Seminar information archive
Seminar information archive ~04/30|Today's seminar 05/01 | Future seminars 05/02~
2007/11/07
Seminar on Probability and Statistics
鎌谷 研吾 (東京大学大学院数理科学研究科)
ハプロタイプ関連解析:EMアルゴリズムによるアプローチ
最尤推定量の計算法である, EMアルゴリズムについて考察する. EMアルゴリズムのグローバルな観点の収束を示すことは容易でない事が多い. 一方で局所的な収束は容易に示すことができて, 一次漸近有効な推定量を 構成できる. その構成法とハプロタイプ関連解析への応用を考える. 時間があれば, ベイズ推定量の近似である, MCMCによる統計量の漸近有効性にも触れる.
https://www.ms.u-tokyo.ac.jp/~kengok/statseminar/2007/08.html
2007/11/06
Tuesday Seminar on Topology
児玉 大樹 (東京大学大学院数理科学研究科)
Thustion's inequality and open book foliations
We will study codimension 1 foliations on 3-manifolds.
Thurston's inequality, which implies convexity of the foliation in
some sense, folds for Reebless foliations [Th]. We will discuss
whether the inequality holds or not for open book foliations.
[Th] W. Thurston: Norm on the homology of 3-manifolds, Memoirs of the
AMS, 339 (1986), 99--130.
Lie Groups and Representation Theory
Michaël Pevzner (Université de Reims and University of Tokyo)
Quantization of symmetric spaces and representation. IV
[ Reference URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html
Lie Groups and Representation Theory
森脇政泰 (広島大学)
Multiplicity-free decompositions of the minimal representation of the indefinite orthogonal group
[ Reference URL ]
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html
2007/11/01
Lie Groups and Representation Theory
Michaël Pevzner (Université de Reims and University of Tokyo)
Quantization of symmetric spaces and representation. III
Kontsevich's formality theorem and applications in Representation theory.
We shall first give an explicit construction of an associative star-product on an arbitrary smooth finite-dimensional Poisson manifold.
As application, we will consider in details the crucial example of the dual of a finite-dimensional Lie algebra and will sketch a generalization of the Duflo isomorphism describing the set of infinitesimal characters of irreducible unitary representations of the corresponding Lie group.
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html
2007/10/31
Seminar on Probability and Statistics
深澤 正彰 (東京大学大学院数理科学研究科)
最尤推定量の漸近展開とその応用:とくに拡散過程の場合について
最尤推定量とそのスチューデント化統計量の漸近展開公式について、 スキューネス修正の観点から考察し、AR過程や、あるクラスの拡散過程モデルへの応用について述べる。 一般の対称拡散過程モデルにおける最尤推定量のバイアス推定量、 スキューネス推定量も提案する。
https://www.ms.u-tokyo.ac.jp/~kengok/statseminar/2007/07.html
Number Theory Seminar
Pierre Colmez (Ecole Polytechnique)
On the p-adic local Langlands correspondance for GL2(Qp)
2007/10/30
Lie Groups and Representation Theory
松本久義 (東京大学大学院数理科学研究科)
On Weyl groups for parabolic subalgebras
Let ${\\mathfrak g}$ be a complex semisimple Lie algebra.
We call a parabolic subalgebra ${\\mathfrak p}$ of ${\\mathfrak g}$
normal, if any parabolic subalgebra which has a common Levi part with ${\\mathfrak p}$
is conjugate to ${\\mathfrak p}$ under an inner automorphism of ${\\mathfrak g}$.
For a normal parabolic subalgebra, we have a good notion of the restricted root system
or the little Weyl group. We have a comparison result on the Bruhat order on the Weyl group for
${\\mathfrak g}$ and the little Weyl group.
We also apply this result to the existence problem of the homomorphisms between scalar generalized Verma modules.
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html
Lie Groups and Representation Theory
Michaël Pevzner (Université de Reims and University of Tokyo)
Quantization of symmetric spaces and representation. II
Back to Mathematics. Two methods of quantization.
We will start with a discussion on
-Weyl symbolic calculus on a symplectic vector space
and its asymptotic behavior.
In the second part, as a consequence of previous considerations, we will define the notion of deformation quantization.
