Seminar information archive
Seminar information archive ~12/05|Today's seminar 12/06 | Future seminars 12/07~
Mathematical Biology Seminar
Lev Idels (Vanvouver Island University)
Delayed Models of Cancer Dynamics: Lessons Learned in Mathematical Modelling (ENGLISH)
In general, delay differential equations provide a richer mathematical
framework (compared with ordinary differential equations) for the
analysis of biosystems dynamics. The inclusion of explicit time lags in
tumor growth models allows direct reference to experimentally measurable
and/or controllable cell growth characteristics. For three different
types of angiogenesis models with variable delays, we consider either
continuous or impulse therapy that eradicates tumor cells and suppresses
angiogenesis. It was shown that with the growth of delays, even
constant, the equilibrium can lose its stability, and sustainable
oscillation, as well as chaotic behavior, can be observed. The analysis
outlines the difficulties which occur in the case of unbounded growth
rates, such as classical Gompertz model, for small volumes of cancer
cells compared to available blood vessels. The Wheldon model (1975) of a
Chronic Myelogenous Leukemia (CML) dynamics is revisited in the light of
recent discovery that this model has a major drawback.
https://web.viu.ca/idelsl/
2016/04/25
Operator Algebra Seminars
Makoto Yamashita (Ochanomizu Univ.)
Graded twisting of quantum groups, actions, and categories
Seminar on Geometric Complex Analysis
Atsushi Yamamori (Academia Sinica)
The representative domain and its applications (JAPANESE)
Bergman introduced the notion of a representative domain to choose a nice holomorphic equivalence class of domains. In this talk, I will explain that the representative domain is also useful to obtain an analogue of Cartan's linearity theorem for some special class of domains.
Tokyo Probability Seminar
Shuta Nakajima (Research institute for mathematical sciences)
Concentration results for directed polymer with unbouded jumps
2016/04/22
Seminar on Probability and Statistics
Ciprian Tudor (Université de Lille 1)
Stein method and Malliavin calculus : theory and some applications to limit theorems 1
In this first part, we will present the basic ideas of the Stein method for the normal approximation. We will also describe its connection with the Malliavin calculus and the Fourth Moment Theorem.
Seminar on Probability and Statistics
Ciprian Tudor (Université de Lille 1)
Stein method and Malliavin calculus : theory and some applications to limit theorems 2
In the second presentation, we intend to do the following: to illustrate the application of the Stein method to the limit behavior of the quadratic variation of Gaussian processes and its connection to statistics. We also intend to present the extension of the method to other target distributions.
Seminar on Probability and Statistics
Seiichiro Kusuoka (Okayama University)
Equivalence between the convergence in total variation and that of the Stein factor to the invariant measures of diffusion processes
We consider the characterization of the convergence of distributions to a given distribution in a certain class by using Stein's equation and Malliavin calculus with respect to the invariant measures of one-dimensional diffusion processes. Precisely speaking, we obtain an estimate between the so-called Stein factor and the total variation norm, and the equivalence between the convergence of the distributions in total variation and that of the Stein factor. This talk is based on the joint work with C.A.Tudor (arXiv:1310.3785).
Seminar on Probability and Statistics
Nakahiro Yoshida (University of Tokyo, Institute of Statistical Mathematics, JST CREST)
Asymptotic expansion and estimation of volatility
Parametric estimation of volatility of an Ito process in a finite time horizon is discussed. Asymptotic expansion of the error distribution will be presented for the quasi likelihood estimators, i.e., quasi MLE, quasi Bayesian estimator and one-step quasi MLE. Statistics becomes non-ergodic, where the limit distribution is mixed normal. Asymptotic expansion is a basic tool in various areas in the traditional ergodic statistics such as higher order asymptotic decision theory, bootstrap and resampling plans, prediction theory, information criterion for model selection, information geometry, etc. Then a natural question is to obtain asymptotic expansion in the non-ergodic statistics. However, due to randomness of the characteristics of the limit, the classical martingale expansion or the mixing method cannot not apply. Recently a new martingale expansion was developed and applied to a quadratic form of the Ito process. The higher order terms are characterized by the adaptive random symbol and the anticipative random symbol. The Malliavin calculus is used for the description of the anticipative random symbols as well as for obtaining a decay of the characteristic functions. In this talk, the martingale expansion method and the quasi likelihood analysis with a polynomial type large deviation estimate of the quasi likelihood random field collaborate to derive expansions for the quasi likelihood estimators. Expansions of the realized volatility under microstructure noise, the power variation and the error of Euler-Maruyama scheme are recent applications. Further, some extension of martingale expansion to general martingales will be mentioned. References: SPA2013, arXiv:1212.5845, AISM2011, arXiv:1309.2071 (to appear in AAP), arXiv:1512.04716.
