過去の記録

過去の記録 ~02/21本日 02/22 | 今後の予定 02/23~

Lie群論・表現論セミナー

16:30-18:00   数理科学研究科棟(駒場) 126号室
井上順子 氏 (鳥取大学)
Characterization of some smooth vectors for irreducible representations of exponential solvable Lie groups
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2007年12月10日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
杉山健一 氏 (千葉大学)
岩澤予想の幾何学的類似の量子化(予想される結果)

Kavli IPMU Komaba Seminar

17:00-18:30   数理科学研究科棟(駒場) 002号室
Dmitry Kaledin 氏 (Steklov Institute and The University of Tokyo)
Deligne conjecture and the Drinfeld double.
[ 講演概要 ]
Deligne conjecture describes the structure which exists on
the Hochschild cohomology $HH(A)$ of an associative algebra
$A$. Several proofs exists, but they all combinatorial to a certain
extent. I will present another proof which is more categorical in
nature (in particular, the input data are not the algebra $A$, but
rather, the tensor category of $A$-bimodules). Combinatorics is
still there, but now it looks more natural -- in particular, the
action of the Gerstenhaber operad, which is know to consist of
homology of pure braid groups, is induced by the action of the braid
groups themselves on the so-called "Drinfeld double" of the category
$A$-bimod.

If time permits, I will also discuss what additional structures
appear in the Calabi-Yau case, and what one needs to impose to
insure Hodge-to-de Rham degeneration.

2007年12月06日(木)

講演会

10:40-12:10   数理科学研究科棟(駒場) 128号室
Mikael Pichot 氏 (東大数理)
Topics in ergodic theory, von Neumann algebras, and rigidity
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~yasuyuki/pichot.htm

応用解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 126号室
柳田 英二 氏 (東北大学大学院理学研究科)
藤田型方程式における時間大域解の挙動について
[ 講演概要 ]
この講演では,藤田型の半線形放物型偏微分方程式に関する M. Fila, J. King, P. Polacik, M. Winkler らとの共同研究による成果についてその概要を紹介する.全空間上の藤田型方程式については,これまで様々な挙動を示す時間大域解の存在が示されている.そこで大域解の時間的挙動と初期値の空間的挙動の関係を詳細に調べることにより,大域解をいくつかに分類し,その挙動がそれぞれ異なるメカニズムに支配されていることを明らかにする.時間が許せば,最近の進展や関連する話題についても触れる予定である.

2007年12月05日(水)

代数学コロキウム

16:30-17:30   数理科学研究科棟(駒場) 117号室
中村健太郎 氏 (東京大学大学院数理科学研究科)
Classification of two dimensional trianguline representations of p-adic fields
[ 講演概要 ]
Trianguline representation is a class of p-adic Galois representations of p-adic fields. This was defined by P.Colmez by using ($\\varphi, \\Gamma$)-modules over Robba ring. In his study of p-adic local Langlands correspondence of GL_2(Q_p), he completely classified two dimensional trianguline representations of Q_p. On the other hand, L.Berger recently defined the category of B-pairs and established the equivalence between the category of B-pairs and the category of ($\\varphi,\\Gamma$)-modules over Robba ring. In this talk, we extend the Colmez's result by using B-pairs. We completely classify two dimensional trianguline representations of K for any finite extension of Q_p. We also talk about a relation between two dimensional trianguline representations and principal series or special series of GL_2(K).

統計数学セミナー

16:20-17:30   数理科学研究科棟(駒場) 122号室
今野 良彦 氏 (日本女子大学理学部)
A Decision-Theoretic Approach to Estimation from Wishart matrices on Symmetric Cones
[ 講演概要 ]
James and Stein(1961) have considered the problem of estimating the mean matrix of Wishart distributions under so-called Stein's loss function and obtained a minimax estimator with a constant risk. Later Stein(1977) has given an unbiased risk estimate for a class of orthogonally invariant estimators, from which he obtained orthogonally invariant minimax estimators which are uniformly better than the best triangular-invariant estimator in James and Stein(1961). The works mentioned above lead to the following natural question: Is it possible for any estimators to improve upon the maximum likelihood estimator for the mean matrix of the complex or quaternion Wishart distributions? This talk shows that we can obtain improved estimators for the mean matrix under these models in a unified manner. The method involves an abstract theory of finite-dimensional Euclidean simple Jordan algebra
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~kengok/statseminar/2007/11.html

