過去の記録

過去の記録 ~05/23本日 05/24 | 今後の予定 05/25~

2017年04月11日(火)

代数学コロキウム

17:30-18:30   数理科学研究科棟(駒場) 117号室
Peter Scholze 氏 (University of Bonn)
The geometric Satake equivalence in mixed characteristic (ENGLISH)
[ 講演概要 ]
In order to apply V. Lafforgue's ideas to the study of representations of p-adic groups, one needs a version of the geometric Satake equivalence in that setting. For the affine Grassmannian defined using the Witt vectors, this has been proven by Zhu. However, one actually needs a version for the affine Grassmannian defined using Fontaine's ring B_dR, and related results on the Beilinson-Drinfeld Grassmannian over a self-product of Spa Q_p. These objects exist as diamonds, and in particular one can make sense of the fusion product in this situation; this is a priori surprising, as it entails colliding two distinct points of Spec Z. The focus of the talk will be on the geometry of the fusion product, and an analogue of the technically crucial ULA (Universally Locally Acyclic) condition that works in this non-algebraic setting.

数値解析セミナー

16:50-18:20   数理科学研究科棟(駒場) 002号室
内海晋弥 氏 (早稲田大学基幹理工学部)
Lagrange-Galerkin 法における諸問題とその解決策:計算可能性・粘性係数依存性・流入境界条件 (日本語)
[ 講演概要 ]
Lagrange-Galerkin法(LG法)は移流拡散問題,オセーン問題,ナヴィエ・ストークス問題などの流れ問題に対する強力な数値計算手法である.本講演では本手法に現れる諸問題とその解決策を述べる.以下の3部から成る.

(1) LGスキームの理論と実装の間には乖離が存在していた.スキームに現れる合成関数項を厳密に計算することは困難である一方,誤差評価はそれが厳密に計算されるという仮定の下でなされていた.最近我々は,ナヴィエ・ストークス問題のための,厳密に計算でき,かつ,数値解の厳密解への収束性が数学的に証明できるLGスキームを作成し,収束性を示した.本パートでは,このスキームについて述べる.

(2) 上記スキームでは,時間刻みと空間メッシュサイズに関して最適オーダーでの誤差評価が得られるが,定数には粘性係数依存性が現れる.この依存性は,ナヴィエ・ストークス問題のみならず,より簡単なストークス問題にも現れる.Pk/Pk要素を用い,適切な安定化項を加えたスキームは,Pk/Pk−1要素を用いたスキームと比較して,粘性係数依存性が改善できることが示されている.本パートではオセーン問題に対してその誤差評価を述べる.

(3) LGスキームにおける解析では,ほとんどの場合,流速が境界で0という条件が課されていた.講演者の知る限り,流入境界条件を持つ問題に対して,収束性は示されていない.本パートでは,流入境界条件を持つ移流拡散問題に対するあるスキームを提案し,その収束性を述べる.

(1) は田端正久先生との,(3) はH. Egger先生(ダルムシュタット工科大学)との共同研究である.

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
Alexander Voronov 氏 (University of Minnesota)
Homotopy Lie algebroids (ENGLISH)
[ 講演概要 ]
A well-known result of A. Vaintrob [Vai97] characterizes Lie algebroids and their morphisms in terms of homological vector fields on supermanifolds. We give an interpretation of Lie bialgebroids and their morphisms in terms of odd symplectic dg-manifolds, building on the approach of D. Roytenberg [Roy99]. This extends naturally to the homotopy Lie case and leads to the notion of L-bialgebroids and L-morphisms between them.

2017年04月10日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
平地 健吾 氏 (東京大学)
Slice theorem for CR structures near the sphere and its applications
[ 講演概要 ]
We formulate a slice theorem for CR structures by following Bland-Duchamp and give some applications to the rigidity theorems.

