過去の記録

過去の記録 ~10/21本日 10/22 | 今後の予定 10/23~

FMSPレクチャーズ

14:55-18:00   数理科学研究科棟(駒場) 056号室
"Learning theory and sparsity" 全3回講演の(2)
Arnak Dalalyan 氏 (ENSAE ParisTech)
(2)Lasso, Dantzig selector and their statistical properties. (ENGLISH)
[ 講演概要 ]
In this second lecture, we will focus on the problem of high dimensional linear regression under the sparsity assumption and discuss the three main statistical problems: denoising, prediction and model selection. We will prove that convex programming based predictors such as the lasso and the Dantzig selector are provably consistent as soon as the dictionary elements are normalized and an appropriate upper bound on the noise-level is available. We will also show that under additional assumptions on the dictionary elements, the aforementioned methods are rate-optimal and model-selection consistent.
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Dalalyan.pdf

数理人口学・数理生物学セミナー

14:55-16:40   数理科学研究科棟(駒場) 128号室
八島健太 氏 (総合研究大学院大学)
基本増殖率の感受性解析を用いたネットワーク中心性指標
[ 講演概要 ]
ネットワーク上における感染症流行を阻止するために,中心性指標を用いた
危険箇所の同定が行われている.感染症侵入の有無は基本増殖率R0により規定さ
れることから,我々は基本増殖率の感受性解析を用いた新たなネットワーク中心
性指標の提案を行った.これを用いて東京都市圏における感染症流行の解析を行
ったところ,既存の中心性指標では見落とされてきた流行動態を明らかにできた.
利用者数最大の新宿駅は2位の東京駅の1.5倍程度の利用者数規模であるが,隔離
政策を行った際の基本増殖率低減への寄与率が約1,000倍も大きいことが分かった.
また,侵入阻止(基本増殖率低下)のために注力すべき箇所と,侵入が起こった
さいに被害低減(最終規模低下)のために注力すべき箇所が必ずしも一致しない
ことが分かった.本講演では,提案したネットワーク中心性指標の紹介および上
記の結果を紹介したい.

[ 講演参考URL ]
http://www.soken.ac.jp/

2015年12月01日(火)

解析学火曜セミナー

16:50-18:20   数理科学研究科棟(駒場) 126号室
Stéphane Malek 氏 (Université de Lille, France)
On complex singularity analysis for some linear partial differential equations
[ 講演概要 ]
We investigate the existence of local holomorphic solutions Y of linear partial differential equations in three complex variables whose coefficients are holomorphic on some polydisc outside some singular set S. The coefficients are written as linear combinations of powers of a solution X of some first order nonlinear partial differential equation following an idea :we have initiated in a previous joint work with C. Stenger. The solutions Y are shown to develop singularities along the singular set S with estimates of exponential type depending on the growth's rate of X near the singular set. We construct these solutions with the help of series of functions with infinitely many variables which involve derivatives of all orders of X in one variable. Convergence and bounds estimates of these series are studied using a majorant series method which leads to an auxiliary functional equation that contains differential operators in infinitely many variables. Using a fixed point argument, we show that these functional equations actually have solutions in some Banach spaces of formal power series. (Joint work with A. Lastra and C. Stenger).

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea : Common Room 16:30 -- 17:00
奥田 喬之 氏 (東京大学大学院数理科学研究科)
Monodromies of splitting families for singular fibers (JAPANESE)
[ 講演概要 ]
A degeneration of Riemann surfaces is a family of complex curves
over a disk allowed to have a singular fiber.
A singular fiber may split into several simpler singular fibers
under a deformation family of such families,
which is called a splitting family for the singular fiber.
We are interested in the topology of splitting families.
For the topological types of degenerations of Riemann surfaces,
it is known that there is a good relationship with
the surface mapping classes, via topological monodromy.
In this talk,
we introduce the "topological monodromies of splitting families",
and give a description of those of certain splitting families.

