過去の記録

過去の記録 ~05/21本日 05/22 | 今後の予定 05/23~

代数学コロキウム

17:30-18:30   数理科学研究科棟(駒場) 056号室
安田正大 氏 (大阪大学)
Integrality of $p$-adic multiple zeta values and application to finite multiple zeta values.
(English)
[ 講演概要 ]
I will give a proof of an integrality of p-adic multiple zeta values. I would also like to explain how it can be applied to give an upper bound of the dimension of finite multiple zeta values.
(本講演は「東京北京パリ数論幾何セミナー」として, インターネットによる東大数理, Morningside Center of MathematicsとIHESの双方向同時中継で行います.)

2015年04月07日(火)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
植田 一石 氏 (東京大学大学院数理科学研究科)
Potential functions for Grassmannians (JAPANESE)
[ 講演概要 ]
Potential functions are Floer-theoretic invariants
obtained by counting Maslov index 2 disks
with Lagrangian boundary conditions.
In the talk, we will discuss our joint work
with Yanki Lekili and Yuichi Nohara
on Lagrangian torus fibrations on the Grassmannian
of 2-planes in an n-space,
the potential functions of their Lagrangian torus fibers,
and their relation with mirror symmetry for Grassmannians.

Lie群論・表現論セミナー

16:30-18:00   数理科学研究科棟(駒場) 122号室
Bent Orsted 氏 (Aarhus University)
Branching laws and elliptic boundary value problems
(English)
[ 講演概要 ]
Classically the Poisson transform relates harmonic functions in the complex upper half plane to their boundary values on the real axis. In some recent work by Caffarelli et al. some new generalizations of this appears in connection with the fractional Laplacian. In this lecture we
shall explain how the symmetry-breaking operators introduced by T. Kobayashi for studying branching laws may shed new light on the situation for elliptic boundary value problems. This is based on joint work with J. M\"o{}llers and G. Zhang.

2015年04月06日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 126号室
吉川 謙一 氏 (京都大学)
Analytic torsion for K3 surfaces with involution (Japanese)
[ 講演概要 ]
In 2004, I introduced a holomorphic torsion invariant for 2-elementary K3 surfaces, i.e., K3 surfaces with involution. In the talk, I will report a recent progress in this invariant. Namely, for all possible deformation types, the holomorphic torsion invariant viewed as a function on the moduli space, is expressed as the product of an explicit Borcherds lift and an explicit Siegel modular form. If time permits, I will interpret the result in terms of the BCOV invariant, i.e., the genus-one string amplitude in B-model, for Calabi-Yau threefolds of Borcea-Voisin. This is a joint work with Shouhei Ma.

2015年03月24日(火)

トポロジー火曜セミナー

17:00-18:30   数理科学研究科棟(駒場) 056号室
Mina Aganagic 氏 (University of California, Berkeley)
Knots and Mirror Symmetry (ENGLISH)
[ 講演概要 ]
I will describe two conjectures relating knot theory and mirror symmetry. One can associate, to every knot K, one a Calabi-Yau manifold Y(K), which depends on the homotopy type of the knot only. The first conjecture is that Y(K) arises by a generalization of SYZ mirror symmetry, as mirror to the conifold, O(-1)+O(-1)->P^1. The second conjecture is that topological string provides a quantization of Y(K) which leads to quantum HOMFLY invariants of the knot. The conjectures are based on joint work with C. Vafa and also with T.Ekholm, L. Ng.

Lie群論・表現論セミナー

18:00-19:30   数理科学研究科棟(駒場) 126号室
Piotr Pragacz 氏 (Institute of Mathematics, Polish Academy of Sciences)
A Gysin formula for Hall-Littlewood polynomials
[ 講演概要 ]
Schubert calculus on Grassmannians is governed by Schur S-functions, the one on Lagrangian Grassmannians by Schur Q-functions. There were several attempts to give a unifying approach to both situations.
We propose to use Hall-Littlewood symmetric polynomials. They appeared implicitly in Hall's study of the combinatorial lattice structure of finite abelian p-groups and in Green's calculations of the characters of GL(n) over finite fields; they appeared explicitly in the work of Littlewood on some problems in representation theory.
With the projection in a Grassmann bundle, there is associated its Gysin map, induced by pushing forward cycles (topologists call it "integration along fibers").
We state and prove a Gysin formula for HL-polynomials in these bundles. We discuss its two specializations, giving better insights to previously known formulas for Schur S- and P-functions.