作用素環セミナー

16:45-18:15   数理科学研究科棟(駒場) 118号室
窪田陽介 氏 (理研)
Reconstruction of the Bost-Connes groupoid from K-theoretic data (English)

2017年04月06日(木)

数理人口学・数理生物学セミナー

16:00-17:00   数理科学研究科棟(駒場) 126号室
中岡慎治 氏 (JST さきがけ・東京大学生産技術研究所)
既存種が存在する条件下での新規種の侵入・絶滅を表す指標に関する考察 (JAPANESE)
[ 講演概要 ]
腸に常在する細菌群集 (菌叢) は種数でいうと数百種類は存在するといわれている。健常な成人の菌叢の種構成や個体数は、短期的にみれば変動せず安定しているといわれるが、とりわけ乳児期の発達段階や離乳による食習慣の変化、もしくは成人であっても、抗菌剤投与による外的摂動によって種構成は大きく変動し得る。菌叢の種構成が個体によって異なることもしられているが、その理由や疾患発症との関連などは不明である。 本研究では、生誕もしくは抗菌剤投与で理想的には初期化された環境において、菌の定着の順序や相互作用が種構成にどういう影響を及ぼすかを調べるための数理解析手法について考察する。本発表では、いわゆる先住者効果を系統的に調べる上で役立つ数学的指標の定義や検証に関して進捗結果を報告する。既に他種が存在する条件の下、ある菌が環境に侵入できるかを表す再生産数 (侵入に関する基本再生産数) のようなを定義し、群集個体群モデルの線形安定性との関連性を議論する予定である

数理人口学・数理生物学セミナー

17:00-18:00   数理科学研究科棟(駒場) 126号室
五島祐樹 氏 (筑波大学医学群医学類)
数理的立場から見た造血幹細胞移植における急性GVHDの発症機序 (JAPANESE)
[ 講演概要 ]
血液系腫瘍に対する主な治療法は化学療法と造血幹細胞移植である。特に後者は化学療法に不応な患者にとっての最終手段とも言える。しかしここで問題がある。それは一部の患者では、ドナー(造血幹細胞の提供者)の血球がレシピエント(患者)の主に肝臓、消化管、皮膚を攻撃することで激烈な炎症が生じることである。これはGVHD(Graft Versus Host Disease)と呼ばれる。この反応に関与している細胞は主にCD8陽性細胞とされるが、詳細なことは不明であった。しかし近年、CD226というCD8陽性細胞等に発現する分子が細胞障害に関わるということが分かってきていて、GVHDのバイオマーカーとしても期待されている*[1]。そこで今回、臨床試験で得られた血液中のCD226の経時的な変化を数理モデル(微分方程式モデル)で説明することで、分子細胞レベルの反応について1つの仮説を提案したい。

[1] Soluble DNAM-1, as a Predictive Biomarker for Acute Graft-Versus-Host Disease.Kanaya et al/PLOS ONE 2016

社会数理コロキウム

15:00-16:00   数理科学研究科棟(駒場) 002号室
16:00から2階コモンルームで情報交換会を行います。
瀧 雅人 氏 (理化学研究所 iTHES)
光学迷彩を設計するための数理的手法 (JAPANESE)
[ 講演概要 ]
SFにおける透明マントのような、物体を不可視にする技術は光学迷彩と呼ばれます。これまでは長らくフィクションの世界での技術であった光学迷彩ですが、この10年程で光学迷彩の実現に向けた科学技術上の進展が見られました。その一つはメタマテリアルという材料科学における発見です。その一方理論的な観点からのブレイクスルーは、物質中の電磁気学をリーマン幾何などを用いてうまく取り扱う変換光学の発見です。この講演では、背景知識を開設したのち、光学迷彩を設計するための数理的な手法についていくつか紹介します。そして様々な研究グループによる具体的な応用実験や、最近の進展についても触れたいと思います。
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSP_colloquium20170406.pdf

2017年03月30日(木)

