Seminar information archive
Seminar information archive ~09/15|Today's seminar 09/16 | Future seminars 09/17~
2017/02/13
Seminar on Geometric Complex Analysis
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Qi'an Guan (Peking University)
A Characterization of regular points by Ohsawa-Takegoshi Extension Theorem (ENGLISH)
Qi'an Guan (Peking University)
A Characterization of regular points by Ohsawa-Takegoshi Extension Theorem (ENGLISH)
[ Abstract ]
In this talk, we will present that the germ of a complex analytic set at the origin in $\mathbb{C}^n$ is regular if and only if the related Ohsawa-Takegoshi extension theorem holds. We also present a necessary condition of the $L^2$ extension of bounded holomorphic sections from singular analytic sets.
This is joint work with Dr. Zhenqian Li.
In this talk, we will present that the germ of a complex analytic set at the origin in $\mathbb{C}^n$ is regular if and only if the related Ohsawa-Takegoshi extension theorem holds. We also present a necessary condition of the $L^2$ extension of bounded holomorphic sections from singular analytic sets.
This is joint work with Dr. Zhenqian Li.
Tokyo Probability Seminar
16:50-18:20 Room #128 (Graduate School of Math. Sci. Bldg.)
Satoshi Yokoyama (Graduate school of mathematical sciences, the university of Tokyo)
Sharp interface limit for stochastically perturbed mass conserving Allen-Cahn equation
Satoshi Yokoyama (Graduate school of mathematical sciences, the university of Tokyo)
Sharp interface limit for stochastically perturbed mass conserving Allen-Cahn equation
2017/02/10
Algebraic Geometry Seminar
14:00-15:30 Room #002 (Graduate School of Math. Sci. Bldg.)
Chenyang Xu (Beijing International Center of Mathematics Research)
Stability theory of a klt singularity II (English)
Chenyang Xu (Beijing International Center of Mathematics Research)
Stability theory of a klt singularity II (English)
[ Abstract ]
In higher dimensional geometry, it has been known that from many perspectives a log terminal singularity is a local analogue of Fano varieties. Many statements of Fano varieties have a counterpart for log terminal singularities. One central topic on the geometry of a Fano variety is its stability which in particular reflects whether the Fano variety carries a canonical metric. In the talks, we will discuss a series of recent works started by Chi Li, and then by Harold Blum, Yuchen Liu and myself, in which we want to establish an algebro-geometric stability theory of a fixed log terminal singularity. Inspired by the study from differential geometry, (e.g. metric tangent cone, Sasakian-Einstein metric), for any log terminal singularity, we investigate the valuation which has the minimal normalized volume. Our goal is to prove various properties of this valuation which enable us to degenerate the singularity to a K-semistable T-singularity (with a torus action) in the Sasakian-Einstein sense.
In higher dimensional geometry, it has been known that from many perspectives a log terminal singularity is a local analogue of Fano varieties. Many statements of Fano varieties have a counterpart for log terminal singularities. One central topic on the geometry of a Fano variety is its stability which in particular reflects whether the Fano variety carries a canonical metric. In the talks, we will discuss a series of recent works started by Chi Li, and then by Harold Blum, Yuchen Liu and myself, in which we want to establish an algebro-geometric stability theory of a fixed log terminal singularity. Inspired by the study from differential geometry, (e.g. metric tangent cone, Sasakian-Einstein metric), for any log terminal singularity, we investigate the valuation which has the minimal normalized volume. Our goal is to prove various properties of this valuation which enable us to degenerate the singularity to a K-semistable T-singularity (with a torus action) in the Sasakian-Einstein sense.
2017/02/09
Discrete mathematical modelling seminar
17:30-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Dinh Tran (University of New South Wales, Sydney, Australia)
Growth of degrees of lattice equations and its signatures over finite fields (ENGLISH)
Dinh Tran (University of New South Wales, Sydney, Australia)
Growth of degrees of lattice equations and its signatures over finite fields (ENGLISH)
[ Abstract ]
We study growth of degrees of autonomous and non-autonomous lattice equations, some of which are known to be integrable. We present a conjecture that helps us to prove polynomial growth of a certain class of equations including $Q_V$ and its non-autonomous generalization. In addition, we also study growth of degrees of several non-integrable equations. Exponential growth of degrees of these equations is also proved subject to a conjecture. Our technique is to determine the ambient degree growth of the equations and a conjectured growth of their common factors at each vertex, allowing the true degree growth to be found. Moreover, our results can also be used for mappings obtained as periodic reductions of integrable lattice equations. We also study signatures of growth of degrees of lattice equations over finite fields.