2007年12月04日(火)

諸分野のための数学研究会

15:00-17:15   数理科学研究科棟(駒場) 122号室
Pavel Krejci 氏 (Weierstrass Institute for Applied Analysis and Stochastics) 15:00-16:00
Quasilinear hyperbolic equations with hysteresis
[ 講演概要 ]
We consider a wave propagation problem in a rate independent elastoplastic material described by a counterclockwise convex hysteresis operator. Unlike in viscoelasticity, the speed of propagation is bounded above by the speed of the corresponding elastic waves. The smoothening dissipative effect is due to the convexity of the hysteresis branches. We present some recent results on the long time behavior of solutions under various boundary conditions, including the stability of time periodic solutions under periodic forcing.
[ 講演参考URL ]
http://coe.math.sci.hokudai.ac.jp/sympo/various/index.html
Victor Isakov 氏 (Wichita State University) 16:15-17:15
Carleman estimates for second order operators with two large parameters
[ 講演概要 ]
We obtain new Carleman type estimates for general second order linear partial differential operators. These estimates hold for the weight functions under pseudoconvexity conditions relating the operator and weight function. We discuss these conditions. We give applications to uniqueness and stability of the continuation and inverse problems for elasticity system with residual stress without smallness assumptions on residual stress. This is a joint work with Nanhee Kim.
[ 講演参考URL ]
http://coe.math.sci.hokudai.ac.jp/sympo/various/index.html

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
今野 宏 氏 (東京大学大学院数理科学研究科)
Morse theory for abelian hyperkahler quotients

[ 講演概要 ]
In 1980's Kirwan computed Betti numbers of symplectic quotients by using Morse theory. In this talk, we develop this method to hyperkahler quotients by abelian Lie groups. In this method, many computations are much more simplified in the case of hyperkahler quotients than the case of symplectic quotients. As a result we compute not only the Betti numbers, but also the cohomology rings of abelian hyperkahler quotients.

2007年12月03日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
甲斐千舟 氏 (九州大学)
等質有界領域の対称性条件、性質の良い有界領域実現について

2007年11月29日(木)

講演会

10:40-12:10   数理科学研究科棟(駒場) 128号室
Mikael Pichot 氏 (東大数理)
Topics in ergodic theory, von Neumann algebras, and rigidity
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~yasuyuki/pichot.htm

2007年11月27日(火)

代数幾何学セミナー

16:30-18:00   数理科学研究科棟(駒場) 122号室
Alexander Kuznetsov 氏 (Steklov Inst)
Categorical resolutions of singularities
[ 講演概要 ]
I will give a definition of a categorical resolution of singularities and explain how such resolutions can be constructed.

解析学火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 128号室
小松 彦三郎 氏 (東大数理(名誉教授))
Heaviside's theory of signal transmission on submarine cables

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
石井 敦 氏 (京都大学数理解析研究所)
A quandle cocycle invariant for handlebody-links

[ 講演概要 ]
[joint work with Masahide Iwakiri (Osaka City University)]
A handlebody-link is a disjoint union of circles and a
finite trivalent graph embedded in a closed 3-manifold.
We consider it up to isotopies and IH-moves.
Then it represents an ambient isotopy class of
handlebodies embedded in the closed 3-manifold.
In this talk, I explain how a quandle cocycle invariant
is defined for handlebody-links.

