Seminar information archive
Seminar information archive ~10/10|Today's seminar 10/11 | Future seminars 10/12~
FMSP Lectures
14:00-15:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Samuli Siltanen (University of Helsinki)
Blind deconvolution for human speech signals (ENGLISH)
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Siltanen.pdf
Samuli Siltanen (University of Helsinki)
Blind deconvolution for human speech signals (ENGLISH)
[ Abstract ]
The structure of vowel sounds in human speech can be divided into two independent components. One of them is the “excitation signal,” which is a kind of buzzing sound created by the vocal folds flapping against each other. The other is the “filtering effect” caused by resonances in the vocal tract, or the confined space formed by the mouth and throat. The Glottal Inverse Filtering (GIF) problem is to (algorithmically) divide a microphone recording of a vowel sound into its two components. This “blind deconvolution” type task is an ill-posed inverse problem. Good-quality GIF filtering is essential for computer-generated speech needed for example by disabled people (think Stephen Hawking). Also, GIF affects the quality of synthetic speech in automatic information announcements and car navigation systems. Accurate estimation of the voice source from recorded speech is known to be difficult with current glottal inverse filtering (GIF) techniques, especially in the case of high-pitch speech of female or child subjects. In order to tackle this problem, the present study uses two different solution methods for GIF: Bayesian inversion and alternating minimization. The first method takes advantage of the Markov chain Monte Carlo (MCMC) modeling in defining the parameters of the vocal tract inverse filter. The filtering results are found to be superior to those achieved by the standard iterative adaptive inverse filtering (IAIF), but the computation is much slower than IAIF. Alternating minimization cuts down the computation time while retaining most of the quality improvement.
[ Reference URL ]The structure of vowel sounds in human speech can be divided into two independent components. One of them is the “excitation signal,” which is a kind of buzzing sound created by the vocal folds flapping against each other. The other is the “filtering effect” caused by resonances in the vocal tract, or the confined space formed by the mouth and throat. The Glottal Inverse Filtering (GIF) problem is to (algorithmically) divide a microphone recording of a vowel sound into its two components. This “blind deconvolution” type task is an ill-posed inverse problem. Good-quality GIF filtering is essential for computer-generated speech needed for example by disabled people (think Stephen Hawking). Also, GIF affects the quality of synthetic speech in automatic information announcements and car navigation systems. Accurate estimation of the voice source from recorded speech is known to be difficult with current glottal inverse filtering (GIF) techniques, especially in the case of high-pitch speech of female or child subjects. In order to tackle this problem, the present study uses two different solution methods for GIF: Bayesian inversion and alternating minimization. The first method takes advantage of the Markov chain Monte Carlo (MCMC) modeling in defining the parameters of the vocal tract inverse filter. The filtering results are found to be superior to those achieved by the standard iterative adaptive inverse filtering (IAIF), but the computation is much slower than IAIF. Alternating minimization cuts down the computation time while retaining most of the quality improvement.
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Siltanen.pdf
FMSP Lectures
14:45-15:25 Room #126 (Graduate School of Math. Sci. Bldg.)
Tapio Helin (University of Helsinki)
Inverse scattering from random potential (ENGLISH)
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Helin.pdf
Tapio Helin (University of Helsinki)
Inverse scattering from random potential (ENGLISH)
[ Abstract ]
We consider an inverse scattering problem with a random potential. We assume that our far-field data at multiple angles and all frequencies are generated by a single realization of the potential. From the frequency-correlated data our aim is to demonstrate that one can recover statistical properties of the potential. More precisely, the potential is assumed to be Gaussian with a covariance operator that can be modelled by a classical pseudodifferential operator. Our main result is to show that the principal symbol of this
covariance operator can be determined uniquely. What is important, our method does not require any approximation and we can analyse also the multiple scattering. This is joint work with Matti Lassas and Pedro Caro.
[ Reference URL ]We consider an inverse scattering problem with a random potential. We assume that our far-field data at multiple angles and all frequencies are generated by a single realization of the potential. From the frequency-correlated data our aim is to demonstrate that one can recover statistical properties of the potential. More precisely, the potential is assumed to be Gaussian with a covariance operator that can be modelled by a classical pseudodifferential operator. Our main result is to show that the principal symbol of this
covariance operator can be determined uniquely. What is important, our method does not require any approximation and we can analyse also the multiple scattering. This is joint work with Matti Lassas and Pedro Caro.
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Helin.pdf
FMSP Lectures
15:25-16:05 Room #126 (Graduate School of Math. Sci. Bldg.)