We study growth of degrees of autonomous and non-autonomous lattice equations, some of which are known to be integrable. We present a conjecture that helps us to prove polynomial growth of a certain class of equations including $Q_V$ and its non-autonomous generalization. In addition, we also study growth of degrees of several non-integrable equations. Exponential growth of degrees of these equations is also proved subject to a conjecture. Our technique is to determine the ambient degree growth of the equations and a conjectured growth of their common factors at each vertex, allowing the true degree growth to be found. Moreover, our results can also be used for mappings obtained as periodic reductions of integrable lattice equations. We also study signatures of growth of degrees of lattice equations over finite fields.
2017/02/07
Algebraic Geometry Seminar
15:30-17:00 Room #117 (Graduate School of Math. Sci. Bldg.)
Chenyang Xu ( Beijing International Center of Mathematics Research)
Stability theory of a klt singularity I (English)
Chenyang Xu ( Beijing International Center of Mathematics Research)
Stability theory of a klt singularity I (English)
[ Abstract ]
In higher dimensional geometry, it has been known that from many perspectives a log terminal singularity is a local analogue of Fano varieties. Many statements of Fano varieties have a counterpart for log terminal singularities. One central topic on the geometry of a Fano variety is its stability which in particular reflects whether the Fano variety carries a canonical metric. In the talks, we will discuss a series of recent works started by Chi Li, and then by Harold Blum, Yuchen Liu and myself, in which we want to establish an algebro-geometric stability theory of a fixed log terminal singularity. Inspired by the study from differential geometry, (e.g. metric tangent cone, Sasakian-Einstein metric), for any log terminal singularity, we investigate the valuation which has the minimal normalized volume. Our goal is to prove various properties of this valuation which enable us to degenerate the singularity to a K-semistable T-singularity (with a torus action) in the Sasakian-Einstein sense.
In higher dimensional geometry, it has been known that from many perspectives a log terminal singularity is a local analogue of Fano varieties. Many statements of Fano varieties have a counterpart for log terminal singularities. One central topic on the geometry of a Fano variety is its stability which in particular reflects whether the Fano variety carries a canonical metric. In the talks, we will discuss a series of recent works started by Chi Li, and then by Harold Blum, Yuchen Liu and myself, in which we want to establish an algebro-geometric stability theory of a fixed log terminal singularity. Inspired by the study from differential geometry, (e.g. metric tangent cone, Sasakian-Einstein metric), for any log terminal singularity, we investigate the valuation which has the minimal normalized volume. Our goal is to prove various properties of this valuation which enable us to degenerate the singularity to a K-semistable T-singularity (with a torus action) in the Sasakian-Einstein sense.
2017/02/03
thesis presentations
9:15-10:30 Room #118 (Graduate School of Math. Sci. Bldg.)
林 達也 (東京大学大学院数理科学研究科)
Mathematical modeling for synchronization of cardiac muscle cells (心筋細胞の拍動同期現象に関する数理モデル)
(JAPANESE)
林 達也 (東京大学大学院数理科学研究科)
Mathematical modeling for synchronization of cardiac muscle cells (心筋細胞の拍動同期現象に関する数理モデル)
(JAPANESE)
thesis presentations
10:45-12:00 Room #118 (Graduate School of Math. Sci. Bldg.)
梅崎 直也 (東京大学大学院数理科学研究科)
Characteristic class and the ε-factor of an étale sheaf (エタール層の特性類とε因子) (JAPANESE)
梅崎 直也 (東京大学大学院数理科学研究科)
Characteristic class and the ε-factor of an étale sheaf (エタール層の特性類とε因子) (JAPANESE)
thesis presentations
12:45-14:00 Room #118 (Graduate School of Math. Sci. Bldg.)
吉川 祥 (東京大学大学院数理科学研究科)
On modularity of elliptic curves over abelian totally real fields (総実アーベル拡大体上の楕円曲線の保型性について)
(JAPANESE)
吉川 祥 (東京大学大学院数理科学研究科)
On modularity of elliptic curves over abelian totally real fields (総実アーベル拡大体上の楕円曲線の保型性について)
(JAPANESE)
thesis presentations
14:15-15:30 Room #118 (Graduate School of Math. Sci. Bldg.)