2015年03月20日(金)

数値解析セミナー

13:30-15:00   数理科学研究科棟(駒場) 122号室
Gadi Fibich 氏 (Tel Aviv University)
Asymmetric Auctions (English)
[ 講演概要 ]
Auctions are central to the modern economy, both on-line and off-line. A fundamental result in auction theory is that when bidders are symmetric (identical), then under quite general conditions, all auctions are revenue equivalent. While it is known that this result does not hold when bidders are asymmetric, the effect of bidders' asymmetry is poorly understood, since asymmetric auctions are much harder to analyze.

In this talk I will discuss the mathematical theory of asymmetric auctions. I will focus on asymmetric first-price auctions, where the mathematical model is given by a nonstandard system of $n$ nonlinear ordinary differential equations, with $2n$ boundary conditions and a free boundary. I will present various analytic and numerical approaches for this system. Then I will present some recent results on asymptotic revenue equivalence of asymmetric auctions.

Joint work with A. Gavious and N. Gavish.

2015年03月19日(木)

FMSPレクチャーズ

9:00-11:00   数理科学研究科棟(駒場) 大講義室号室
これらの講義はPrinceton-Tokyo workshop on Geometric Analysisの一環として3/17~19に行われます。
Matthew Gursky 氏 (Univ. Nortre Dame) 9:00-9:50
Critical metrics for quadratic Riemannian functionals in dimension four (ENGLISH)
[ 講演概要 ]
In these lectures I will give an overview of a proof of existence, via gluing methods, of metrics which are critical points of quadratic Riemannian functionals. This is a joint project with J. Viaclovsky.
These are functionals on the space of metrics which are given by integrals of quadratic polynomials in the curvature tensor. Our approach is to construct these metrics on connected sums of Einstein four-manifolds, specifically the Fubini-Study metric on CP2 and the product metric on S2 X S2. Using these metrics in various gluing configurations, toric-invariant critical metrics are found on connected sums for a specific quadratic functional, which depends on the global geometry of the factors.
I will also explain some recent work which attempts to understand the moduli space of critical metrics.
[ 講演参考URL ]
https://sites.google.com/site/princetontokyo/mini-courses
Gábor Székelyhidi 氏 (Univ. Nortre Dame) 10:10-11:00
Hessian type equations on compact Kähler manifolds (ENGLISH)
[ 講演概要 ]
I will discuss a priori estimates for a general class of nonlinear equations on compact Kähler manifolds. This unifies and generalizes several previous works on specific equations, such as the complex Monge-Ampère, Hessian, and inverse Hessian equations.
[ 講演参考URL ]
https://sites.google.com/site/princetontokyo/mini-courses

2015年03月18日(水)