Matti Lassas (University of Helsinki)
Geometric Whitney problem: Reconstruction of a manifold from a point cloud (ENGLISH)
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Lassas.pdf
Matti Lassas (University of Helsinki)
Geometric Whitney problem: Reconstruction of a manifold from a point cloud (ENGLISH)
[ Abstract ]
We study the geometric Whitney problem on how a Riemannian manifold $(M,g)$ can be constructed to approximate a metric space $(X,d_X)$. This problem is closely related to manifold interpolation (or manifold learning) where a smooth $n$-dimensional surface $S¥subset {¥mathbb R}^m$, $m>n$ needs to be constructed to approximate a point cloud in ${¥mathbb R}^m$. These questions are encountered in differential geometry, machine learning, and in many inverse problems encountered in applications. The determination of a Riemannian manifold includes the construction of its topology, differentiable structure, and metric.
We give constructive solutions to the above problems. Moreover, we characterize the metric spaces that can be approximated, by Riemannian manifolds with bounded geometry: We give sufficient conditions to ensure that a metric space can be approximated, in the Gromov-Hausdorff or quasi-isometric sense, by a Riemannian manifold of a fixed dimension and with bounded diameter, sectional curvature, and injectivity radius. Also, we show that similar conditions, with modified values of parameters, are necessary.
Moreover, we characterise the subsets of Euclidean spaces that can be approximated in the Hausdorff metric by submanifolds of a fixed dimension and with bounded principal curvatures and normal injectivity radius.
The above interpolation problems are also studied for unbounded metric sets and manifolds. The results for Riemannian manifolds are based on a generalisation of the Whitney embedding construction where approximative coordinate charts are embedded in ${¥mathbb R}^m$ and interpolated to a smooth surface. We also give algorithms that solve the problems for finite data.
The results are done in collaboration with C. Fefferman, S. Ivanov, Y. Kurylev, and H. Narayanan.
References:
[1] C. Fefferman, S. Ivanov, Y. Kurylev, M. Lassas, H. Narayanan: Reconstruction and interpolation of manifolds I: The geometric Whitney problem. ArXiv:1508.00674
[ Reference URL ]We study the geometric Whitney problem on how a Riemannian manifold $(M,g)$ can be constructed to approximate a metric space $(X,d_X)$. This problem is closely related to manifold interpolation (or manifold learning) where a smooth $n$-dimensional surface $S¥subset {¥mathbb R}^m$, $m>n$ needs to be constructed to approximate a point cloud in ${¥mathbb R}^m$. These questions are encountered in differential geometry, machine learning, and in many inverse problems encountered in applications. The determination of a Riemannian manifold includes the construction of its topology, differentiable structure, and metric.
We give constructive solutions to the above problems. Moreover, we characterize the metric spaces that can be approximated, by Riemannian manifolds with bounded geometry: We give sufficient conditions to ensure that a metric space can be approximated, in the Gromov-Hausdorff or quasi-isometric sense, by a Riemannian manifold of a fixed dimension and with bounded diameter, sectional curvature, and injectivity radius. Also, we show that similar conditions, with modified values of parameters, are necessary.
Moreover, we characterise the subsets of Euclidean spaces that can be approximated in the Hausdorff metric by submanifolds of a fixed dimension and with bounded principal curvatures and normal injectivity radius.
The above interpolation problems are also studied for unbounded metric sets and manifolds. The results for Riemannian manifolds are based on a generalisation of the Whitney embedding construction where approximative coordinate charts are embedded in ${¥mathbb R}^m$ and interpolated to a smooth surface. We also give algorithms that solve the problems for finite data.
The results are done in collaboration with C. Fefferman, S. Ivanov, Y. Kurylev, and H. Narayanan.
References:
[1] C. Fefferman, S. Ivanov, Y. Kurylev, M. Lassas, H. Narayanan: Reconstruction and interpolation of manifolds I: The geometric Whitney problem. ArXiv:1508.00674
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Lassas.pdf
2016/01/15
Seminar on Probability and Statistics
13:00-17:00 Room #123 (Graduate School of Math. Sci. Bldg.)