2015年11月30日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
Jean-Pierre Demailly 氏 (Univ. de Grenoble I)
Extension of holomorphic functions defined on non reduced analytic subvarieties (English)
[ 講演概要 ]
The goal of this talk will be to discuss $L^2$ extension properties of holomorphic sections of vector bundles satisfying weak semi-positivity properties. Using techniques borrowed from recent proofs of the Ohsawa-Takegoshi extension theorem, we obtain several new surjectivity results for the restriction morphism to a non necessarily reduced subvariety, provided the latter is defined as the zero variety of a multiplier ideal sheaf. These extension results are derived from $L^2$ approximation techniques, and they hold under (probably) optimal curvature conditions.

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
Fabrizio Catanese 氏 (Universität Bayreuth)
Interesting surfaces which are coverings of a rational surface branched over few lines (English)
[ 講演概要 ]
Surfaces which are covers of the plane branched over 5 or 6 lines have provided answers to long standing questions, for instance the BCD surfaces for Fujita's question on semiampleness of VHS (Dettweiler-Cat); and examples of ball quotients (Hirzebruch), automorphisms acting trivially on integral cohomology (Cat-Gromadtzki), canonical maps with high degree or image-degree (Pardini, Bauer-Cat). I shall speak especially about the above Abelian coverings of the plane, the geometry of the del Pezzo surface of degree 5, the rigidity of BCD surfaces, and a criterion for a fibred surface to be a projective classifying space.

東京確率論セミナー

16:50-18:20   数理科学研究科棟(駒場) 128号室
Raoul Normand 氏 (中央研究院 數學研究所)
Self-organized criticality in a discrete model of limited aggregation
[ 講演概要 ]
We consider a discrete model of coagulation, where a large number of particles are initially given a prescribed number of arms. We successively choose arms uniformly at random and bind them two by two, unless they belong to "large" clusters. In that sense, the large clusters are frozen and become inactive. We study the graph structure obtained, and describe what a typical cluster looks like. We show that there is a fixed time T such that, before time T, a typical cluster is a subcritical Galton-Watson tree, whereas after time T, a typical cluster is a critical Galton-Watson tree. In that sense, we observe a phenomenon called self-organized criticality.

2015年11月27日(金)

談話会・数理科学講演会

16:50-17:50   数理科学研究科棟(駒場) 056号室
木田良才 氏 (東京大学大学院数理科学研究科)
従順群に関する最近の進展について (JAPANESE)
[ 講演概要 ]
群の従順性は、Banach-Tarski のパラドックスを理解する上で von Neumann により導入された概念である。その過程で未解決となった問題の一つが、非可換な自由群を含まない非従順群の存在を問うものであり、これは後に von Neumann-Day の問題と呼ばれるようになる。1980年頃にそのような群が構成されこの問題は解決されたが、最近 Nicolas Monod によりそのような群の例で全く異なるタイプのものが発見された。この新しい例は、区分的に PSL_2(R) の元であるような円周上の同相写像から成る群であり、従来のものに比べると格段に扱いやすいという利点をもっている。また、その非従順性の証明は群作用の従順性を応用するという新たな手法に基づいている。講演では、従順群の紹介からはじめ、非従順性の証明やその背景を中心として Monod の例を紹介したい。
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~kida/

幾何コロキウム

10:00-11:30   数理科学研究科棟(駒場) 126号室
久本智之 氏 (名古屋大学)
Kエネルギーの coercivity に由来する安定性 (Japanese)
[ 講演概要 ]
S. Boucksom氏とM. Jonsson氏との共同研究について話します。Kエネルギーのcoercivityという有名な増大度条件があります。我々はこのcoercivity に対応するJ一様K安定性の概念を導入し、J一様K安定性が従来のK安定性よりも真に強い定義でありながら、Kähler-Einstein多様体などについて実際に成り立つことを示しました。さらに最近Berman-Boucksom-Jonssonによって、J一様K安定性から出発すればCheeger-Coldingの非崩壊理論を用いることなくKähler-Einstein計量を得られることが明らかにされました。時間が許せばこのあたりについても解説したいと思います。