大内 元気 (東京大学大学院数理科学研究科)
Automorphisms of positive entropy on some hyperKahler manifolds via derived automorphisms of K3 surfaces (K3曲面の導来自己同型を用いた超ケーラー多様体上の正エントロピー自己同型の構成について) (JAPANESE)
大内 元気 (東京大学大学院数理科学研究科)
Automorphisms of positive entropy on some hyperKahler manifolds via derived automorphisms of K3 surfaces (K3曲面の導来自己同型を用いた超ケーラー多様体上の正エントロピー自己同型の構成について) (JAPANESE)
thesis presentations
9:15-10:30 Room #122 (Graduate School of Math. Sci. Bldg.)
Otani Yul (東京大学大学院数理科学研究科)
Entanglement Entropy in Algebraic Quantum Field Theory (代数的場の量子論におけるエンタングルメント・エントロピー)
(JAPANESE)
Otani Yul (東京大学大学院数理科学研究科)
Entanglement Entropy in Algebraic Quantum Field Theory (代数的場の量子論におけるエンタングルメント・エントロピー)
(JAPANESE)
thesis presentations
10:45-12:00 Room #122 (Graduate School of Math. Sci. Bldg.)
窪田 陽介 (東京大学大学院数理科学研究科)
A Categorical Approach for Freeness of Group Actions on C*-algebras (C*-環への群作用の自由性に対する圏論的アプローチ)
(JAPANESE)
窪田 陽介 (東京大学大学院数理科学研究科)
A Categorical Approach for Freeness of Group Actions on C*-algebras (C*-環への群作用の自由性に対する圏論的アプローチ)
(JAPANESE)
thesis presentations
12:45-14:00 Room #122 (Graduate School of Math. Sci. Bldg.)
増本 周平 (東京大学大学院数理科学研究科)
Applications of Fraïssé theory to operator algebras (Fraïssé理論の作用素環への応用) (JAPANESE)
増本 周平 (東京大学大学院数理科学研究科)
Applications of Fraïssé theory to operator algebras (Fraïssé理論の作用素環への応用) (JAPANESE)
thesis presentations
10:45-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
野村 亮介 (東京大学大学院数理科学研究科)
Study of the Kähler-Ricci Flow and its Application in Algebraic Geometry (ケーラー・リッチ流の研究とその代数幾何学における応用)
(JAPANESE)
野村 亮介 (東京大学大学院数理科学研究科)
Study of the Kähler-Ricci Flow and its Application in Algebraic Geometry (ケーラー・リッチ流の研究とその代数幾何学における応用)
(JAPANESE)
thesis presentations
12:45-14:00 Room #126 (Graduate School of Math. Sci. Bldg.)
森田 陽介 (東京大学大学院数理科学研究科)
A cohomological study of the existence problem of compact Clifford-Klein forms (コンパクトClifford-Klein形の存在問題のコホモロジー的研究) (JAPANESE)
森田 陽介 (東京大学大学院数理科学研究科)
A cohomological study of the existence problem of compact Clifford-Klein forms (コンパクトClifford-Klein形の存在問題のコホモロジー的研究) (JAPANESE)
thesis presentations
14:15-15:30 Room #126 (Graduate School of Math. Sci. Bldg.)
川口 徳昭 (東京大学大学院数理科学研究科)
On the quantitative shadowing property of topological dynamical systems (位相的力学系の量的擬軌道追跡性について) (JAPANESE)
川口 徳昭 (東京大学大学院数理科学研究科)
On the quantitative shadowing property of topological dynamical systems (位相的力学系の量的擬軌道追跡性について) (JAPANESE)
thesis presentations
9:15-10:30 Room #128 (Graduate School of Math. Sci. Bldg.)
鈴木 拓也 (東京大学大学院数理科学研究科)
Semigroups generated by higher order elliptic operators and the Stokes operators in end point spaces (端点型空間上の高階楕円型作用素やストークス作用素により生成される半群) (JAPANESE)
鈴木 拓也 (東京大学大学院数理科学研究科)
Semigroups generated by higher order elliptic operators and the Stokes operators in end point spaces (端点型空間上の高階楕円型作用素やストークス作用素により生成される半群) (JAPANESE)
thesis presentations
10:45-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
榊原 航也 (東京大学大学院数理科学研究科)
Mathematical analysis of the method of fundamental solutions with its application to fluid mechanics and complex analysis (基本解近似解法の数学解析およびその流体力学,複素解析への応用) (JAPANESE)
榊原 航也 (東京大学大学院数理科学研究科)
Mathematical analysis of the method of fundamental solutions with its application to fluid mechanics and complex analysis (基本解近似解法の数学解析およびその流体力学,複素解析への応用) (JAPANESE)
thesis presentations
12:45-14:00 Room #128 (Graduate School of Math. Sci. Bldg.)