Enzo Orsingher (Sapienza University of Rome)
Fractional calculus and some applications to stochastic processes
Enzo Orsingher (Sapienza University of Rome)
Fractional calculus and some applications to stochastic processes
[ Abstract ]
1) Riemann-Liouville fractional integrals and derivatives
2) integrals of derivatives and derivatives of integrals
3) Dzerbayshan-Caputo fractional derivatives
4) Marchaud derivative
5) Riesz potential and fractional derivatives
6) Hadamard derivatives and also Erdelyi-Kober derivatives
7) Laplace transforms of Riemann.Liouville and Dzerbayshan-Caputo fractional derivatives
8) Fractional diffusion equations and related special functions (Mittag-Leffler and Wright functions)
9) Fractional telegraph equations (space-time fractional equations and also their mutidimensional versions)
10) Time-fractional telegraph Poisson process
11) Space fractional Poisson process
13) Other fractional point processes (birth and death processes)
14) We shall present the relationship between solutions of wave and Euler-Poisson-Darboux equations through the Erdelyi-Kober integrals.
In these lessons we will introduce the main ideas of the classical fractional calculus. The results and theorems will be presented with all details and calculations. We shall study some fundamental fractional equations and their interplay with stochastic processes. Some details on the iterated Brownian motion will also be given.
1) Riemann-Liouville fractional integrals and derivatives
2) integrals of derivatives and derivatives of integrals
3) Dzerbayshan-Caputo fractional derivatives
4) Marchaud derivative
5) Riesz potential and fractional derivatives
6) Hadamard derivatives and also Erdelyi-Kober derivatives
7) Laplace transforms of Riemann.Liouville and Dzerbayshan-Caputo fractional derivatives
8) Fractional diffusion equations and related special functions (Mittag-Leffler and Wright functions)
9) Fractional telegraph equations (space-time fractional equations and also their mutidimensional versions)
10) Time-fractional telegraph Poisson process
11) Space fractional Poisson process
13) Other fractional point processes (birth and death processes)
14) We shall present the relationship between solutions of wave and Euler-Poisson-Darboux equations through the Erdelyi-Kober integrals.
In these lessons we will introduce the main ideas of the classical fractional calculus. The results and theorems will be presented with all details and calculations. We shall study some fundamental fractional equations and their interplay with stochastic processes. Some details on the iterated Brownian motion will also be given.
2016/01/13
Operator Algebra Seminars
16:45-18:15 Room #118 (Graduate School of Math. Sci. Bldg.)
Alexander Kumjian (Univ. Nevada, Reno)
A Stabilization Theorem for Fell Bundles over Groupoids
Alexander Kumjian (Univ. Nevada, Reno)
A Stabilization Theorem for Fell Bundles over Groupoids
FMSP Lectures
16:00-17:30 Room #122 (Graduate School of Math. Sci. Bldg.)
Yves Dermenjian (Aix-Marseille Universite)
A Carleman estimate for an elliptic operator in a partially anisotropic and discontinuous media (ENGLISH)
[ Reference URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Dermenjian.pdf
Yves Dermenjian (Aix-Marseille Universite)
A Carleman estimate for an elliptic operator in a partially anisotropic and discontinuous media (ENGLISH)
[ Reference URL ]
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Dermenjian.pdf
2016/01/12
Tuesday Seminar on Topology
16:30-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Morimichi Kawasaki (The University of Tokyo) 16:30-17:30
Heavy subsets and non-contractible trajectories (JAPANESE)
On codimension two contact embeddings in the standard spheres (JAPANESE)
Morimichi Kawasaki (The University of Tokyo) 16:30-17:30
Heavy subsets and non-contractible trajectories (JAPANESE)
[ Abstract ]
For a compact set Y of an open symplectic manifold $(N,¥omega)$ and a free
homotopy class $¥alpha¥in [S^1,N]$, Biran, Polterovich and Salamon
defined the relative symplectic capacity $C_{BPS}(N,Y;¥alpha)$ which
measures the existence of non-contractible 1-periodic trajectories of
Hamiltonian isotopies.
On the hand, Entov and Polterovich defined heaviness for closed subsets
of a symplectic manifold by using spectral invarinats of the Hamiltonian
Floer theory on contractible trajectories.
Heavy subsets are known to be non-displaceable.
In this talk, we prove the finiteness of $C(M,X,¥alpha)$ (i.e. the
existence of non-contractible 1-periodic trajectories under some setting)
by using heaviness.
Ryo Furukawa (The University of Tokyo) 17:30-18:30For a compact set Y of an open symplectic manifold $(N,¥omega)$ and a free
homotopy class $¥alpha¥in [S^1,N]$, Biran, Polterovich and Salamon
defined the relative symplectic capacity $C_{BPS}(N,Y;¥alpha)$ which
measures the existence of non-contractible 1-periodic trajectories of
Hamiltonian isotopies.
On the hand, Entov and Polterovich defined heaviness for closed subsets
of a symplectic manifold by using spectral invarinats of the Hamiltonian
Floer theory on contractible trajectories.