2015年11月26日(木)

Lie群論・表現論セミナー

17:00-18:45   数理科学研究科棟(駒場) 号室
Birgit Speh 氏 (Cornell University)
Introduction to the cohomology of discrete groups and modular symbols 2 (English)
[ 講演概要 ]
The course is an introduction to the cohomology of torsion free discrete subgroups $\Gamma \subset G $ of a semi simple group $G$. The discrete group $\Gamma$ acts freely on the symmetric space $X= G/K$ and we will always assume that $\Gamma \backslash G/K$ is compact or has finite volume. An example is a torsion free subgroup $\Gamma_n $ of finite index n in Sl(2,Z) acting on $Sl(2.R)/SO(2) \simeq {\mathcal H}=\{z=x+iy \in C| y >0 \}$ by fractional linear transformations. $\Gamma_n \backslash {\mathcal H}$ can be determined explicitly and it can be visualized as an area in the upper half plane glued at the boundary. It is easy to see that it has some nice compactifications.

The cohomology $H^*(\Gamma, C)$ of the group $\Gamma$ is equal to the deRham cohomology $H^*_{deRham}(\Gamma \backslash X, C)$ of the manifold $\Gamma\backslash X$. This cohomology is studied by proving that it is isomorphic to the $H^*(g,K,{\mathcal A}(\Gamma \backslash G))$. Here ${\mathcal A}(\Gamma \backslash G)$ of automorphic functions on $\Gamma \backslash G$. In the case $\Gamma_n \subset Sl(2,Z)$ the space ${\mathcal A}(\Gamma \backslash G)$ is the space of classical automorphic functions on the upper half plane containing holomorphic cusp form, Eisenstein series, Maass forms and it is often introduced in an introductory course in analytic number theory.


On the geometric side we will construct some of the cycles (modular symbols) in the homology $H_*(\Gamma\backslash X)$ which are dual to the cohomology classes we constructed. In our example $\Gamma_n\backslash Sl(2,R)/SO(2)$ these cycles correspond to geodesics and can easily be visualized.


In this course I will explain these results and show how to use them to prove vanishing and non vanishing theorem for $H^*_{deRham}(\Gamma \backslash X)$. I will state the results in full generality, but I will prove them only in the classical case: G=SL$(2,R)$ and the subgroup $\Gamma= \Gamma_n$ a congruence subgroup. Some familiarity with Lie groups and Lie algebras is only prerequisite for the course.

2015年11月25日(水)

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 118号室
Max Lein 氏 (東北大AIMR)
Combining Pseudodifferential and Vector Bundle Techniques, and Their Applications to Topological Insulators

統計数学セミナー

14:55-18:00   数理科学研究科棟(駒場) 056号室
本講演は,数物フロンティア・リーディング大学院のFMSPレクチャーズとして行います.
Arnak Dalalyan 氏 (ENSAE ParisTech)
Learning theory and sparsity ~ Introduction into sparse recovery and compressed sensing ~
[ 講演概要 ]
In this introductory lecture, we will present the general framework of high-dimensional statistical modeling and its applications in machine learning and signal processing. Basic methods of sparse recovery, such as the hard and the soft thresholding, will be introduced in the context of orthonormal dictionaries and their statistical accuracy will be discussed in detail. We will also show the relation of these methods with compressed sensing and convex programming based procedures.

FMSPレクチャーズ

14:55-18:00   数理科学研究科棟(駒場) 056号室
"Learning theory and sparsity" 全3回講演の(1)
Arnak Dalalyan 氏 (ENSAE ParisTech)
(1)Introduction into sparse recovery and compressed sensing. (ENGLISH)
[ 講演概要 ]
In this introductory lecture, we will present the general framework of high-dimensional statistical modeling and its applications in machine learning and signal processing. Basic methods of sparse recovery, such as the hard and the soft thresholding, will be introduced in the context of orthonormal dictionaries and their statistical accuracy will be discussed in detail. We will also show the relation of these methods with compressed sensing and convex programming based procedures.
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Dalalyan.pdf