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html
Algebraic Geometry Seminar
Dmitry KALEDIN (Steklov研究所, 東大数理)
Homological methods in Non-commutative Geometry
Tuesday Seminar on Topology
太田 啓史 (名大多元数理)
$L_{\\infty}$ action on Lagrangian filtered $A_{\\infty}$ algebras.
I will discuss $L_{\\infty}$ actions on Lagrangian filtered
$A_{\\infty}$ algebras by cycles of the ambient symplectic
manifold. In the course of the construction,
I like to remark that the stable map compactification is not
sufficient in some case when we consider ones from genus zero
bordered Riemann surface. Also, if I have time, I like to discuss
some relation to (absolute) Gromov-Witten invariant and other
applications.
(This talk is based on my joint work with K.Fukaya, Y-G Oh and K. Ono.)
2007/10/29
Kavli IPMU Komaba Seminar
Hiroshige Kajiura (RIMS, Kyoto University)
Some examples of triangulated and/or $A_\\infty$-categories
related to homological mirror symmetry
In this talk, I would like to discuss on some examples of
triangulated and/or $A_\\infty$-categories associated to
manifolds with additional structures
(symplectic structure, complex structure, ...)
which can appear in the homological mirror symmetry (HMS) set-up
proposed by Kontsevich'94.
The strongest form of the HMS may be to show the equivalence
of Fukaya category on a symplectic manifold with the category
of coherent sheaves on the mirror dual complex manifold
at the level of $A_\\infty$-categories.
On the other hand, for a given $A_\\infty$-category,
there is a canonical way (due to Bondal-Kapranov, Kontsevich)
to construct an enlarged $A_\\infty$-category
whose restriction to the zero-th cohomology forms a triangulated category.
I plan to talk about the triangulated structure of categories
associated to regular systems of weights
(joint work with Kyoji Saito and Atsushi Takahashi),
and also give a realization of higher $A_\\infty$-products in
Fukaya categories from the mirror dual complex manifold
via HMS in some easy examples.
2007/10/25
Operator Algebra Seminars
見村万佐人 (東大数理)
An introduction to expander graphs
Lie Groups and Representation Theory
Michael Pevzner (Universite de Reims and University of Tokyo)
Quantization of symmetric spaces and representations. I
The first and introductory lecture of a series of four will be devoted to the discussion of fundamental principles of the Quantum mechanics and their mathematical formulation. This part is not essential for the rest of the course but it might give a global vision of the subject to be considered.
We shall introduce the Weyl symbolic calculus, that relates classical and quantum observables, and will explain its relationship with the so-called deformation quantization of symplectic manifolds.
Afterwards, we will pay attention to a more algebraic question of formal deformation of an arbitrary smooth Poisson manifold and will define the Kontsevich star-product.
https://www.ms.u-tokyo.ac.jp/~toshi/seminar/ut-seminar.html
2007/10/24
Number Theory Seminar
阿部知行 (東京大学大学院数理科学研究科)
l進層のSwan導手とunit-root
overconvergent F-isocrystalの特性サイクルについて
今回の講演ではBerthelotによる数論的D加群の理論を用いることによってunit-root overconvergent F-isocrystalに対してSwan導手を定義し、Kato-Saitoにより幾何学的な手法を用いて定義されたSwan導手と比較する。応用として、特異点の解消の仮定のもとでKato-SaitoのSwan導手の整数性予想を導く。
2007/10/23
Tuesday Seminar on Topology
Jun O'Hara (首都大学東京)
Spaces of subspheres and their applications
The set of q-dimensional subspheres in S^n is a Grassmann manifold which has natural pseudo-Riemannian structure, and in some cases, symplectic structure as well. Both of them are conformally invariant.
I will explain some examples of their applications to geometric aspects of knots and links.
