要 ]
力学系におけるAubry-Mather理論は,偏微分方程式論の粘性解理論を導入することで相互の理論がより明瞭なものとなった.この理論は,Kolmogorov-Arnold-Moser (KAM) 理論を背景に偏微分方程式論における弱解を利用した理論ということで,弱KAM 理論と提唱された.講演者は,最適確率制御問題に現れる退化粘性HJ方程式と呼ばれるクラスの方程式に適用できるよう,弱KAM理論の一般化に取り組んできた.従来の弱KAM理論は決定論的な力学系しか扱えないため,新しい道具立てを必要とした.この点を偏微分方程式論から見直すことで決定論及び確率論を統一する一つの新しい枠組みを作ることに成功してきた.その応用として,漸近解析(長時間挙動,ディスカウント近似)ついて解決した.本講演では,関連した内容について,次の2点に焦点をおいて話す.

(i) 非線形随伴法を利用した漸近解析:非線形随伴法を利用した漸近解析として,退化粘性HJ方程式の長時間挙動,ディスカウント近似の極限に関する結果について紹介する.
(ii) 均質化問題の解の収束率 :HJ方程式の均質化問題は,1987年にLions,Papanicolaou, Varadhanによる有名な未発表論文により提唱された後,劇的に研究が進展し,大多数の論文が発表された.しかし,PDE的手法だけでは収束率について得ることは難しかった.本講演では,Aubry-Mather理論の観点から問題を見直すことで得られた収束率の結果について紹介する.

2018年10月26日(金)

15:30-16:30   数理科学研究科棟(駒場) 002号室
伊藤 健一 氏 (東京大学大学院数理科学研究科)
一般化固有関数の漸近挙動と散乱理論 (JAPANESE)
[ 講演概要 ]
散乱理論とは,入射波が障害物によって散乱される前後の挙動
を記述するための理論であり,物理における散乱実験などに数学的裏付けを与え
る理論である.本講演では量子散乱理論の数学的定式化について概説したのち,
講演者がErik Skibsted氏(Aarhus大学)との共同研究で得た結果の一部を紹介す
る.時間が許せば漸近的Euclid型や漸近的双曲型エンドを持つ多様体上への一般
化についても触れたい.

2018年07月13日(金)

15:30-16:30   数理科学研究科棟(駒場) 056号室
DINH Tien Cuong 氏 (National University of Singapore )
Pluripotential theory and complex dynamics in higher dimension

[ 講演概要 ]
Positive closed currents, the analytic counterpart of effective cycles in algebraic geometry, are central objects in pluripotential theory. They were introduced in complex dynamics in the 1990s and become now a powerful tool in the field. Challenging dynamical problems involve currents of any dimension. We will report recent developments on positive closed currents of arbitrary dimension, including the solutions to the regularization problem, the theory of super-potentials and the theory of densities. Applications to dynamics such as properties of dynamical invariants (e.g. dynamical degrees, entropies, currents, measures), solutions to equidistribution problems, and properties of periodic points will be discussed.

2018年06月29日(金)

15:30-16:30   数理科学研究科棟(駒場) 056号室
石毛和弘 氏 (東京大学大学院数理科学研究科)
放物型方程式の解の冪凸性 (日本語)
[ 講演概要 ]
放物型方程式の解の凸冪性の研究は、Brascamp-Lieb (1976), Korevaar (1983)らの研究を契機として大きく進展し、例えば、正値な値をもつ初期関数の対数が上に凸であるとき、熱流はその凸性を保つこと等が解明されてきた。
本講演では、これら一連の研究を概観した後、Paolo Salani 氏らとの共同研究に基づき、放物型冪凸という概念の導入とその応用、放物型方程式系の解の冪凸性等について述べ、さらに近年の研究の進展について触れる。

2018年05月25日(金)

15:30-16:30   数理科学研究科棟(駒場) 056号室
阿部紀行 氏 (東京大学大学院数理科学研究科)
p進簡約群の法p表現 (日本語)
[ 講演概要 ]
近年p進Langlands対応や法p Langlands対応を動機として,p進簡約群の標数pの体の上の表現(法p表現)の研究が行われています.そのような表現論の現状,特に既約表現の分類についてお話しします.

2018年05月11日(金)

15:30-16:30   数理科学研究科棟(駒場) 056号室
入江 慶 氏 (東京大学大学院数理科学研究科)
周期Reeb軌道および極小超曲面に対する生成的(generic)稠密定理

(日本語)
[ 講演概要 ]
次のふたつの結果について説明する:(1)3次元閉多様体上の$C^\infty$位相についてgenericなReeb力学系において,周期軌道が稠密に存在する(講演者).(2)次元が3以上7以下の閉多様体上の$C^\infty$位相についてgenericなRiemann計量において,極小閉超曲面が稠密に存在する(Marques-Neves-講演者).

