過去の記録

過去の記録 ~02/23本日 02/24 | 今後の予定 02/25~

2007年01月18日(木)

講演会

13:00-14:30   数理科学研究科棟(駒場) 056号室
連続講演 1月18日, 19日
連絡先: 儀我美一

Alex Mahalov 氏 (Arizona State University)
3D Navier-Stokes and Euler Equations with Uniformly Large Initial Vorticity: Global Regularity and Three-Dimensional Euler Dynamics
[ 講演概要 ]
We prove existence on infinite time intervals of regular solutions to the 3D Navier-Stokes Equations for fully three-dimensional initial data characterized by uniformly large vorticity; smoothness assumptions for initial data are the same as in local existence theorems. There are no conditional assumptions on the properties of solutions at later times, nor are the global solutions close to any 2D manifold. The global existence is proven using techniques of fast singular oscillating limits, Lemmas on restricted convolutions and the Littlewood-Paley dyadic decomposition. In the second part of the talk, we analyze regularity and dynamics of the 3D Euler equations in cylindrical domains with weakly aligned large initial vorticity.

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 126号室
酒匂宏樹 氏 (東大数理)
Twisted Bernoulli shift actions of $Z^2 \\rtimes SL(2,Z)$

応用解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 056号室
LIANG Xing 氏 (東京大学大学院数理科学研究科 / 日本学術振興会)
Asymptotic Speeds of Spread and Traveling Waves for Monotone Semiflows with Applications
[ 講演概要 ]
The theory of asymptotic speeds of spread and monotone traveling waves is established for a class of monotone discrete and continuous-time semiflows and is applied to a functional differential equation with diffusion, a time-delayed lattice population model and a reaction-diffusion equation in an infinite
cylinder.

2007年01月17日(水)

PDE実解析研究会

10:30-11:30   数理科学研究科棟(駒場) 056号室
Alex Mahalov 氏 (Department of Mathematics and Statistics, Department of Mechanical and Aerospace Engineering, Program in Environmental Fluid Dynamics, Arizona State University )
Fast Singular Oscillating Limits of Hydrodynamic PDEs: application to 3D Euler, Navier-Stokes and MHD equations
[ 講演概要 ]
Methods of harmonic analysis and dispersive properties are applied
to 3d hydrodynamic equations to obtain long-time and/or global existence results to the Cauchy problem for special classes of 3d initial data. Smoothness assumptions for initial data are the same as in local existence theorems. Techniques for fast singular oscillating limits are used and large and/or infinite time regularity is obtained by bootstrapping from global regularity of the limit equations.
The latter gain regularity from 3d nonlinear cancellation of oscillations.
Applications include Euler, Navier-Stokes, Boussinesq and MHD equations, in infinite, periodic and bounded cylindrical domains.
[ 講演参考URL ]
http://coe.math.sci.hokudai.ac.jp/

講演会

15:30-17:00   数理科学研究科棟(駒場) 470号室
確率論特別セミナー
担当 舟木直久

市原直幸 氏 氏 (大阪大学基礎工学研究科)
Hamilton-Jacobi方程式の漸近解とその周辺の話題

統計数学セミナー

16:20-17:30   数理科学研究科棟(駒場) 128号室
玉置 健一郎 氏 (早稲田大学)
Second order optimality for estimators in time series regression models
[ 講演概要 ]
We consider the second order asymptotic properties of an efficient frequency domain regression coefficient estimator $\\hat{\\beta}$ proposed by Hannan (1963). This estimator is a semiparametric estimator based on nonparametric spectral estimators. We derive the second order Edgeworth expansion of the distribution of $\\hat{\\beta}$. Then it is shown that the second order asymptotic properties are independent of the bandwidth choice for residual spectral estimator, which implies that $\\hat{\\beta}$ has the same rate of convergence as in regular parametric estimation. This is a sharp contrast with the general semiparametric estimation theory. We also examine the second order Gaussian efficiency of $\\hat{\\beta}$. Numerical studies are given to confirm the theoretical results.
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~kengok/statseminar/2006/17.html

講演会

16:30-18:00   数理科学研究科棟(駒場) 122号室
Mourad Bellassoued 氏 (Faculte des Sciences de Bizerte)
Recovering a potential in the wave equation via Dirichlet-to-Neumann map.