FMSPレクチャーズ

9:00-11:00   数理科学研究科棟(駒場) 大講義室号室
これらの講義はPrinceton-Tokyo workshop on Geometric Analysisの一環として3/17~19に行われます。
Matthew Gursky 氏 (Univ. Nortre Dame) 9:00-9:50
Critical metrics for quadratic Riemannian functionals in dimension four (ENGLISH)
[ 講演概要 ]
In these lectures I will give an overview of a proof of existence, via gluing methods, of metrics which are critical points of quadratic Riemannian functionals. This is a joint project with J. Viaclovsky.
These are functionals on the space of metrics which are given by integrals of quadratic polynomials in the curvature tensor. Our approach is to construct these metrics on connected sums of Einstein four-manifolds, specifically the Fubini-Study metric on CP2 and the product metric on S2 X S2. Using these metrics in various gluing configurations, toric-invariant critical metrics are found on connected sums for a specific quadratic functional, which depends on the global geometry of the factors.
I will also explain some recent work which attempts to understand the moduli space of critical metrics.
[ 講演参考URL ]
https://sites.google.com/site/princetontokyo/mini-courses
Gábor Székelyhidi 氏 (Univ. Nortre Dame) 10:10-11:00
Hessian type equations on compact Kähler manifolds (ENGLISH)
[ 講演概要 ]
I will discuss a priori estimates for a general class of nonlinear equations on compact Kähler manifolds. This unifies and generalizes several previous works on specific equations, such as the complex Monge-Ampère, Hessian, and inverse Hessian equations.
[ 講演参考URL ]
https://sites.google.com/site/princetontokyo/mini-courses

2015年03月17日(火)

FMSPレクチャーズ

13:30-15:00, 15:30-17:30   数理科学研究科棟(駒場) Balcony A, Kavli IPMU号室
3/16 13:30-15:00, 15:30-17:30 3/17 13:30-15:00, 15:30-17:30 の4講義 Kavli IPMU(柏キャンパス)での開催
入谷 寛 氏 (京都大学理学研究科)
シフト作用素とトーリックミラー対称性 (ENGLISH)
[ 講演概要 ]
近年,同変量子コホモロジーに対するシフト作用素が
Braverman, Maulik, Okounkov, Pandharipande らにより導入された.
これはSeidel表現の同変持ち上げであり,異なる同変変数の値
に対する量子接続の間のintertwinerを与える.本連続講演では,
このシフト作用素がトーリック多様体のミラーを本質的に復元する
ことを説明したい.具体的には

1. Giventalのミラー定理
2. Landau-Ginzburgポテンシャルと原始形式
3. 拡張されたI関数

がシフト作用素の基本的な性質から得られることを示す.
またガンマ整構造がシフト作用素の決める差分方程式
の解を与えていることにも触れたい.
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Iritani.pdf

FMSPレクチャーズ

9:00-11:00   数理科学研究科棟(駒場) 大講義室号室
これらの講義はPrinceton-Tokyo workshop on Geometric Analysisの一環として3/17~19に行われます。
Matthew Gursky 氏 (Univ. Nortre Dame) 9:00-9:50
Critical metrics for quadratic Riemannian functionals in dimension four (ENGLISH)
[ 講演概要 ]
In these lectures I will give an overview of a proof of existence, via gluing methods, of metrics which are critical points of quadratic Riemannian functionals. This is a joint project with J. Viaclovsky.
These are functionals on the space of metrics which are given by integrals of quadratic polynomials in the curvature tensor. Our approach is to construct these metrics on connected sums of Einstein four-manifolds, specifically the Fubini-Study metric on CP2 and the product metric on S2 X S2. Using these metrics in various gluing configurations, toric-invariant critical metrics are found on connected sums for a specific quadratic functional, which depends on the global geometry of the factors.
I will also explain some recent work which attempts to understand the moduli space of critical metrics.
[ 講演参考URL ]
https://sites.google.com/site/princetontokyo/mini-courses
Gábor Székelyhidi 氏 (Univ. Nortre Dame) 10:10-11:00
Hessian type equations on compact Kähler manifolds (ENGLISH)
[ 講演概要 ]
I will discuss a priori estimates for a general class of nonlinear equations on compact Kähler manifolds. This unifies and generalizes several previous works on specific equations, such as the complex Monge-Ampère, Hessian, and inverse Hessian equations.
[ 講演参考URL ]
https://sites.google.com/site/princetontokyo/mini-courses

2015年03月16日(月)