代数学コロキウム

16:40-17:40   数理科学研究科棟(駒場) 056号室
いつもと曜日が異なりますのでご注意ください.
Haoyu Hu 氏 (東京大学数理科学研究科)
Logarithmic ramifications via pull-back to curves (English)
[ 講演概要 ]
Let X be a smooth variety over a perfect field of characteristic p>0, D a strict normal crossing divisor of X, U the complement of D in X, j:U—>X the canonical injection, and F a locally constant and constructible sheaf of F_l-modules on U (l is a prime number different from p). Using Abbes and Saito’s logarithmic ramification theory, we define a Swan divisor SW(j_!F), which supported on D. Let i:C-->X be a quasi-finite morphism from a smooth curve C to X. Following T. Saito’s idea, we compare the pull-back of SW(j_!F) to C with the Swan divisor of the pull-back of j_!F to C. It answers an expectation of Esnault and Kerz and generalizes the same result of Barrientos for rank 1 sheaves. As an application, we obtain a lower semi-continuity property for Swan divisors of an l-adic sheaf on a smooth fibration, which gives a generalization of Deligne and Laumon’s lower semi-continuity property of Swan conductors of l-adic sheaves on relative curves to higher relative dimensions. This application is a supplement of the semi-continuity of total dimension of vanishing cycles due to T. Saito and the lower semi-continuity of total dimension divisors due to myself and E. Yang.

2017年03月22日(水)

FMSPレクチャーズ

13:00-   数理科学研究科棟(駒場) 117号室
Ian Grojnowski 氏 (University of Cambridge)
Lecture 1: Derived symplectic varieties and the Darboux theorem.
Lecture 2: The moduli of anti-canonically marked del Pezzo surfaces. (ENGLISH)
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Grojnowski.pdf

2017年03月21日(火)

談話会・数理科学講演会

14:40-15:40   数理科学研究科棟(駒場) 大講義室号室
片岡清臣 氏 (東京大学大学院数理科学研究科)
超局所解析と代数解析を巡って (JAPANESE)
[ 講演概要 ]
1959年に佐藤幹夫により佐藤超関数が創始され1973年にはマイクロ関数を使う擬微分方程式系の解析,いわゆる超局所解析についての決定版である佐藤幹夫・河合隆裕・柏原正樹によるレクチャーノートが出版された.講演者が修士課程に進学したのはちょうどこの直後であり,超局所解析はこの後は群の表現論への応用やファインマン積分の超局所解析など応用が中心となると言われていた.しかしその後,実領域の偏微分方程式系の超局所解析に限っても青木貴史による無限階擬微分作用素の指数解析の理論,柏原正樹・Pierre Schapiraによる層の超局所台の理論という本質的な手法の進展があるだけではなくそれらを応用した新しい超局所解析の手法の進展がある.講演者と関係したものとしてその1つは従来手法では扱えなかった熱方程式やシュレディンガー方程式の超局所解析にも適用できるマイクロ関数解のエネルギー積分不等式法であり,もう1つは初期値・境界値混合問題の超局所解析に導来圏と層のマイクロ台理論を適用する解析法である.本講演ではこれらを概観し,さらに円の連続族を含む曲面の5階偏微分方程式系による解析など代数解析的手法による非線形問題への最近の取り組みも紹介したい.
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~kiyoomi/index.html

談話会・数理科学講演会

16:00-17:00   数理科学研究科棟(駒場) 大講義室号室
舟木直久 氏 (東京大学大学院数理科学研究科)
確率解析とともに歩んだ40年 --- 統計物理の諸問題に動機づけられて --- (JAPANESE)
[ 講演概要 ]
学生時代に、統計力学、統計物理学の確率論的な定式化に興味を持ち、同時に確率偏微分方程式の問題に取り組みました。これらはその後の私の研究のテーマとなり、一貫して変わることはありませんでした。研究者人生を振り返って多くの方が異口同音に言われることですが、私の場合にも、いくつかの出会いが決定的な役割を果たしました。中でも、Joszef Fritz 氏(ブダペスト)、Herbert Spohn 氏(ミュンヘン)には大きな影響を受け、ミクロな系からマクロな系の挙動を記述する非線形偏微分方程式を導く、いわゆる流体力学極限の問題、あるいは界面の問題に取り組むきっかけとなりました。また、統計物理学の川崎恭治先生から示唆された問題は、現在に至るまで折に触れ形を変え取り組むこととなりました。その対象は確率偏微分方程式により記述されますが、それに数学的意味がついたのは、Martin Hairer 氏(2014年フィールズ賞受賞者)の理論によってです。しかし、数学的に基礎づけられた解に対して物理的に興味深い理論を展開するのは難しく、数学と物理の間にあるギャップは依然として大きいと感じています。談話会では、これまでの自身の研究を振り返り、やり残したことについてもお話しできればと思っています。
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~funaki/