2007年01月16日(火)

トポロジー火曜セミナー

16:30-18:30   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
笹平 裕史 氏 (東京大学大学院数理科学研究科) 16:30-17:30
An $SO(3)$-version of $2$-torsion instanton invariants
[ 講演概要 ]
We construct invariants for simply connected, non-spin $4$-manifolds using torsion cohomology classes of moduli spaces of ASD connections on $SO(3)$-bundles. The invariants are $SO(3)$-version of Fintushel-Stern's $2$-torsion instanton invariants. We show that this $SO(3)$-torsion invariant of $2CP^2 \\# -CP^2$ is non-trivial, while it is known that any invariants of $2CP^2 \\# - CP^2$ coming from the Seiberg-Witten theory are trivial
since $2CP^2 \\# -CP^2$ has a positive scalar curvature metric.
山口 祥司 氏 (東京大学大学院数理科学研究科) 17:30-18:30
On the non-acyclic Reidemeister torsion for knots
[ 講演概要 ]
The Reidemeister torsion is an invariant of a CW-complex and a representation of its fundamental group. We consider the Reidemeister torsion for a knot exterior in a homology three sphere and a representation given by the composition of an SL(2, C)- (or SU(2)-) representation of the knot group and the adjoint action to the Lie algebra.
We will see that this invariant is expressed by the differential coefficient of the twisted Alexander invariant of the knot and investigate some properties of the invariant by using this relation.

講演会

16:30-18:00   数理科学研究科棟(駒場) 122号室
Mourad Bellassoued 氏 (Faculte des Sciences de Bizerte)
Recovering a potential from partial Cauchy data for the Schrödinger equation.

2007年01月15日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
竹内 潔 氏 (筑波大学数理物質科学研究科)
Lagragian constructions for various topological invariants of algebraic varieties (東大数理、松井優氏との共同研究)

講演会

16:30-18:00   数理科学研究科棟(駒場) 122号室
連続講演1月15日(月),16日(火)、17日(水)
「魅力ある大学院教育」イニシアティブにより以下の講演を行います。
担当 山本昌宏

Mourad Bellassoued 氏 (Faculte des Sciences de Bizerte)
Recovering a potential from full Cauchy data for the Schrödinger equation.
[ 講演概要 ]
In this lectures we survey recent progress on the problem of determining a potential by measuring the Dirichlet to Neumann map
for the associated Schr\\"odinger equation or wave equation. We make emphasis on the new results obtained with M.Yamamoto which is concerned with the case that the measurements are made on a strict
subset of the boundary for the wave equation.

講演会

16:00-17:30   数理科学研究科棟(駒場) 056号室
Antonio DeSimone 氏 (SISSA (International School for Advanced Studies))
Analysis of physical systems involving multiple spatial scales: some case studies
[ 講演概要 ]
Variational methods have recently proved to be a powerful tool in deriving macroscopic models for phenomena whose physics is decided at the sub-miccron scale.
We will use two case studies to illustrate this point, namely, that of liquid crystal elastomers and that of superhydrophobic surfaces.

Liquid crystal elastomers are solids which combine the optical properties of liquid crystals with the mechanical properties of rubbery solids. They display phase transformations, material instabilities, and microstructures in a way simalr to shape-memory alloys.

The richness of the underlying material symmetries makes the mathematical analysis of this system particularly rewarding. Recent progress, ranging from analytical relaxation results to numerical simulations of the macroscopic mechanical response will be reviewed.