2016/04/21
Geometry Colloquium
Shouhei Honda (Tohoku University)
Spectral convergence under bounded Ricci curvature (Japanese)
For a noncollapsed Gromov-Hausdorff convergent sequence of Riemannian manifolds with a uniform bound of Ricci curvature, we establish two spectral convergence. One of them is on the Hodge Laplacian acting on differential one-forms. The other is on the connection Laplacian acting on tensor fields of every type, which include all differential forms. These are sharp generalizations of Cheeger-Colding's spectral convergence of the Laplacian acting on functions to the cases of tensor fields and differential forms. These spectral convergence have two direct corollaries. One of them is to give new bounds on such eigenvalues, in terms of bounds on volume, diameter and the Ricci curvature. The other is that we show the upper semicontinuity of the first Betti numbers with respect to the Gromov-Hausdorff topology, and give the equivalence between the continuity of them and the existence of a uniform spectral gap. On the other hand we also define measurable curvature tensors of the noncollapsed Gromov-Hausdorff limit space of a sequence of Riemannian manifolds with a uniform bound of Ricci curvature, which include Riemannian curvature tensor, the Ricci curvature, and the scalar curvature. As fundamental properties of our Ricci curvature, we show that the Ricci curvature coincides with the difference between the Hodge Laplacian and the connection Laplacian, and is compatible with Gigli's one and Lott's Ricci measure. Moreover we prove a lower bound of the Ricci curvature is compatible with a reduced Riemannian curvature dimension condition. We also give a positive answer to Lott's question on the behavior of the scalar curvature with respect to the Gromov-Hausdorff topology by using our scalar curvature. This talk is based on arXiv:1510.05349.
FMSP Lectures
Aniceto Murillo et al (Universidad de Malaga)
Rational homotopy theory : Quillen and Sullivan approach.(2) (ENGLISH)
[ Reference URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Murillo.pdf
2016/04/20
FMSP Lectures
Aniceto Murillo et al (Universidad de Malaga)
Rational homotopy theory : Quillen and Sullivan approach.(1) (ENGLISH)
[ Reference URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Murillo.pdf
Number Theory Seminar
Hoto Bekki (University of Tokyo)
On periodicity of geodesic continued fractions (Japanese)
2016/04/19
Algebraic Geometry Seminar
Keiji Oguiso (University of Tokyo)
Isomorphic quartic K3 surfaces and Cremona transformations (JAPANESE)
We show that
(i) there is a pair of smooth complex quartic K3 surfaces such that they are isomorphic as abstract varieties but not Cremona equivalent.
(ii) there is a pair of smooth complex quartic K3 surfaces such that they are Cemona equivalent but not projectively equivalent.
These two results are much inspired by e-mails from Professors Tuyen Truong and J\'anos Koll\'ar.
Tuesday Seminar on Topology
Błażej Szepietowski (Gdansk University)
Topological rigidity of finite cyclic group actions on compact surfaces (ENGLISH)
Two actions of a group on a surface are called topologically equivalent if they are conjugate by a homeomorphism of the surface. I will describe a method of enumeration (and classification) of topological equivalence classes of actions of a finite group on a compact surface, based on the combinatorial theory of noneuclidean crystallographic groups (NEC groups in short) and a relationship between the outer automorphism group of an NEC group and certain mapping class group. By this method we study topological equivalence of actions of a finite cyclic group on a compact surface, in the situation where the order of the group is large relative to the genus of the surface.