2017年03月10日(金)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00, Lie群論・表現論セミナーと合同
Lizhen Ji 氏 (University of Michigan)
Satake compactifications and metric Schottky problems (ENGLISH)
[ 講演概要 ]
The quotient of the Poincare upper half plane by the modular group SL(2, Z) is a basic locally symmetric space and also the moduli space of compact Riemann surfaces of genus 1, and it admits two important classes of generalization:

(1) Moduli spaces M_g of compact Riemann surfaces of genus g>1,

(2) Arithmetic locally symmetric spaces Γ \ G/K such as the Siegel modular variety A_g, which is also the moduli of principally polarized abelian varieties of dimension g.

There have been a lot of fruitful work to explore the similarity between these two classes of spaces, and there is also a direct interaction between them through the Jacobian (or period) map J: M_g --> A_g. In this talk, I will discuss some results along these lines related to the Stake compactifications and the Schottky problems on understanding the image J(M_g) in A_g from the metric perspective.

Lie群論・表現論セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
トポロジー火曜セミナーと合同.場所がいつもと異なりますので,ご注意ください.
Lizhen Ji 氏 (University of Michigan, USA)
Satake compactifications and metric Schottky problems (English)
[ 講演概要 ]
The quotient of the Poincare upper half plane by the modular group SL(2, Z) is a basic locally symmetric space and also the moduli space of compact Riemann surfaces of genus 1, and it admits two important classes of generalization:

(1) Moduli spaces M_g of compact Riemann surfaces of genus g>1,

(2) Arithmetic locally symmetric spaces \Gamma \ G/K such as the Siegel modular variety A_g, which is also the moduli of principally polarized abelian varieties of dimension g.

There have been a lot of fruitful work to explore the similarity between these two classes of spaces, and there is also a direct interaction between them through the Jacobian (or period) map J: M_g --> A_g.
In this talk, I will discuss some results along these lines related to the Stake compactifications and the Schottky problems on understanding the image J(M_g) in A_g from the metric perspective.

2017年03月08日(水)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
Arthur Soulié 氏 (Université de Strasbourg)
Action of the Long-Moody Construction on Polynomial Functors (ENGLISH)
[ 講演概要 ]
In 2016, Randal-Williams and Wahl proved homological stability with certain twisted coefficients for different families of groups, in particular the one of braid groups. In fact, they obtain the stability for coefficients given by functors satisfying polynomial conditions. We only know few examples of such functors. Among them, we have the functor given by the unreduced Burau representations. In 1994, Long and Moody gave a construction on representations of braid groups which associates a representation of Bn with a representation of Bn+1. This construction complexifies in a sense the initial representation: for instance, starting from a dimension one representation, one obtains the unreduced Burau representation. In this talk, I will present this construction from a functorial point of view. I will explain that the construction of Long and Moody defines an endofunctor, called the Long-Moody functor, between a suitable category of functors. Then, after defining strong polynomial functors in this context, I will prove that the Long-Moody functor increases by one the degree of strong polynomiality of a strong polynomial functor. Thus, the Long-Moody construction will provide new examples of twisted coefficients entering in the framework of Randal-Williams and Wahl.

2017年03月07日(火)

統計数学セミナー

14:00-15:30   数理科学研究科棟(駒場) 052号室
大阪大学基礎工学研究科棟 I407号室 (WEB配信)
Markus Bibinger 氏 (Humboldt-Universität zu Berlin)
Nonparametric change-point analysis of volatility
[ 講演概要 ]
We develop change-point methods for statistics of high-frequency data. The main interest is in the stochastic volatility process of an Itô semi-martingale, the latter being discretely observed over a fixed time horizon. For a local change-point problem under high-frequency asymptotics, we construct a minimax-optimal test to discriminate continuous volatility paths from paths comprising changes. The key example is identification of volatility jumps. We prove weak convergence of the test statistic under the hypothesis to an extreme value distribution. Moreover, we study a different global change-point problem to identify changes in the regularity of the volatility process. In particular, this allows to infer changes in the Hurst parameter of a fractional stochastic volatility process. We establish an asymptotic minimax-optimal test for this problem.

