Seminar information archive
Seminar information archive ~04/25|Today's seminar 04/26 | Future seminars 04/27~
Seminar on Geometric Complex Analysis
Susumu Tanabé (Université Galatasaray)
Amoebas and Horn hypergeometric functions
Since 10 years, the utility of the Horn hypergeometric functions in Algebraic Geometry has been recognized in a small circle of specialists. The main reason for this interest lies in the fact that every period integral of an affine non-degenerate complete intersection variety can be described as a Horn hypergeometric function (HGF). Therefore the monodromy of the middle dimensional homology can be calculated as the monodromy of an Horn HGF’s.
There is a slight difference between the Gel’fand-Kapranov-Zelevinski HGF’s and the Horn HGF’s. The latter may contain so called “persistent polynomial solutions” that cannot be mapped to GKZ HGF’s via a natural isomorphism between two spaces of HGF’s. In this talk, I will review basic facts on the Horn HGF’s. As a main tool to study the topology of the discriminant loci together with the
analytic aspects of the story, amoebas – image by the log map of the discriminant- will be highlighted.
As an application of this theory the following theorem can be established. For a bivariate Horn HGF system, its monodromy invariant space is always one dimensional if and only if its Ore-Sato polygon is either a zonotope or a Minkowski sum of a triangle and some segments.
This is a collaboration with Timur Sadykov.
Tokyo Probability Seminar
Chikara Nakamura (Research Institute for Mathematical Sciences, Kyoto University)
Lamplighter random walks on fractals
2015/06/17
Operator Algebra Seminars
Yoh Tanimoto (Univ. Tokyo)
Self-adjointness of bound state operators in integrable quantum field theory
Number Theory Seminar
Norifumi Seki (University of Tokyo)
Hodge-Tate weights of p-adic Galois representations and Banach representations of GL_2(Q_p)
(Japanese)
Mathematical Biology Seminar
Yusuke Kakizoe (Graduate school of systems life sciences, Kyushu University)
A conservation law and time-delay for viral infection dynamics (JAPANESE)
2015/06/16
Tuesday Seminar on Topology
Masaharu Ishikawa (Tohoku University)
Stable maps and branched shadows of 3-manifolds (JAPANESE)
We study what kind of stable map to the real plane a 3-manifold has. It
is known by O. Saeki that there exists a stable map without certain
singular fibers if and only if the 3-manifold is a graph manifold. According to
F. Costantino and D. Thurston, we identify the Stein factorization of a
stable map with a shadow of the 3-manifold under some modification,
where the above singular fibers correspond to the vertices of the shadow. We
define the notion of stable map complexity by counting the number of
such singular fibers and prove that this equals the branched shadow
complexity. With this equality, we give an estimation of the Gromov norm of the
3-manifold by the stable map complexity. This is a joint work with Yuya Koda.
2015/06/15
Algebraic Geometry Seminar
Christopher Hacon (University of Utah/RIMS)
Boundedness of the KSBA functor of
SLC models (English)
Let $X$ be a canonically polarized smooth $n$-dimensional projective variety over $\mathbb C$ (so that $\omega _X$ is ample), then it is well-known that a fixed multiple of the canonical line bundle defines an embedding of $X$ in projective space. It then follows easily that if we fix certain invariants of $X$, then $X$ belongs to finitely many deformation types. Since canonical models are rarely smooth, it is important to generalize this result to canonically polarized $n$-dimensional projectivevarieties with canonical singularities. Moreover, since these varieties specialize to non-normal varieties it is also important to generalize this result to semi-log canonical pairs. In this talk we will explain a strong version of the above result that applies to semi-log canonical pairs.This is joint work with C. Xu and J. McKernan
http://www.math.utah.edu/~hacon/
Seminar on Geometric Complex Analysis
Saotome Takanari
The Lyapunov-Schmidt reduction for the CR Yamabe equation on the Heisenberg group (Japanese)
We will study CR Yamabe equation for a CR structure on the Heisenberg group which is deformed from the standard structure. By using Lyapunov-Schmidt reduction, it is shown that the perturbation of the standard CR Yamabe solution is a solution to the deformed CR Yamabe equation, under certain conditions of the deformation.