2015年11月24日(火)

解析学火曜セミナー

16:50-18:20   数理科学研究科棟(駒場) 126号室
許 本源 氏 (東大数理)
A local analysis of the swirling flow to the axi-symmetric Navier-Stokes equations near a saddle point and no-slip flat boundary (English)
[ 講演概要 ]
As one of the violent flow, tornadoes occur in many place of the world. In order to reduce human losses and material damage caused by tornadoes, there are many research methods. One of the effective methods is numerical simulations.  The swirling structure is significant both in mathematical analysis and the numerical simulations of tornado. In this joint work with H. Notsu and T. Yoneda we try to clarify the swirling structure. More precisely, we do numerical computations on axi-symmetric Navier-Stokes flows with no-slip flat boundary. We compare a hyperbolic flow with swirl and one without swirl and observe that the following phenomenons occur only in the swirl case: The distance between the point providing the maximum velocity magnitude $|v|$ and the $z$-axis is drastically changing around some time (which we call it turning point). An ``increasing velocity phenomenon'' occurs near the boundary and the maximum value of $|v|$ is obtained near the axis of symmetry and the boundary when time is close to the turning point.

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea : Common Room 16:30 -- 17:00
佐藤 正寿 氏 (東京電機大学)
On the cohomology ring of the handlebody mapping class group of genus two (JAPANESE)
[ 講演概要 ]
The genus two handlebody mapping class group acts on a tree
constructed by Kramer from the disk complex,
and decomposes into an amalgamated product of two subgroups.
We determine the integral cohomology ring of the genus two handlebody
mapping class group by examining these two subgroups
and the Mayer-Vietoris exact sequence.
Using this result, we estimate the ranks of low dimensional homology
groups of the genus three handlebody mapping class group.

Lie群論・表現論セミナー

17:00-18:45   数理科学研究科棟(駒場) 号室
Birgit Speh 氏 (Cornell University)
Introduction to the cohomology of discrete groups and modular symbols 1 (English)
[ 講演概要 ]
The course is an introduction to the cohomology of torsion free discrete subgroups $\Gamma \subset G $ of a semi simple group $G$. The discrete group $\Gamma$ acts freely on the symmetric space $X= G/K$ and we will always assume that $\Gamma \backslash G/K$ is compact or has finite volume. An example is a torsion free subgroup $\Gamma_n $ of finite index n in Sl(2,Z) acting on $Sl(2.R)/SO(2) \simeq {\mathcal H}=\{z=x+iy \in C| y >0 \}$ by fractional linear transformations. $\Gamma_n \backslash {\mathcal H}$ can be determined explicitly and it can be visualized as an area in the upper half plane glued at the boundary. It is easy to see that it has some nice compactifications.

The cohomology $H^*(\Gamma, C)$ of the group $\Gamma$ is equal to the deRham cohomology $H^*_{deRham}(\Gamma \backslash X, C)$ of the manifold $\Gamma\backslash X$. This cohomology is studied by proving that it is isomorphic to the $H^*(g,K,{\mathcal A}(\Gamma \backslash G))$. Here ${\mathcal A}(\Gamma \backslash G)$ of automorphic functions on $\Gamma \backslash G$. In the case $\Gamma_n \subset Sl(2,Z)$ the space ${\mathcal A}(\Gamma \backslash G)$ is the space of classical automorphic functions on the upper half plane containing holomorphic cusp form, Eisenstein series, Maass forms and it is often introduced in an introductory course in analytic number theory.


On the geometric side we will construct some of the cycles (modular symbols) in the homology $H_*(\Gamma\backslash X)$ which are dual to the cohomology classes we constructed. In our example $\Gamma_n\backslash Sl(2,R)/SO(2)$ these cycles correspond to geodesics and can easily be visualized.


In this course I will explain these results and show how to use them to prove vanishing and non vanishing theorem for $H^*_{deRham}(\Gamma \backslash X)$. I will state the results in full generality, but I will prove them only in the classical case: G=SL$(2,R)$ and the subgroup $\Gamma= \Gamma_n$ a congruence subgroup. Some familiarity with Lie groups and Lie algebras is only prerequisite for the course.