2017年03月06日(月)

複素解析幾何セミナー

10:00-11:30   数理科学研究科棟(駒場) 128号室
いつもと時間が異なります。
Vladimir Matveev 氏 (University of Jena)
Projective and c-projective metric geometries: why they are so similar (ENGLISH)
[ 講演概要 ]
I will show an unexpected application of the standard techniques of integrable systems in projective and c-projective geometry (I will explain what they are and why they were studied). I will show that c-projectively equivalent metrics on a closed manifold generate a commutative isometric $\mathbb{R}^k$-action on the manifold. The quotients of the metrics w.r.t. this action are projectively equivalent, and the initial metrics can be uniquely reconstructed by the quotients. This gives an almost algorithmic way to obtain results in c-projective geometry starting with results in much better developed projective geometry. I will give many application of this algorithmic way including local description, proof of Yano-Obata conjecture for metrics of arbitrary signature, and describe the topology of closed manifolds admitting strictly nonproportional c-projectively equivalent metrics.
Most results are parts of two projects: one is joint with D. Calderbank, M. Eastwood and K. Neusser, and another is joint with A. Bolsinov and S. Rosemann.

2017年02月24日(金)

社会数理コロキウム

17:00-18:30   数理科学研究科棟(駒場) 002号室
18:30 から2 階コモンルームで講演者を囲んで情報交換会を予定しております。
深谷 竜司 氏、高野 康 氏、井口 亮 氏 (みずほ第一フィナンシャルテクノロジー株式会社)
金融機関等における研究開発の取組み~数理科学を用いた,金融工学・データアナリティクスの実務紹介~ (JAPANESE)
[ 講演概要 ]
銀行・保険会社・投資顧問会社など金融機関等は,金融商品開発・価格評価,金融機関経営(収益管理,リスク管理),取引先分析・与信判断,資本市場分析・資産運用戦略立案など多様な分野に数理科学的手法を適用してきた.理論物理学や数学で研究されてきた,数理計画法(最適化問題),偏微分方程式(拡散方程式)の数値解法,確率解析(確率微分方程式,推移半群の数値解法)などが代表例である.特に2008 年金融危機以降は,1980 年代までの数理ファイナンスの基礎の再構築を迫る現象が発生していて,新しい商習慣に対応した手法や高速計算手法の開発が課題となっている.
また,ビッグデータと統計的機械学習を組み合わせたデータアナリティクスは,金融機関等のバリューチェーンの脱統合化と,IT 企業等の各構成要素への参入を後押ししている.この流れに対抗する,又は協働するため,各金融機関もFinTech に積極的に投資している状況にある.
本講演では,これらの実務・技術をテーマとし,数理科学が金融機関等において用いられている現状をご紹介する.
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSP_colloquium20170224.pdf

2017年02月23日(木)

FMSPレクチャーズ

13:30-15:00   数理科学研究科棟(駒場) 122号室
富安 亮子 氏 (山形大学理学部)
結晶学, 量子ビーム科学分野との連携の中で見たこと, 考えたこと (JAPANESE)
[ 講演概要 ]
結晶学は、結晶を含む固体材料の構造を中心的に扱う学術領域であり、X線・中性子線・電子線等に関わる量子ビーム科学分野から様々な基盤技術が提供されている。
得られた実験データの解析に用いられる様々な手法やソフトウェア、加えて、より一般に結晶構造の記述に関係する議論は、数理結晶学とも呼ばれ、数学者にとっては比較的入りやすい。
話者がこの分野に参入した直接のきっかけは、応用代数分野とよく類似した様々な問題が残っていたことであるので、その辺の数学の話を主に紹介する。得られた定理は、観測誤差を伴うデータ処理において、数学の厳密さをどのように解析アルゴリズムの成功率に反映させるかという問題に直結するもので、話者や高エネ研が配布している結晶学ソフトウェアの基盤となっている。
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_tomiyasu.pdf

2017年02月20日(月)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
Jørgen Ellegaard Andersen 氏 (Aarhus University)
The Verlinde formula for Higgs bundles (ENGLISH)
[ 講演概要 ]
In this talk we will present a Verlinde formula for the quantization of the Higgs bundle moduli spaces and stacks for any simple and simply-connected group. We further present a Verlinde formula for the quantization of parabolic Higgs bundle moduli spaces and stacks. We will explain how all these dimensions fit into a one parameter family of 2D TQFT's, encoded in a one parameter family of Frobenius algebras, which we will construct.