2007年01月12日(金)

談話会・数理科学講演会

16:30-17:30   数理科学研究科棟(駒場) 123号室
お茶&Coffee&お菓子: 16:00~16:30(コモンルーム)
鳥海光弘 氏 (東京大学・大学院新領域創成科学研究科)
地球変動にまつわるおかしな現象、2題
1、プレート境界で砂と泥に起こる雪だるま現象
2、プレート境界地震は確率共鳴か
[ 講演概要 ]
地球科学における興味ある現象2題‐巨大固液混合体はどのように振舞うか。
最近の固体地球科学の大きな関心はプレート境界付近における固体・流体混合物質の挙動と境界型地震破壊やすべり運動、火山活動などとの関係である。プレート境界は地球上でもっとも活動的な部分であり、地球表層部分と地球内部とのエネルギー交換や物質交換が最も多く行われる部分でもある。とくに日本海溝や伊豆マリアナ海溝、南海トラフ、琉球海溝などの沈み込み境界部付近の地震波探査、電磁気探査、ボーリング掘削、などの研究がんたくさんの新しい事実を描き出している。
今回興味ある話として紹介するのは、プレート沈み込み境界では、海溝底で堆積した砂泥層が海洋プレートに乗ってプレート境界に引きずり込まれ、排水する過程で砂と泥に分離し、巨大な砂の塊が泥の層の中に分散する現象である。この現象の数理は砂が水を保持して流動化する過程と、プレート境界に持ち込まれた含水地質体が長期にわたりせん断変形を受ける過程で、砂の部分が次第に雪だるま状に衝突・合体する過程で示され、歪により巨大化する砂の塊は数キロに達することもありえる。こうして出来るプレート境界の構造は、大きさ分布がべき的になる砂の塊が境界に沿って拡がった泥の層内にクラスター上に分布するパターンを形成するだう。こうした構造形成はプレート境界部の力学特性を決めているだろう。
第2の話題はプレート境界における破壊の確率共鳴というテーマである、最近の研究ではプレート境界において発生する中小規模の地震はrepeating earthquakesまたはsimilar earthquakesとも呼ばれ、同一場所で繰り返しおこるせん断クラックである。そのサイズは0.01‐1km程度である。一方、巨大地震はこれに比べて大きく100kmx10km以上の破壊面をもつ。しかしこの巨大さにもかかわらず、やはり同一箇所が繰り返し破壊し、これをアスペリティと呼んでいる。一方、こうしたアスペリティの周囲は非アスペリティとよばれ、ゆっくりと滑っていて、流体を保持した岩石が分布し、低密度となっている。問題は大小の規模の破壊がどのような関係にあるのかという古典的なテーマである。プレート境界面上のいろいろな大きさのアスペリティが互いに重ならないであり続けているのか、もしくは互いに重なっているのかは重大である。観測的には巨大地震の破壊面は他の小さい破壊面と重なっている。つまり、境界面では、中小の多数のアスペリティが確率的に活動していて、巨大破壊の時にはそれらのアスペリティが一斉に動き出すということであろう。今回の話題提供ではこうした現象を確率共鳴として考えてみよう。

2007年01月11日(木)

講演会

16:00-17:30   数理科学研究科棟(駒場) 123号室
Oleg Yu. Emanouilov 氏 (Colorado State University)
Some Problems of Global Controllability of Burgers Equation and Navier-Stokes system.

2007年01月10日(水)

講演会

16:00-17:30   数理科学研究科棟(駒場) 118号室
Oleg Yu. Emanouilov 氏 (Colorado State University)
Some Problems of Global Controllability of Burgers Equation and Navier-Stokes system.