(1)の証明にはHutchings等によるEmbedded Contact Homologyの理論,(2)の証明にはMarques-Neves等によるAlmgren-Pitts理論の最近の進展を用いる.これらは技術的には相当異なる理論であるが,どちらも無限次元空間上のMorse理論(あるいはmin-max理論)といえるもので,結果として定義されるmin-max値はいくつかのよく似た性質を満たす.特に,これらのmin-max値の漸近挙動から多様体の体積が復元されるという性質(Laplacianの固有値に対するWeylの法則の類似)が,いずれの証明においても重要な役割を果たす.

2018年04月06日(金)

15:30-16:30   数理科学研究科棟(駒場) 123号室
石本健太 氏 (東大数理)
微生物走流性の流体数理 (JAPANESE)
[ 講演概要 ]
走流性とは流れに対する生き物の応答を意味し、例えば川魚が流れに逆らって泳
ぐことはよく知られているが、精子や鞭毛虫などの微小生物の中にも同様に流れ
に逆らって泳ぐものがいる。本講演では、微小スケールの流体力学の導入から始
め、流体方程式を解析することで生き物の泳ぎを理解する試みについてお話しす
る。後半では自身の微生物走流性の2次元流体モデルの研究を紹介し、複雑な現
象に潜む流体の数理について議論する予定である。

2018年03月10日(土)

11:00-12:00   数理科学研究科棟(駒場) 大講義室号室
新井仁之 氏 (東大数理)
視知覚の数理科学 (JAPANESE)
[ 講演概要 ]
本講演では、脳内の視覚情報処理の数理モデルとその応用に関して、講演者による結果を中心に述べる。まず数理モデルを作るために考案したかざぐるまフレームレットについて概略を述べ、それを基礎に構成した視覚情報処理の非線形モデルを概説する。さらにこれらを用いて行った各種の錯視の解析を示す。錯視は人の視知覚のメカニズムを解明する上で鍵となる極めて重要な知覚現象であると考えている。先端的な数学を用いることにより、錯視に関して従来の方法では得られなかったような多くの新しい知見が導かれる。このほか、本研究の応用として得られるさまざまな画像処理技術についても、実例を交えながらいくつかの結果を示す。

2018年03月10日(土)

13:00-14:00   数理科学研究科棟(駒場) 大講義室号室
二木昭人 氏 (東大数理)
K安定性と幾何学的非線形問題 (JAPANESE)
[ 講演概要 ]
K安定性は代数幾何における幾何学的不変式論(GIT)の安定性として定式化されたものであるが,アイデアの端緒は Kazdan-Warner が見出したある非線形偏微分方程式の可解性の障害にある.この非線形問題は微分幾何学的に表現すると,2次元単位球面に滑らかな関数 k を任意に与えたとき,計量 g に適当な正の関数 f をかけて得られる計量 fg が k をガウス曲率になるように,f を決めることができるか,という問題である.これは Nirenberg の問題と呼ばれ,現時点でも完全な答えは得られていない.2次元球面を1次元複素射影空間とみなし,更に Fano 多様体の特別な場合とみなして,Fano 多様体の GIT 安定性として定式化したのは Gang Tian であり(1997),さらに一般の偏極多様体に一般化したのは Simon K. Donaldson である(2002).GIT 安定性はモーメント写像を用いた描像があり,有限次元シンプレクティック幾何の形式的議論が,非線形偏微分方程式を解くにあたっての関数空間における無限次元シンプレクティック幾何的な議論の適切な方向を探る指針を与える.Fano 多様体においては,K安定性がモンジュ・アンペール方程式の可解性と同値であり,従ってケーラー・アインシュタイン計量の存在と同値であることが2012年頃,Chen-Donaldson-Sun と Tian によって証明された.モーメント写像を用いた描像を用いると,他の色々な非線形問題においても同じパターンで,K安定性と可解性の同値性を証明する問題として定式化される.