2015年11月18日(水)

FMSPレクチャーズ

15:00-16:00,16:30-17:00   数理科学研究科棟(駒場) 大講義室号室
中央大学ENCOUNTER with MATHEMATICS共催
Yakov Eliashberg 氏 (Stanford University)
Crossroads of symplectic rigidity and flexibility (ENGLISH)
[ 講演概要 ]
The development of flexible and rigid sides of symplectic and contact topology towards each other shaped this subject since its inception, and continues shaping its modern development.
In the series of lectures I will discuss the history of this struggle, as well as describe recent breakthroughs on the flexible side.
[ 講演参考URL ]
http://faculty.ms.u-tokyo.ac.jp/Eliashberg201511.html

FMSPレクチャーズ

10:30-11:30   数理科学研究科棟(駒場) 056号室
Alfred Ramani 氏 (Ecole Polytechnique)
Discretising systematically integrable systems (ENGLISH)
[ 講演概要 ]
We present various methods for discretising integrable systerms inspired by the works of Hirota and Mickens. We apply these methods to the systematical discretisation of Painlevé equations.
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Ramani1118.pdf

数理人口学・数理生物学セミナー

14:55-16:40   数理科学研究科棟(駒場) 128号室
高須夫悟 氏 (奈良女子大学理学部情報科学科)
Spatial population dynamics as a point pattern dynamics (JAPANESE)
[ 講演概要 ]
Spatial population dynamics has been conventionally described as
dynamical system where population size (or population density) changes
with time over space as a continuous "real-valued" variable; these are
often given as partial differential equations as reaction-diffusion
models. In this approach, we implicitly assume infinitely large
population thereby population size changes smoothly and
deterministically. In reality, however, a population is a collection of
a certain number of individuals each of which gives birth or dies with
some stochasticity in a space and the population size as the number of
individuals is "integer-valued". In this talk, I introduce an approach
to reconstruct conventional spatial population dynamics in terms of
point pattern dynamics as a stochastic process. I discuss how to
mathematically describe such spatial stochastic processes using the
moments of increasing order of dimension; densities of points, pairs,
and triplets, etc. are described by integro-differential equations.
Quantification of a point pattern is the key issue here. As examples, I
introduce spatial epidemic SIS and SIR models as point pattern dynamics;
each individual has a certain "mark" depending on its health status; a
snapshot of individuals’ distribution over space is represented by a
marked point pattern and this marked point pattern dynamically changes
with time.
[ 講演参考URL ]
http://www.ics.nara-wu.ac.jp/jp/staff/takasu.html

統計数学セミナー

17:00-18:10   数理科学研究科棟(駒場) 056号室
Ioane Muni Toke 氏 (University of New Caledonia)
Order flow intensities for limit order book modelling
[ 講演概要 ]
Limit order books are at the core of electronic financial markets. Mathematical models of limit order books use point processes to model the arrival of limit, market and cancellation orders in the order book, but it is not clear what a "good" parametric model for the intensities of these point processes should be.

In the first part of the talk, we show that despite their simplicity basic Poisson processes can be used to accurately model a few features of the order book that more advanced models reproduce with volume-dependent intensities.

In the second part of the talk we present ongoing investigations in a more advanced statistical modelling of these order flow intensities using in particular normal mixture distributions and exponential models.

2015年11月17日(火)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea : Common Room 16:30 -- 17:00
片長 敦子 氏 (信州大学)
Topology of some three-dimensional singularities related to algebraic geometry (ENGLISH)
[ 講演概要 ]
In this talk, we deal with hypersurface isolated singularities. First, we will recall
some topological results of singularities. Next, we will sketch the classification of
singularities in algebraic geometry. Finally, we will focus on the three-dimensional
case and discuss some results obtained so far.