2007年11月26日(月)

Kavli IPMU Komaba Seminar

17:00-18:30   数理科学研究科棟(駒場) 002号室
Mich\"ael Pevzner 氏 (Universit\'e de Reims and the University of Tokyo)
Kontsevich quantization of Poisson manifolds and Duflo isomorphism.
[ 講演概要 ]
Abstract: Since the fundamental results by Chevalley, Harish-Chandra and Dixmier one knows that the set of invariant polynomials on the dual of a Lie algebra of a particular type (solvable, simple or nilpotent) is isomorphic, as an algebra, to the center of the enveloping algebra. This fact was generalized to an arbitrary finite-dimensional real Lie algebra by M. Duflo in late 1970's. His proof was based on the Kirillov's orbits method that parametrizes infinitesimal characters of unitary irreducible representations of the corresponding Lie group in terms of co-adjoint orbits.

The Kontsevich' Formality theorem implies not only the existence of the Duflo map but shows that it is canonical. We shall describe this construction and indicate how does this construction extend to the whole Poisson cohomology of an arbitrary finite-dimensional real Lie algebra.

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
金子宏 氏 (東京理科大学)
Analysis related to probability theory based on p-adic hierarchical structure

2007年11月22日(木)

応用解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 126号室
佐藤 洋平 氏 (早稲田大学・基幹理工学部・数学科)
Critical frequencyをもつ非線形シュレディンガー方程式のマルチピーク解
[ 講演概要 ]
非線形シュレディンガー方程式
$$ -\\epsilon2 \\Delta u +V(x)u= u^p, u>0 \\ \\hbox{in} \\R^N,
u\\in H1(\\R^N)$$
において、$\\epsilon \\to 0$ としたときに V(x) の k個の極小点にピークが集中していくマルチピーク解 $u_\\epsilon$ について考える。
ここで、p はsuperlinear, subcriticalの条件を満たし, ポテンシャル関数 V(x) は非負の有界な関数で $\\liminf_{|x|\\to \\infty}V(x)>0$ を満たすとする。

もし V(x) の各極小点に集中するピークがあるとしたら、そのピークの形状や大きさはその極小値が正であるか、0であるかによって大きく異なることが知られている。
この講演では V(x) の各極小値が正であるか 0 であるかにかかわらず、各 k個の極小点にピークが集中するマルチピーク解 $u_\\epsilon$ を構成する。

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
張欽 氏 (東大数理)
Spatial property of the canonical map associated to von Neumann algebras

講演会

10:40-12:10   数理科学研究科棟(駒場) 128号室
Mikael Pichot 氏 (東大数理)
Topics in ergodic theory, von Neumann algebras, and rigidity
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~yasuyuki/pichot.htm

2007年11月21日(水)

代数学コロキウム

16:30-17:30   数理科学研究科棟(駒場) 117号室
Christopher Rasmussen 氏 (京都大学数理解析研究所)
Abelian varieties with constrained torsion
[ 講演概要 ]
The pro-$l$ Galois representation attached to the arithmetic fundamental group of a curve $X$ is heavily influenced by the arithmetic of certain classes of its branched covers. It is natural, therefore, to search for and classify these special covers in a meaningful way. When $X$ is the projective line minus three points, one finds that such covers are very scarce. In joint work with Akio Tamagawa, we formulate a conjecture to quanitify this scarcity, and present a proof for the conjecture in the case of genus one curves defined over $\\Q$.

統計数学セミナー

16:20-17:30   数理科学研究科棟(駒場) 122号室
宮尾 祐介 氏 (東京大学理学部情報科学科)
自然言語処理における構造的・統計的モデル
[ 講演概要 ]
本発表では,自然言語処理において代表的な問題である機械翻訳と構文解析に ついて,言語の構造的性質と統計的性質をどのようなモデルで表現するかにつ いて概説する.これらの問題に対しては,古くは構造的規則性に着目し,翻訳 規則や文法などの規則体系を明らかにすることが主な研究目標であった.しか し,統計モデルの自然言語処理への応用が90年代に提案され,大きな成功をお さめたことから,現在では主流となっている.最近では,統計モデルを構造化 することによって言語の複雑な構造をとらえるアプローチがさかんに研究され ており,本発表では,これらの構造的・統計的モデルが言語の構造をどのよう にモデル化しているかを述べる.
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~kengok/statseminar/2007/10.html

2007年11月20日(火)

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
長郷 文和 氏 (東京工業大学大学院理工学研究科)
A certain slice of the character variety of a knot group
and the knot contact homology

[ 講演概要 ]
For a knot $K$ in 3-sphere, we can consider representations of
the knot group $G_K$ into $SL(2,\\mathbb{C})$.
Their characters construct an algebraic set.
This is so-called the $SL(2,\\mathbb{C})$-character variety of
$G_K$ and denoted by $X(G_K)$.