2016/04/18
Operator Algebra Seminars
Juan Orendain (UNAM/Univ. Tokyo)
On the functoriality of Haagerup's $L^2$-space construction: Verticalizing decorated 2-categories
Seminar on Geometric Complex Analysis
Kunio Obitsu (Kagoshima University)
(JAPANESE)
Numerical Analysis Seminar
Takahito Kashiwabara (University of Tokyo)
Error estimate for the finite element method in a smooth domain (日本語)
Tokyo Probability Seminar
Kai Lee (Graduate School of Mathematical Sciences, the university of Tokyo)
Sharp interface limit for one-dimensional stochastic Allen-Cahn equation with Dirichlet boundary condition
2016/04/14
FMSP Lectures
Alan Weinstein (University of California, Berkeley)
Lecture 2: Geometric and algebraic Poisson modules (ENGLISH)
[ Reference URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Weinstein.pdf
2016/04/13
Number Theory Seminar
Akio Tamagawa (RIMS, Kyoto University)
Semisimplicity of geometric monodromy on etale cohomology (joint work with Anna Cadoret and Chun Yin Hui)
(English)
Let K be a function field over an algebraically closed field of characteritic p \geq 0, X a proper smooth K-scheme, and l a prime distinct from p. Deligne proved that the Q_l-coefficient etale cohomology groups of the geometric fiber of X --> K are always semisimple as G_K-modules. In this talk, we consider a similar problem for the F_l-coefficient etale cohomology groups. Among other things, we show that if p=0 (resp. in general), they are semisimple for all but finitely many l's (resp. for all l's in a set of density 1).
FMSP Lectures
Yavar Kian (Aix-Marseille Univ.)
Determination of time-dependent coefficients for wave equations from partial data (ENGLISH)
[ Reference URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Kian.pdf
2016/04/12
Lie Groups and Representation Theory
Piotr Pragacz (Institute of Mathematics, Polish Academy of Sciences)
Universal Gysin formulas for flag bundles
We give generalizations of the formula for the push-forward of a power of the hyperplane class in a projective bundle to flag bundles of type A, B, C, D. The formulas (and also the proofs) involve only the Segre classes of the original vector bundles and characteristic classes of universal bundles. This is a joint work with Lionel Darondeau.
Tuesday Seminar on Topology
Aniceto Murillo (Universidad de Malaga)
Homotopy theory of differential graded Lie algebras (ENGLISH)
Having as motivation the Deligne's principle by which every deformation functor is governed by a differential graded Lie algebra, we build a homotopy theory for these algebras which extend the classical Quillen approach and let us model any (non necessarily 1-connected nor path connected) complex. This is joint work with Urtzi Buijs, Yves Félix and Daniel Tanré.
Tuesday Seminar of Analysis
Jussi Behrndt (Graz University of Technology)
Scattering matrices and Dirichlet-to-Neumann maps (English)
In this talk we discuss a recent result on the representation of the scattering matrix in terms of an abstract Titchmarsh-Weyl m-function. The general result can be applied to scattering problems for Schrödinger operators with $\delta$-type interactions on curves and hypersurfaces, and scattering problems involving Neumann and Robin realizations of Schrödinger operators on unbounded domains. In both applications we obtain formulas for the corresponding scattering matrices in terms of Dirichlet-to-Neumann maps. This talk is based on joint work with Mark Malamud and Hagen Neidhardt.
2016/04/11
Algebraic Geometry Seminar
Piotr Pragacz (Institute of Mathematics, Polish Academy of Sciences )
Gysin maps, duality and Schubert classes (English)
We establish a Gysin formula for Schubert bundles
and a strong version of the duality theorem in Schubert calculus
on Grassmann bundles. We then combine them to compute the fundamental
classes of Schubert bundles in Grassmann bundles, which yields a new
proof of the Giambelli formula for vector bundles. This is a joint
work with Lionel Darondeau.
https://www.impan.pl/~pragacz/main.htm
< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 Next >