代数学コロキウム

18:00-19:00   数理科学研究科棟(駒場) 117号室
いつもと曜日が異なりますのでご注意ください
Dennis Gaitsgory 氏 (Harvard University & IHES)
The Tamagawa number formula over function fields. (English)
[ 講演概要 ]
Let G be a semi-simple and simply connected group and X an algebraic curve. We consider $Bun_G(X)$, the moduli space of G-bundles on X. In their celebrated paper, Atiyah and Bott gave a formula for the cohomology of $Bun_G$, namely $H^*(Bun_G)=Sym(H_*(X)\otimes V)$, where V is the space of generators for $H^*_G(pt)$. When we take our ground field to be a finite field, the Atiyah-Bott formula implies the Tamagawa number conjecture for the function field of X.

The caveat here is that the A-B proof uses the interpretation of $Bun_G$ as the space of connection forms modulo gauge transformations, and thus only works over complex numbers (but can be extend to any field of characteristic zero). In the talk we will outline an algebro-geometric proof that works over any ground field. As its main geometric ingredient, it uses the fact that the space of rational maps from X to G is homologically contractible. Because of the nature of the latter statement, the proof necessarily uses tools from higher category theory. So, it can be regarded as an example how the latter can be used to prove something concrete: a construction at the level of 2-categories leads to an equality of numbers.

(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

2015年11月16日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
宮地 秀樹 氏 (大阪大学)
Towards the complex geometry of Teichmuller space with extremal length (English)
[ 講演概要 ]
In this talk, in aiming for studying a relation between the topological aspect and the complex analytical aspect of Teichmuller space, I will discuss a complex analytic property of extremal length functions. More precisely, I will give a concrete formula of the Levi form of the extremal length functions for ``generic” measured foliations and show that the reciprocal of the extremal length function is plurisuperharmonic. As a corollary, I will give alternate proofs of S. Krushkal results that the distance function for the Teichmuller distance is plurisubharmonic, and Teichmuller space is hyperconvex. If time permits, I will give a topological description of the Levi form with using the Thurston's symplectic form.

FMSPレクチャーズ

15:00-16:00,16:30-17:00   数理科学研究科棟(駒場) 大講義室号室
中央大学ENCOUNTER with MATHEMATICS共催
Yakov Eliashberg 氏 (Stanford University)
Crossroads of symplectic rigidity and flexibility (ENGLISH)
[ 講演概要 ]
The development of flexible and rigid sides of symplectic and contact topology towards each other shaped this subject since its inception, and continues shaping its modern development.
In the series of lectures I will discuss the history of this struggle, as well as describe recent breakthroughs on the flexible side.
[ 講演参考URL ]
http://faculty.ms.u-tokyo.ac.jp/Eliashberg201511.html

代数幾何学セミナー

15:30-17:00   数理科学研究科棟(駒場) 122号室
Artan Sheshmani 氏 (IPMU/ Ohio State University)
Counting curves on surface in Calabi-Yau threefolds and the proof of S-duality modularity conjecture (English)
[ 講演概要 ]
I will talk about recent joint works with Amin Gholampour, Richard Thomas and Yukinobu Toda, on an algebraic-geometric proof of the S-duality conjecture in superstring theory, made formerly by physicists Gaiotto, Strominger, Yin, regarding the modularity of DT invariants of sheaves supported on hyperplane sections of the quintic Calabi-Yau threefold. Our strategy is to first use degeneration and localization techniques to reduce the threefold theory to a certain intersection theory over the relative Hilbert scheme of points on surfaces and then prove modularity; More precisely, together with Gholampour we have proven that the generating series, associated to the top intersection numbers of the Hilbert scheme of points, relative to an effective divisor, on a smooth quasi-projective surface is a modular form. This is a generalization of the result of Okounkov-Carlsson, where they used representation theory and the machinery of vertex operators to prove this statement for absolute Hilbert schemes. These intersection numbers eventually, together with the generating series of Noether-Lefschetz numbers as I will explain, will provide the ingredients to achieve a complete algebraic-geometric proof of S-duality modularity conjecture.

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 次へ >