杉谷 宜紀 (東京大学大学院数理科学研究科)
Numerical Analysis for Interface and Nonlinear Boundary Value Problems for the Stokes Equations (ストークス方程式に対するインターフェースおよび非線形境界値問題の数値解析) (JAPANESE)
杉谷 宜紀 (東京大学大学院数理科学研究科)
Numerical Analysis for Interface and Nonlinear Boundary Value Problems for the Stokes Equations (ストークス方程式に対するインターフェースおよび非線形境界値問題の数値解析) (JAPANESE)
thesis presentations
14:15-15:30 Room #128 (Graduate School of Math. Sci. Bldg.)
戸澤 一成 (東京大学大学院数理科学研究科)
Meta-continuation Semantics via Meta-lambda Calculus (メタラムダ計算を用いたメタ継続意味論) (JAPANESE)
戸澤 一成 (東京大学大学院数理科学研究科)
Meta-continuation Semantics via Meta-lambda Calculus (メタラムダ計算を用いたメタ継続意味論) (JAPANESE)
2017/02/02
thesis presentations
10:45-12:00 Room #118 (Graduate School of Math. Sci. Bldg.)
斎藤 俊輔 (東京大学大学院数理科学研究科)
Stability of anti-canonically balanced metrics(反標準的平衡化計量の安定性)
(JAPANESE)
斎藤 俊輔 (東京大学大学院数理科学研究科)
Stability of anti-canonically balanced metrics(反標準的平衡化計量の安定性)
(JAPANESE)
thesis presentations
12:45-14:00 Room #118 (Graduate School of Math. Sci. Bldg.)
荒野 悠輝 (東京大学大学院数理科学研究科)
Representation theory of Drinfeld doubles (ドリンフェルトダブルの表現論) (JAPANESE)
荒野 悠輝 (東京大学大学院数理科学研究科)
Representation theory of Drinfeld doubles (ドリンフェルトダブルの表現論) (JAPANESE)
thesis presentations
14:15-15:30 Room #118 (Graduate School of Math. Sci. Bldg.)
八尋 耕平 (東京大学大学院数理科学研究科)
Radon transform for twisted D-modules on partial flag varieties (一般旗多様体上の捻られたD-加群のラドン変換)
(JAPANESE)
八尋 耕平 (東京大学大学院数理科学研究科)
Radon transform for twisted D-modules on partial flag varieties (一般旗多様体上の捻られたD-加群のラドン変換)
(JAPANESE)
thesis presentations
15:45-17:00 Room #118 (Graduate School of Math. Sci. Bldg.)
折田 龍馬 (東京大学大学院数理科学研究科)
On the existence of infinitely many non-contractible periodic trajectories in Hamiltonian dynamics on closed symplectic manifolds (閉シンプレクティック多様体上のハミルトン力学系における無限個の非可縮周期軌道の存在について) (JAPANESE)
折田 龍馬 (東京大学大学院数理科学研究科)
On the existence of infinitely many non-contractible periodic trajectories in Hamiltonian dynamics on closed symplectic manifolds (閉シンプレクティック多様体上のハミルトン力学系における無限個の非可縮周期軌道の存在について) (JAPANESE)
thesis presentations
17:15-18:30 Room #118 (Graduate School of Math. Sci. Bldg.)
林 晋 (東京大学大学院数理科学研究科)
Topological invariants and localized wave functions for some topological phases (ある種のトポロジカル相に対する位相不変量と局在化した波動関数の関係について) (JAPANESE)
林 晋 (東京大学大学院数理科学研究科)
Topological invariants and localized wave functions for some topological phases (ある種のトポロジカル相に対する位相不変量と局在化した波動関数の関係について) (JAPANESE)
thesis presentations
9:15-10:30 Room #122 (Graduate School of Math. Sci. Bldg.)
李 嘉衣 (東京大学大学院数理科学研究科)
Sharp interface limit for the stochastic Allen-Cahn equation
(確率アレン・カーン方程式に対する鋭敏な界面極限)
(JAPANESE)
李 嘉衣 (東京大学大学院数理科学研究科)
Sharp interface limit for the stochastic Allen-Cahn equation
(確率アレン・カーン方程式に対する鋭敏な界面極限)
(JAPANESE)
< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 Next >