2017年02月16日(木)

応用解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 128号室
Danielle Hilhorst 氏 (CNRS / University of Paris-Sud)
Diffusive and inviscid traveling wave solution of the Fisher-KPP equation
(ENGLISH)
[ 講演概要 ]
Our purpose is to study the limit of traveling wave solutions of the Fisher-KPP equation as the diffusion coefficient tends to zero. More precisely, we consider monotone traveling waves which connect the stable steady state to the unstable one. It is well known that there exists a positive constant c* such that there does not exist any traveling wave solution if c < c* and a unique (up to translation) monotone traveling wave solution of wave speed c for each c > c*.

We consider the corresponding inviscid ordinary differential equation where the diffusion coefficient is equal to zero and show that it possesses a unique traveling wave solution. We then fix c > 0 arbitrary and prove the convergence of the travelling wave of the parabolic equation with velocity c to that of the corresponding traveling wave solution of the inviscid problem.

Further research should involve a similar problem for monostable systems.

This is joint work with Yong Jung Kim.

2017年02月13日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
Qi'an Guan 氏 (北京大学)
A Characterization of regular points by Ohsawa-Takegoshi Extension Theorem (ENGLISH)
[ 講演概要 ]
In this talk, we will present that the germ of a complex analytic set at the origin in $\mathbb{C}^n$ is regular if and only if the related Ohsawa-Takegoshi extension theorem holds. We also present a necessary condition of the $L^2$ extension of bounded holomorphic sections from singular analytic sets.
This is joint work with Dr. Zhenqian Li.

東京確率論セミナー

16:50-18:20   数理科学研究科棟(駒場) 128号室
横山 聡 氏 (東京大学大学院数理科学研究科)
Sharp interface limit for stochastically perturbed mass conserving Allen-Cahn equation

2017年02月10日(金)

代数幾何学セミナー

14:00-15:30   数理科学研究科棟(駒場) 002号室
Chenyang Xu 氏 (Beijing International Center of Mathematics Research)
Stability theory of a klt singularity II (English)
[ 講演概要 ]
In higher dimensional geometry, it has been known that from many perspectives a log terminal singularity is a local analogue of Fano varieties. Many statements of Fano varieties have a counterpart for log terminal singularities. One central topic on the geometry of a Fano variety is its stability which in particular reflects whether the Fano variety carries a canonical metric. In the talks, we will discuss a series of recent works started by Chi Li, and then by Harold Blum, Yuchen Liu and myself, in which we want to establish an algebro-geometric stability theory of a fixed log terminal singularity. Inspired by the study from differential geometry, (e.g. metric tangent cone, Sasakian-Einstein metric), for any log terminal singularity, we investigate the valuation which has the minimal normalized volume. Our goal is to prove various properties of this valuation which enable us to degenerate the singularity to a K-semistable T-singularity (with a torus action) in the Sasakian-Einstein sense.

2017年02月09日(木)

離散数理モデリングセミナー

17:30-18:30   数理科学研究科棟(駒場) 056号室
Dinh Tran 氏 (University of New South Wales, Sydney, Australia)
Growth of degrees of lattice equations and its signatures over finite fields (ENGLISH)
[ 講演概要 ]
We study growth of degrees of autonomous and non-autonomous lattice equations, some of which are known to be integrable. We present a conjecture that helps us to prove polynomial growth of a certain class of equations including $Q_V$ and its non-autonomous generalization. In addition, we also study growth of degrees of several non-integrable equations. Exponential growth of degrees of these equations is also proved subject to a conjecture. Our technique is to determine the ambient degree growth of the equations and a conjectured growth of their common factors at each vertex, allowing the true degree growth to be found. Moreover, our results can also be used for mappings obtained as periodic reductions of integrable lattice equations. We also study signatures of growth of degrees of lattice equations over finite fields.

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 次へ >