FMSPレクチャーズ

13:30-15:00, 15:30-17:30   数理科学研究科棟(駒場) Balcony A, Kavli IPMU号室
3/16 13:30-15:00, 15:30-17:30 3/17 13:30-15:00, 15:30-17:30 の4講義 Kavli IPMU(柏キャンパス)での開催
入谷 寛 氏 (京都大学理学研究科)
シフト作用素とトーリックミラー対称性 (ENGLISH)
[ 講演概要 ]
近年,同変量子コホモロジーに対するシフト作用素が
Braverman, Maulik, Okounkov, Pandharipande らにより導入された.
これはSeidel表現の同変持ち上げであり,異なる同変変数の値
に対する量子接続の間のintertwinerを与える.本連続講演では,
このシフト作用素がトーリック多様体のミラーを本質的に復元する
ことを説明したい.具体的には

1. Giventalのミラー定理
2. Landau-Ginzburgポテンシャルと原始形式
3. 拡張されたI関数

がシフト作用素の基本的な性質から得られることを示す.
またガンマ整構造がシフト作用素の決める差分方程式
の解を与えていることにも触れたい.
[ 講演参考URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Iritani.pdf

2015年03月13日(金)

談話会・数理科学講演会

14:00-15:00   数理科学研究科棟(駒場) 大講義室号室
織田孝幸 氏 (東京大学大学院数理科学研究科)
モジュラー多様体のコホモロジー、保型形式のL-関数、Lie群の球関数
[ 講演概要 ]
古典領域の算術商のコホモロジー類は調和的な保型形式の和で表現される。調和的な保型形式のL-関数を調べた事例に関して、対応する球関数と絡めていくつかの結果を概観する。ある種のアファイン対称対の「第2種球関数」から生成されるポアンカレ級数が与えるGreen関数に関して概観し、その意義を説明する。最後にホモロジー群を調べる、ある方向を提案する。
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~takayuki/index-j.html

談話会・数理科学講演会

16:30-17:30   数理科学研究科棟(駒場) 大講義室号室
楠岡成雄 氏 (東京大学大学院数理科学研究科)
研究と人との出会い
(JAPANESE)
[ 講演概要 ]
これまで40年近く行ってきた研究を振り返ってみると、確率論及びその周辺の色々な話題について研究してきた。その研究のきっかけは何であったかを思い返してみると、大学時代からの人との出会いに大きく影響されてきたように思う。「私の確率論研究の履歴書」ともいうべき形で、どのような研究をしてきたかをおおざっぱに述べると共に、そしてそのきっかけとなった人との出会いについて述べていきたい。具体的な数式が出てくるのは数学の話は最後の10分間にのみに出てくるようにする予定。
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/teacher/kusuoka.html

談話会・数理科学講演会

15:10-16:10   数理科学研究科棟(駒場) 大講義室号室
宮岡洋一 氏 (東京大学大学院数理科学研究科)
Bogomolov 不等式と Miyaoka-Yau 不等式 (JAPANESE)
[ 講演概要 ]
半安定ベクトル束に対する Bogomolov 不等式や,一般型多様体に対する Miyaoka-Yau 不等式は,第2Chern 類を第1Chern 類の2乗の定数倍で下から評価する不等式である.この講演では,この2つの不等式について,その誕生,意味付けと様々な応用,そしてHiggs 束を導入することによって二つの不等式が一つに統合できるという,最近の結果について解説する.
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/teacher/miyaoka.html

2015年03月10日(火)

トポロジー火曜セミナー

16:30-18:00   数理科学研究科棟(駒場) 056号室
Tea: 16:00-16:30 Common Room ; This seminar will be held as FMSP Lectures.
Andrei Pajitnov 氏 (Univ. de Nantes)
Arnold conjecture, Floer homology,
and augmentation ideals of finite groups.
(ENGLISH)
[ 講演概要 ]
Let H be a generic time-dependent 1-periodic
Hamiltonian on a closed weakly monotone
symplectic manifold M. We construct a refined version
of the Floer chain complex associated to (M,H),
and use it to obtain new lower bounds for the number P(H)
of the 1-periodic orbits of the corresponding hamiltonian
vector field. We prove in particular that
if the fundamental group of M is finite
and solvable or simple, then P(H)
is not less than the minimal number
of generators of the fundamental group.