Tuesday Seminar of Analysis
Fr\'{e}d\'{e}ric Klopp (パリ北大学)
Localization for random quantum graphs (joint with K. Pankrashkin)
2007/10/22
Seminar on Geometric Complex Analysis
志賀弘典 (千葉大学)
ガウス算術幾何平均定理の多変数化とその保型形式的解釈(小池健二氏との共同研究)
2007/10/18
Operator Algebra Seminars
Mikael Pichot (学振・東大数理)
On the classification of Bruhat-Tits buildings
2007/10/17
Lectures
J. Fritz (TU Budapest)
The method of compensated compactness for
microscopic systems
2007/10/16
Tuesday Seminar on Topology
二木 昭人 (東京工業大学大学院理工学研究科)
Toric Sasaki-Einstein manifolds
A compact toric Sasaki manifold admits a Sasaki-Einstein metric if and only if it is obtained by the Delzant construction from a toric diagram of a constant height. As an application we see that the canonical line bundle of a toric Fano manifold admits a complete Ricci-flat K\\"ahler metric.
Algebraic Geometry Seminar
Dmitry KALEDIN (Steklov研究所, 東大数理)
Homogical methods in Non-commutative Geometry
Of all the approaches to non-commutative geometry, probably the most promising is the homological one, developed by Keller, Kontsevich, Toen and others, where non-commutative eometry is understood as "geometry of triangulated categories". Examples of "geometric" triangulated categories come from representation theory, symplectic geometry (Fukaya category) and algebraic geometry (the derived category of coherent sheaves on an algebraic variety and
various generalizations). Non-commutative point of view is expected to be helpful even in traditional questions of algebraic geometry such as the termination of flips.
We plan to give an introduction to the subject, with emphasis on homological methods (such as e.g. Hodge theory which, as it turns out, can be mostly formulated in the non-commutative setting).
No knowledge of non-commutative geometry whatsoever is assumed. However, familiarity with basic homological algebra and algebraic geometry will be helpful.
2007/10/15
Kavli IPMU Komaba Seminar
Shinobu Hosono (The University of Tokyo)
Topics on string theory, mirror symmetry, and Gromov-Witten invariants
Recently, some technical developments in solving BCOV
(Bershadsky-Cecotti-Ooguri-Vafa) holomorphic anomaly equation has been
made and it has become possible to predict higher genus Gromov-Witten
invariants for some class of Calabi-Yau 3 folds.
With a brief introduction to BCOV equation, I will present some
predictions for Gromov-Witten invariants of certain Calabi-Yau 3 folds,
which are not birational but derived equivalent. (This is based on
a work with Y. Konishi which appeared in mathAG/0704.2928.)
Before coming to this specific topic, I will review some recent
topics of the homological mirror symmetry focusing on
its connection to the `classical' mirror symmetry, where the
variation theory of Hodge structures (VHS) plays a central role.
The BCOV equation and its open string generalization have their grounds
on the VHS.
Seminar on Geometric Complex Analysis
大沢健夫 (名古屋大学)
On the curvature of holomorphic foliations
2007/10/13
Monthly Seminar on Arithmetic of Automorphic Forms
若槻聡 (金沢大学理学部) 13:30-14:30
2次のジーゲルカスプ形式の空間上のヘッケ作用素の明示的跡公式について
2次のジーゲルカスプ形式の空間上のヘッケ作用素の明示的跡公式について
2次のジーゲルカスプ形式の空間上のヘッケ作用素の跡に、ある明示的公式を与
える。まだ公式から跡の具体的な数値を得ることはできないが、この公式は数値を得る
ための一つのステップとなっている。一変数の場合や一般論と比較しながら、得られた公式と今後の目標について解説する。
A propagation formula for principal series Whittaker functions on $GL(3,C)$
$GL(n,\\mathbf{R})$上のクラス1Whittaker関数を$GL(n-1,\\mathbf{R})$上の同関数で表す公式が石井-Stadeにより得られてる(J. Funct. Anal. 244 (2007))。また、$GL(n,\\mathbf{R})$および$GL(n,\\mathbf{C})$上のクラス1Whittaker関数のelementaryな関係(Stade (1995)) により、この公式は$GL(n,\\mathbf{C})$上のクラス1Whittaker関数に対しても成立する。ここでは$GL(3,\\mathbf{C})$上のクラス1でない主系列Whittaker関数の明示公式(織田孝幸氏との共同研究)に基づき、これを$GL(2,\\mathbf{C})$上のクラス1でない主系列Whittaker関数で表す類似の公式を紹介する。
< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 Next >