Tokyo Probability Seminar
Hiroshi Takahashi (College of Science and Technology, Nihon University)
Numerical Analysis Seminar
Yuto Miyatake (Nagoya University)
Parallel energy-preserving methods for Hamiltonian systems (日本語)
2015/06/12
Geometry Colloquium
Kota Hattori (Keio University)
The nonuniqueness of tangent cone at infinity of Ricci-flat manifolds (Japanese)
For a complete Riemannian manifold (M,g), the Gromov-Hausdorff limit of (M, r^2g) as r to 0 is called the tangent cone at infinity. By the Gromov's Compactness Theorem, there exists tangent cone at infinity for every complete Riemannian manifolds with nonnegative Ricci curvatures. Moreover, if it is Ricci-flat, with Euclidean volume growth and having at least one tangent cone at infinity with a smooth cross section, then it is uniquely determined by the result of Colding and Minicozzi. In this talk I will explain that the assumption of the volume growth is essential for their uniqueness theorem.
2015/06/11
Applied Analysis
2015/06/10
Operator Algebra Seminars
David Kerr (Texas A&M Univ.)
Dynamics, dimension, and $C^*$-algebras
2015/06/09
Tuesday Seminar on Topology
Manabu Akaho (Tokyo Metropolitan University)
Symplectic displacement energy for exact Lagrangian immersions (JAPANESE)
We give an inequality of the displacement energy for exact Lagrangian
immersions and the symplectic area of punctured holomorphic discs. Our
approach is based on Floer homology for Lagrangian immersions and
Chekanov's homotopy technique of continuations. Moreover, we discuss our
inequality and the Hofer--Zehnder capacity.
2015/06/08
Seminar on Geometric Complex Analysis
Hisashi Kasuya (Tokyo Institute of Technology)
Mixed Hodge structures and Sullivan's minimal models of Sasakian manifolds (Japanese)
By the result of Deligne, Griffiths, Morgan and Sullivan, the Malcev completion of the fundamental group of a compact Kahler manifold is quadratically presented. This fact gives good advances in "Kahler group problem" (Which groups can be the fundamental groups of compact Kahler manifolds?) In this talk, we consider the fundamental groups of compact Sasakian manifolds. We show that the Malcev Lie algebra of the fundamental group of a compact 2n+1-dimensional Sasakian manifold with n >= 2 admits a quadratic presentation by using Morgan's bigradings of Sullivan's minimal models of mixed-Hodge diagrams.
Tokyo Probability Seminar
Satoshi Yokoyama (Graduate School of Mathematical Sciences, The University of Tokyo)
On a stochastic Rayleigh-Plesset equation and a certain stochastic Navier-Stokes equation
2015/06/05
Geometry Colloquium
Yoshihiko Shinomiya (Shizuoka University)
Veech groups of Veech surfaces and periodic points
(日本語)
Flat surfaces are surfaces with singular Euclidean structures. The Veech group of a flat surface is the group consisting of all matrices inducing affine mappings of the flat surface. In this talk, we give relations between some geometrical values of flat surfaces and the signatures of Veech groups as Fuchsian groups. As an application of these relations, we estimate the numbers of periodic points of certain flat surfaces.
Seminar on Probability and Statistics
2015/06/03
Operator Algebra Seminars
Narutaka Ozawa (RIMS, Kyoto Univ.)
The Furstenberg boundary and $C^*$-simplicity
Mathematical Biology Seminar
Shigehide Iwata (The graduate school of marine science and technology, Tokyo University of Marine Science and Technology)
Population dynamics of fish stock with migration and its management strategy
2015/06/01
Algebraic Geometry Seminar
Daizo Ishikawa (Waseda University)
Rank 2 weak Fano bundles on cubic 3-folds (日本語)
A vector bundle on a projective variety is called weak Fano if its
projectivization is a weak Fano manifold. This is a generalization of
Fano bundles.
In this talk, we will obtain a classification of rank 2 weak Fano
bundles on a nonsingular cubic hypersurface in a projective 4-space.
Specifically, we will show that there exist rank 2 indecomposable weak
Fano bundles on it.
Tokyo Probability Seminar
Masato Hoshino (Graduate School of Mathematical Sciences, The University of Tokyo)
2015/05/28
Infinite Analysis Seminar Tokyo
Yuki Arano (Graduate School of Mathematical Sciences, the University of Tokyo)
Unitary spherical representations of Drinfeld doubles (JAPANESE)
It is known that the Drinfeld double of the quantized
enveloping algebra of a semisimple Lie algebra looks similar to the
quantized enveloping algebra of the complexification of the Lie algebra.
In this talk, we investigate the unitary representation theory of such
Drinfeld double via its analogy to that of the complex Lie group.
We also talk on an application to operator algebras.
2015/05/27
Operator Algebra Seminars
John F. R. Duncan (Case Western Reserve Univ.)
Vertex operator algebras in umbral Moonshine
Number Theory Seminar
Ippei Nagamachi (University of Tokyo)
On a good reduction criterion for polycurves with sections (Japanese)
< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 Next >