2007年01月09日(火)

講演会

16:00-17:30   数理科学研究科棟(駒場) 118号室
連続講演 1月9日,10日,11日
「魅力ある大学院教育」イニシアティブにより以下の講演を行います。
担当 山本昌宏

Oleg Yu. Emanouilov 氏 (Colorado State University)
Some Problems of Global Controllability of Burgers Equation and Navier-Stokes system.
[ 講演概要 ]
We show that 1-D Burgers equation is globally uncontrollable with control acting at two endpoints. Then we establish the global controllability of the 2-D Burgers equation. Finally we show that for 2-D Navier-Stokes system the problem of global exact controllability is solvable for the dense set of the initial data with a control acting on part of the boundary.

2006年12月28日(木)

作用素環セミナー

16:30-18:00   数理科学研究科棟(駒場) 126号室
Roberto Longo 氏 (University of Rome)
Operator Algebras and Conformal Field Theory II

2006年12月25日(月)

保型形式の整数論月例セミナー

13:30-16:00   数理科学研究科棟(駒場) 123号室
研究集会の情報 氏 (なし)
なし
[ 講演概要 ]
秋から、少しお休みしていますので、替わりにまとめて集会をします。
12月25日午後から27日午後3時くらいまでです。詳細はURL:
http://www.ms.u-tokyo.ac.jp/activity/meeting061225.htm
をご覧下さい。織田孝幸

2006年12月21日(木)

アジア数学史セミナー

17:00-18:30   数理科学研究科棟(駒場) 123号室
楠葉隆徳 氏 (大阪経済大学人間科学部)
インド数学における証明
[ 講演参考URL ]
http://www.ms.u-tokyo.ac.jp/~kawazumi/asia.html

応用解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 056号室
Susan Friedlander 氏 (University of Illinois-Chicago)
An Inviscid Dyadic Model For Turbulence
[ 講演概要 ]
We discuss properties of a GOY type model for the inviscid fluid equations. We prove that the forced system has a unique equilibrium which a an exponential global attractor. Every solution blows up in H^5/6 in finite time . After this time, all solutions stay in H^s, s<5/6, and "turbulent" dissipation occurs. Onsager's conjecture is confirmed for the model system.

This is joint work with Alexey Cheskidov and Natasa Pavlovic.

作用素環セミナー

14:45-18:00   数理科学研究科棟(駒場) 126号室
Benoit Collins 氏 (Univ. Claude Bernard Lyon 1) 14:45-16:15
Convergence of unitary matrix integrals and free probability
Roberto Longo 氏 (University of Rome) 16:30-18:00
Operator Algebras and Conformal Field Theory

2006年12月20日(水)

代数学コロキウム

16:30-18:45   数理科学研究科棟(駒場) 117号室
2講演です
Anna Cadoret 氏 (RIMS/JSPS) 16:30-17:30
On the profinite regular inverse Galois problem
[ 講演概要 ]
Given a field $k$ and a (pro)finite group $G$, consider the
following weak version of the regular inverse Galois problem:
(WRIGP/$G$/$k$) \\textit{there exists a smooth geometrically
irreducible curve $X_{G}/k$ and a Galois extension $E/k(X_{G})$
regular over $k$ with group $G$.} (the regular inverse Galois
problem (RIGP/$G$/$k$) corresponding to the case
$X_{G}=\\mathbb{P}^{1}_{k}$). A standard descent argument shows that
for a finite group $G$ the (WRIGP/$G$/$k$) can be deduced from the
(RIGP/$G$/$k((T))$). For
profinite groups $G$, the (WRIGP/$G$/$k((T))$) has been proved for
lots of fields (including the cyclotomic closure of characteristic $0$
fields) but the descent argument no longer works.\\\\
\\indent Let $p\\geq 2$ be a prime, then a profinite group
$G$ is said to be \\textit{$p$-obstructed} if it fits in a profinite group extension
$$1\\rightarrow K\\rightarrow G\\rightarrow G_{0}\\rightarrow 1$$
with $G_{0}$ a finite group and $K\\twoheadrightarrow
\\mathbb{Z}_{p}$. Typical examples of such profinite groups $G$ are
universal $p$-Frattini covers of finite $p$-perfect groups or
pronilpotent projective groups.\\\\
\\indent I will show that the (WRIGP/$G$/$k$) - even under
its weaker formulation: (WWRIGP/$G$/$k$) \\textit{there exists a
smooth geometrically irreducible curve $X_{G}/k$ and a Galois
extension $E/k(X_{G}).\\overline{k}$ with group $G$ and field of
moduli $k$.} - fails for the whole class of $p$-obstructed profinite
groups $G$ and any field $k$ which is either a finitely generated
field of characteristic $0$ or a finite field of characteristic
$\\not= p$.\\\\
\\indent The proof uses a profinite generalization of the cohomological obstruction
for a G-cover to be defined over its field of moduli and an analysis of the constrainsts
imposed on a smooth geometrically irreducible curve $X$ by a degree $p^{n}$
cyclic G-cover $X_{n}\\rightarrow X$, constrainsts which are too rigid to allow the
existence of projective systems $(X_{n}\\rightarrow
X_{G})_{n\\geq 0}$ of degree $p^{n}$ cyclic G-covers
defined over $k$. I will also discuss other implicsations of these constrainsts
for the (RIGP).
Eric Friedlander 氏 (Northwestern) 17:45-18:45
An elementary perspective on modular representation theory