2018年03月10日(土)

14:30-15:30   数理科学研究科棟(駒場) 大講義室号室
川又雄二郎 氏 (東大数理)
双有理幾何学と導来圏 (JAPANESE)
[ 講演概要 ]
極小モデル理論によれば、代数多様体の間の双有理写像は基本的な双有理写像(フリップや因子収縮写像)に分解され、双有理幾何学は双正則幾何学に帰着される。その際の道案内になるのが標準因子Kである。代数多様体上の幾何学はその上の連接層によって表現されるが、連接層全体のなすアーベル圏から、複体を考え局所化することによって対称性がアップした導来圏Dが得られる。Kの変化とDの変化の間には思いがけず密接な関係が観測された。一方、有限群による商特異点の極小特異点解消(幾何学)とその群の表現(代数)の間には隠れた関係(マッカイ対応)が観測される。これらを総合した予想としてDK予想がある。最近の進展について解説する。

2018年03月10日(土)

16:00-17:00   数理科学研究科棟(駒場) 大講義室号室
俣野 博 氏 (東大数理)
反応拡散方程式の定性的理論
(JAPANESE)
[ 講演概要 ]
反応拡散方程式は,非線形偏微分方程式の重要なクラスの一つであり,粒子の拡散を表す項と,粒子の生成消滅を表す非線形項を組み合わせた形で表される.この方程式は,物理学,生物学,化学など広い分野 に応用があるため,過去数十年間にわたって盛んに研究が進められてきた.とくに,1960年代後半から70年代にかけて,反応拡散方程式の解の定性的なふるまいを無限次元力学系の視点から解き明かす研究が少しずつ始まり,その後,大きな流れになっていった.近年は,特異摂動法など種々の解析手法の発展と相まって,反応拡散方程式の解の性質についての理解はますます深まり,応用範囲も広がっている.本講演では,1970年代後半に始めた私自身の研究も振り返りながら,この分野の半世紀にわたる発展の歴史の一部を概観する.

2018年02月23日(金)

15:30-16:30   数理科学研究科棟(駒場) 002号室
田中公 氏 (東大数理)
正標数における極小モデル理論について (JAPANESE)
[ 講演概要 ]
極小モデル理論は代数多様体の分類理論である。20世紀の初頭に確立された代数
曲面論に端を発し、1980年代に爆発的に進展した。特に、標数ゼロの三次元代数
多様体に対する極小モデル理論がこの頃に完成し、近年では正標数の世界におい
ても大きく進展している。本講演では、極小モデル理論について概説した後、時
間が許せば正標数特有の問題等についても触れたい。

2018年01月26日(金)

15:30-16:30   数理科学研究科棟(駒場) 002号室
小池祐太 氏 (東大数理)
Wiener汎関数ベクトルの最大値のGauss型近似とその高頻度データ解析への応用 (JAPANESE)
[ 講演概要 ]
本報告では, Wiener汎関数からなる(高次元)ベクトルの最大値の分布とGauss型ベクトル
の最大値の分布の間のKolmogorov距離を評価する問題を考える. 特に, 最近数理統計学
の分野におけるChernozhukov, Chetverikov & Katoによる一連の研究で発展した,
独立な高次元確率ベクトルの列の和の分布をそのGauss型の類似物の分布で近似する理論を,
Wiener汎関数からなるベクトルへと拡張することを試みる. 本報告では, Chernozhukov,
Chetverikov & Kato (2015, PTRF)の結果のWiener汎関数からなるベクトルへの一般化
が可能であることを示す. さらに, 特別な場合として, (同じ次数をもつ)多重Wiener-伊藤積分
のベクトルの最大値の分布とGauss型ベクトルの最大値の分布の間のKolmogorov距離が0に
近いことを示すには, 共分散行列の成分どうしが近く, かつ前者の各成分の4次キュムラントの
最大値が0に近いことを示せば十分であること, すなわち(広い意味での)fourth moment
phenomenonが起きることを示す. 最後に, 高頻度データ解析への応用例を与え、理論の
拡張可能性について概観する.

2017年11月24日(金)

15:30-16:30   数理科学研究科棟(駒場) 002号室
伊藤由佳理 氏 (IPMU, 名古屋大学)
特異点解消とマッカイ対応 (JAPANESE)
[ 講演概要 ]
本講演では、2次元有理二重点の特異点解消と1979年にJohn McKayが発見した有限群とディンキン図形の関係に基づく2次元のマッカイ対応について紹介し、その後、代数多様体の分類論や超弦理論と共に発展した3次元の特異点解消とマッカイ対応について解説したい。

2017年10月06日(金)