In this talk, we introduce a slice (a subset) $S_0(K)$ of $X(G_K)$.
In fact, this slice is closely related to the A-polynomial
and the abelian knot contact homology.
For example, the A-polynomial $A_K(m,l)$ of a knot $K$ is
a two-variable polynomial knot invariant defined by using
the character variety $X(G_K)$.
Then we can show that for any {\\it small knot} $K$, the number of
irreducible components of $S_0(K)$ gives an upper bound of
the maximal degree of the A-polynomial $A_K(m,l)$ in terms of
the variable $l$.
Moreover, for any 2-bridge knot $K$, we can show that
the coordinate ring of $S_0(K)$ is exactly the degree 0
abelian knot contact homology $HC_0^{ab}(K)$.

We will mainly explain these facts.

Lie群論・表現論セミナー

16:30-18:00   数理科学研究科棟(駒場) 126号室
西山 享 氏 (京都大学)
Asymptotic cone for semisimple elements and the associated variety of degenerate principal series
[ 講演概要 ]
Let $ a $ be a hyperbolic element in a semisimple Lie algebra over the real number field. Let $ K $ be the complexification of a maximal compact subgroup of the corresponding real adjoint group. We study the asymptotic cone of the semisimple orbit through $ a $ under the adjoint action by $ K $. The resulting asymptotic cone is the associated variety of a degenerate principal series representation induced from the parabolic associated to $ a $.
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html

2007年11月19日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
藤野修 氏 (名古屋大学)
乗数イデアル層の類似物

2007年11月17日(土)

保型形式の整数論月例セミナー

13:30-16:00   数理科学研究科棟(駒場) 123号室
小島教知 氏 (東京工業大学理学研究科) 13:30-14:30
Pullback formula for vector valued Siegel modular forms and its applications

[ 講演概要 ]
$H_n$ を $n$ 次 Siegel 上半空間, $E^n_k$ を次数 $n$, 重さ $k$ のSiegel Eisenstein 級数とする. いま $p$, $q$ を自然数としたとき,$H_p\\times H_q$ は $H_{p+q}$ の中に埋め込むことができる. Garrett は $E^{p+q}_k$ を $H_p\\times H_q$ 上に制限したときに Klingen Eisenstein 級数や Siegel 保型形式の standard $L$ 函数の値などで表示する公式を与へた. この公式は pullback formula とよばれてゐる.
この pullback formula はBoecherer によつて複素パラメータつきの Eisenstein 級数の場合に拡張され, Klingen Eisenstein 級数や standard $L$ 函数についての結果が得られてゐる.
本講演ではこれらの結果がベクトル値 Siegel 保型形式の場合にどれくらゐ拡張できるかについて述べる.
大西良博 氏 (岩手大学) 15:00-16:00
Congruences connecting Tate-Shafarevich groups with Hurwitz numbers
[ 講演概要 ]
奇素数 $p$ について, 虚2次体 $\\mathbf{Q} (\\sqrt{-p})$ の類数を $h(-p)$ と書くことにします. このとき $p≡1, 3 mod 4$ に応じて
$h(-p)≡2^{-1}E_{(p-1)/2} mod p$
$h(-p)≡ -2B_{(p+1)/2} mod p$
となり, 右辺の最小の剰余は左辺そのものを与へます. 但し $B_n$ は Bernoulli 数, $E_n$ は Euler 数. この合同式の一般化として, ある種の楕円曲線の Tate-Shafarevich 群の位数の平方根と Hurwitz 数との間の同様な合同式を与へます.

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 次へ >