2006年12月19日(火)

トポロジー火曜セミナー

16:30-18:30   数理科学研究科棟(駒場) 056号室
Tea: 16:00 - 16:30 コモンルーム
境 圭一 氏 (東京大学大学院数理科学研究科) 16:30-17:30
Poisson structures on the homology of the spaces of knots
[ 講演概要 ]
We study the homological properties of the space $K$ of (framed) long knots in $\\R^n$, $n>3$, in particular its Poisson algebra structures.
We had known two kinds of Poisson structures, both of which are based on the action of little disks operad. One definition is via the action on the space $K$. Another comes from the action of chains of little disks on the Hochschild complex of an operad, which appears as $E^1$-term of certain spectral sequence converging to $H_* (K)$. The main result is that these two Poisson structures are the same.
We compute the first non-trivial example of the Poisson bracket. We show that this gives a first example of the homology class of $K$ which does not directly correspond to any chord diagrams.
吉田 享平 氏 (東京大学大学院数理科学研究科) 17:30-18:30
On projections of pseudo-ribbon sphere-links
[ 講演概要 ]
Suppose $F$ is an embedded closed surface in $R^4$.
We call $F$ a pseudo-ribbon surface link
if its projection is an immersion of $F$ into $R^3$
whose self-intersection set $\\Gamma(F)$ consists of disjointly embedded circles.
H. Aiso classified pseudo-ribbon sphere-knots ($F$ is a sphere.)
when $\\Gamma(F)$ consists of less than 6 circles.
We classify pseudo-ribbon sphere-links
when $F$ is two spheres and $\\Gamma(F)$ consists of less than 7 circles.

2006年12月18日(月)

複素解析幾何セミナー

10:30-12:00   数理科学研究科棟(駒場) 128号室
川口 周 氏 (京都大学大学院理学研究科)
Height functions and affine space regular automorphisms

2006年12月14日(木)

応用解析セミナー

16:00-17:30   数理科学研究科棟(駒場) 056号室
山田 澄生 氏 (東北大・大学院理学研究科・理学部
数学専攻)
特異点を持つ極小部分多様体の変分原理
[ 講演概要 ]
与えられた境界を持つ極小部分集合に特異点が必然的に現れることは
今までによく知られている現象である。幾何学的測度論は、それらの特異点
を許容する存在定理の枠組みを提供する為に発展してきた。こうして
現れる部分集合の幾何学的特徴付けを、写像の持つエネルギー関数の最小化というJ.Douglas
の方法論を発展させることによって試みる。また特異点周辺の面積密度の
単調性公式についても言及したい。

< 前へ 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 次へ >