15:30-16:30   数理科学研究科棟(駒場) 002号室
宮地晶彦 氏 (東京女子大学)
調和解析における特異積分と実関数論の方法 (JAPANESE)
[ 講演概要 ]
フーリエ級数の収束など古典的な調和解析の問題の多くは、
特異積分の評価の問題に帰着される。特異積分を調べる
実関数論の方法で繰り返し現れるのは最大関数と2乗型関数である。
講演では、特異積分の評価に関わる古典的な方法を振り返りながら、
双線形の特異積分など最近の話題の一端を紹介してみたい。
[ 参考URL ]
http://lab.twcu.ac.jp/miyachi/English.html

2017年07月07日(金)

15:30-16:30   数理科学研究科棟(駒場) 002号室
Richard Stanley 氏 (MIT/University of Miami)
Smith Normal Form and Combinatorics (English)
[ 講演概要 ]
Let $R$ be a commutative ring (with identity) and $A$ an $n \times n$ matrix over $R$. Suppose there exist $n \times n$ matrices $P,Q$ invertible over $R$ for which PAQ is a diagonal matrix $diag(e_1,...,e_r,0,...,0)$, where $e_i$ divides $e_{i+1}$ in $R$. We then call $PAQ$ a Smith normal form (SNF) of $A$. If $R$ is a PID then an SNF always exists and is unique up to multiplication by units. Moreover if $A$ is invertible then $\det A=ua_1\cdots a_n$, where $u$ is a unit, so SNF gives a
canonical factorization of $\det A$.

We will survey some connections between SNF and combinatorics. Topics will include (1) the general theory of SNF, (2) a close connection between SNF and chip firing in graphs, (3) the SNF of a random matrix of integers (joint work with Yinghui Wang), (4) SNF of special classes of matrices, including some arising in the theory of symmetric functions, hyperplane arrangements, and lattice paths.
[ 参考URL ]
http://www-math.mit.edu/~rstan/

2017年06月20日(火)

15:30-16:30   数理科学研究科棟(駒場) 002号室
Nicolas Bacaër 氏 (研究開発研究所/東大数理)
Some stochastic population models in a random environment (English)
[ 講演概要 ]
Two population models will be considered: an epidemic model [1] and a linear birth-and-death process [2]. The goal is to study the first non-zero eigenvalue, which is related to the speed of convergence towards extinction, using either WKB approximations or probabilistic arguments.
[1] "Le modèle stochastique SIS pour une épidémie dans un environnement aléatoire". Journal of Mathematical Biology (2016)
[2] "Sur les processus linéaires de naissance et de mort sous-critiques dans un environnement aléatoire". Journal of Mathematical Biology (2017)
[ 参考URL ]
http://www.ummisco.ird.fr/perso/bacaer/

2017年05月26日(金)

15:30-16:30   数理科学研究科棟(駒場) 002号室
会田茂樹 氏 (東京大学大学院数理科学研究科)
ループ空間上のスペクトルギャップの漸近挙動について (JAPANESE)
[ 講演概要 ]
リーマン多様体上にはブラウン運動などの
自然な確率過程が定義でき、ブラウン運動を通して解析および幾何の問題を
研究することができる。
一方、このブラウン運動が定める道の空間やループ空間上の
確率測度は道のエネルギーを指数の肩にのせた汎関数を重みに持つ形式的
経路積分表示を持つ。この事から、極めて良い状況ならば
ループ空間上のディリクレ形式で定まる作用素の
分散0の極限(準古典極限に相当する)の下でのスペクトルギャップの漸近挙動
が予想できることになる。
この講演では、この問題について、どのような点が難しいか、
何が知られているかをお話したい。

2017年04月28日(金)

15:30-16:30   数理科学研究科棟(駒場) 002号室
松井千尋 氏 (東京大学大学院数理科学研究科)
可積分量子スピン鎖における隠れた超対称性 (JAPANESE)
[ 講演概要 ]
エネルギー演算子であるハミルトニアンの対角化は、物理系の時間発展的振る舞いを知るうえで重要な問題である。Uq(sl2)対称性を持つ一次元量子スピン系は一次元に配置された磁性体モデルであり、ハミルトニアンの厳密な対角化が可能な数少ない系の一つである。
Uq(sl2)不変な量子スピン鎖は、離散化の操作を通してsine-Gordon型の作用を持つ量子場の理論と一対一に対応している。Uq(sl2)の高次元表現を用いてスピン鎖を構成した場合、対応する場の理論には超対称性が現れることが知られている。
今回の講演では、q頂点演算子やスピン鎖に対し近年導入された変形された超対称性に触れつつ、非超対称なスピン鎖に対応する場の理論になぜ超対称性が出現するのかお話ししたい。
[ 参考URL ]
https://www.ms.u-tokyo.ac.jp/~matsui/index.html

< 前へ 123456 次へ >