This is joint work with Kaoru Ono.

2015年02月24日(火)

博士論文発表会

15:00-16:15   数理科学研究科棟(駒場) 128号室
小池 祐太 氏 (情報・システム研究機構 統計数理研究所)
Covariance Estimation from Ultra-High-Frequency Date(超高頻度データに対する共分散推定) (JAPANESE)

2015年02月23日(月)

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 122号室
Zhenghan Wang 氏 (Microsoft Research Station Q)
Classification of (2+1)-TQFTs and its applications to physics and quantum computation (English)

2015年02月19日(木)

東京無限可積分系セミナー

13:30-17:00   数理科学研究科棟(駒場) 002号室
辻俊輔 氏 (東大数理) 13:30-15:00
スケイン代数と写像類群 (JAPANESE)
[ 講演概要 ]
向き付けられた曲面と閉区間[0,1]の積多様体のスケイン代数とスケイン加群にのフィルトレーションを定義して、またそのフィルトレーションにより、完備スケイン代数と完備スケイン加群を定義した。完備スケイン代数による完備スケイン加群への作用により、デーン・ツィストの公式を得た。その応用として、ジョンソン核のスケイン加群への作用をスケイン代数で記述した。
野崎雄太 氏 (東大数理) 15:30-17:00
LMO関手の拡張 (JAPANESE)
[ 講演概要 ]
Cheptea-葉廣-Massuyeau は,閉 3 次元多様体の LMO 不変量の拡張として LMO 関手を導入した.LMO 関手は「高々 1 個の境界成分を持つ曲面の間の Lagrangian コボルディズムを射とするモノイダル圏」から「top-substantial Jacobi 図の形式的級数を射とするモノイダル圏」へのテンソル積を保つ関手である.本講演では,曲面が任意個数の境界成分を持つ場合に対する LMO 関手の拡張を紹介する.さらにその d 次の項が d 次の有限型不変量であることを説明する.

統計数学セミナー

16:30-17:40   数理科学研究科棟(駒場) 052号室
Dobrislav Dobrev 氏 (Board of Governors of the Federal Reserve System, Division of International Finance)
TBA
[ 講演概要 ]
TBA

2015年02月18日(水)

代数学コロキウム

16:40-17:40   数理科学研究科棟(駒場) 056号室
Piotr Achinger 氏 (University of California, Berkeley)
Wild ramification and $K(\pi, 1)$ spaces (English)
[ 講演概要 ]
A smooth variety in characteristic zero is Zariski-locally a $K(\pi,1)$ space, i.e., has trivial higher homotopy groups. This fact is of crucial importance in Artin's proof that $\ell$-adic cohomology agrees with singular cohomology over $\mathbb{C}$. The characteristic $p$ variant of this is not known --- we do not even know whether the affine plane is a $K(\pi, 1)$ in positive characteristic! I will show how to reduce this question to a ``Bertini-type’' statement regarding wild ramification of $\ell$-adic local systems on affine spaces, which might be of independent interest. I will verify this statement in the special case of local systems of rank $1$ and speculate on how one might treat the general case.

数値解析セミナー

14:30-16:00   数理科学研究科棟(駒場) 002号室
浜向直 氏 (北海道大学大学院理学研究院)
Harnack inequalities for supersolutions of fully nonlinear elliptic difference and differential equations (日本語)
[ 講演概要 ]
格子点上の完全非線形楕円型差分方程式の非負優解に対するハルナック型不等式について解説する。ここで導く評価式は、あらゆる優解に対して成り立つ代わりに、ハルナック定数が格子点上のグラフ距離に依存している。証明のために、弱ハルナック不等式を示すときに用いられるバリア関数の取り方を工夫する。また同じ証明のアイデアを、ユークリッド空間上の偏微分方程式に対して適用したときに得られるハルナック型不等式についても紹介したい。

数値解析セミナー

16:30-18:00   数理科学研究科棟(駒場) 002号室
福島登志夫 氏 (国立天文台)
Precise and fast computation of elliptic integrals and elliptic functions (日本語)
[ 講演概要 ]
Summarized is the recent progress of the methods to compute (i) Legendre's normal form complete elliptic integrals of all three kinds, $K(m)$, $E(m)$, and $\Pi(n|m)$, (ii) Legendre's normal form incomplete elliptic integrals of all three kinds, $F(\phi|m)$, $E(\phi|m)$, and $\Pi(\phi,n|m)$, (iii) Jacobian elliptic functions, $\mathrm{sn}(u|m)$, $\mathrm{cn}(u|m)$, $\mathrm{dn}(u|m)$, and $\mathrm{am}(u|m)$, (iv) the inverse functions of $K(m)$ and $E(m)$, $m_K(K)$ and $m_E(E)$, (v) the inverse of a general incomplete elliptic integral in Jacobi's form, $G(\mathrm{am}(u|m),n|m)$, with respect to $u$, and (vi) the partial derivatives of $\mathrm{sn}(u|m)$, $\mathrm{cn}(u|m)$, $dn(u|m)$, $E(\mathrm{am}(u|m)|m)$, and $\Pi(\mathrm{am}(u|m),n|m)$ with respect to $u$ and those of $F(\phi|m)$, $E(\phi|m)$, and $\Pi(\phi,n|m)$ with respect to $\phi$. In order to avoid the information loss when $n\ll 1$ and/or $m \ll 1$, focused are the associate incomplete elliptc integrals defined as $B(\phi|m)=[E(\phi|m)-(1-m)F(\phi|m)]/m$, $D(\phi|m)=[F(\phi|m)-E(\phi|m)]/m$, and $J(\phi,n|m)=[\Pi(\phi,n|m)-F(\phi|m)]/n$, and their complete versions, $B(m)=[E(m)-(1-m)K(m)]/m$, $D(m)=[K(m)-E(m)]/m$, and $J(n|m)=[\Pi(n|m)-K(m)]/n$. The main techniques used are (i) the piecewise approximation for single variable functions as $K(m)$, and (ii) the combination of repeated usage of the half and double argument transformations and the truncated Maclaurin series expansions with respect to $u = F(\phi|m)$. The new methods are of the full double precision accuracy without any chance of cancellation against small input arguments. They run significantly faster than the existing methods: (i) 2.5 times faster than Cody's Chebyshev polynomial approximations for $K(m)$ and $E(m)$, (ii) 2.5 times faster than Bulirsch's cel for $\Pi(n|m)$, (iii) slightly faster than Bulirsch's el1 for $F(\phi|m)$, (iv) 3.5 times faster than Carlson's $R_D$ for $E(\phi|m)$, (v) 3.5 times faster than Carlson's $R_C$, $R_D$, $R_F$, and $R_J$ for $\Pi(\phi,n|m)$, and (vi) 1.5 times faster than Bulirsch's \texttt{sncndn} for $\mathrm{sn}(u|m)$, $\mathrm{cn}(u|m)$, and $\mathrm{dn}(u|m)$.

2015年02月10日(火)

博士論文発表会

9:30-10:45   数理科学研究科棟(駒場) 118号室
三原 朋樹 氏 (東京大学大学院数理科学研究科)
On a new geometric construction of a family of Galois representations associated to modular forms
(保型形式に付随するガロア表現の族の新たな幾何的構成について) (JAPANESE)

博士論文発表会

11:00-12:15   数理科学研究科棟(駒場) 118号室
田中 雄一郎 氏 (東京大学大学院数理科学研究科)
VISIBLE ACTIONS OF REDUCTIVE ALGEBRAIC GROUPS ON COMPLEX ALGEBRAIC VARIETIES(簡約代数群の複素代数多様体への可視的作用について) (JAPANESE)

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 次へ >