Heavy subsets are known to be non-displaceable.
In this talk, we prove the finiteness of $C(M,X,¥alpha)$ (i.e. the
existence of non-contractible 1-periodic trajectories under some setting)
by using heaviness.
On codimension two contact embeddings in the standard spheres (JAPANESE)
[ Abstract ]
In this talk we consider codimension two contact
embedding problem by using higher dimensional braids.
First, we focus on embeddings of contact $3$-manifolds to the standard $
S^5$ and give some results, for example, any contact structure on $S^3$
can embed so that it is smoothly isotopic to the standard embedding.
These are joint work with John Etnyre. Second, we consider the relative
Euler number of codimension two contact submanifolds and its Seifert
hypersurfaces which is a generalization of the self-linking number of
transverse knots in contact $3$-manifolds. We give a way to calculate
the relative Euler number of certain contact submanifolds obtained by
braids and as an application we give examples of embeddings of one
contact manifold which are isotopic as smooth embeddings but not
isotopic as contact embeddings in higher dimension.
In this talk we consider codimension two contact
embedding problem by using higher dimensional braids.
First, we focus on embeddings of contact $3$-manifolds to the standard $
S^5$ and give some results, for example, any contact structure on $S^3$
can embed so that it is smoothly isotopic to the standard embedding.
These are joint work with John Etnyre. Second, we consider the relative
Euler number of codimension two contact submanifolds and its Seifert
hypersurfaces which is a generalization of the self-linking number of
transverse knots in contact $3$-manifolds. We give a way to calculate
the relative Euler number of certain contact submanifolds obtained by
braids and as an application we give examples of embeddings of one
contact manifold which are isotopic as smooth embeddings but not
isotopic as contact embeddings in higher dimension.
2016/01/09
Harmonic Analysis Komaba Seminar
13:00-18:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Hitoshi Tanaka (Tokyo University) 13:30-15:00
The n linear embedding theorem
(日本語)
Kentaro Hirata (Hiroshima University) 15:30-17:00
An improved growth estimate for positive solutions of a semilinear heat equation in a Lipschitz domain
(日本語)
Hitoshi Tanaka (Tokyo University) 13:30-15:00
The n linear embedding theorem
(日本語)
Kentaro Hirata (Hiroshima University) 15:30-17:00
An improved growth estimate for positive solutions of a semilinear heat equation in a Lipschitz domain
(日本語)
2016/01/08
Colloquium
16:50-17:50 Room #123 (Graduate School of Math. Sci. Bldg.)
Keiji Oguiso (Graduate School of Mathematical Sciences, University of Tokyo)
Birational geometry through complex dymanics (ENGLISH)
Keiji Oguiso (Graduate School of Mathematical Sciences, University of Tokyo)
Birational geometry through complex dymanics (ENGLISH)
[ Abstract ]
Birational geometry and complex dymanics are rich subjects having
interactions with many branches of mathematics. On the other hand,
though these two subjects share many common interests hidden especially
when one considers group symmetry of manifolds, it seems rather recent
that their rich interations are really notified, perhaps after breaking
through works for surface automorphisms in the view of topological
entropy by Cantat and McMullen early in this century, by which I was so
mpressed.
The notion of entropy of automorphism is a fundamental invariant which
measures how fast two general points spread out fast under iteration. So,
the exisitence of surface automorphism of positive entropy with Siegel
disk due to McMullen was quite surprizing. The entropy also measures, by
the fundamenal theorem of Gromov-Yomdin, the
logarithmic growth of the degree of polarization under iteration. For
instance, the Mordell-Weil group of an elliptic fibration is a very
intersting rich subject in algebraic geometry and number theory, but the
group preserves the fibration so that it might not be so interesting
from dynamical view point. However, if the surface admits two different
elliptic fibrations, which often happens in K3 surfaces of higher Picard
number, then highly non-commutative dynamically rich phenomena can be
observed.
In this talk, I would like to explain the above mentioned phenomena with
a few unexpected applications that I noticed in these years:
(1) Kodaira problem on small deformation of compact Kaehler manifolds in
higher dimension via K3 surface automorphism with Siegel disk;
(2) Geometric liftability problem of automorphisms in positive
characteristic to chacateristic 0 via Mordell-Weil groups and number
theoretic aspect of entropy;
(3) Existence problem on primitive automorphisms of projective manifolds,
through (relative) dynamical degrees due to Dinh-Sibony, Dinh-Nguyen-
Troung, a powerful refinement of the notion of entropy, with by-product
for Ueno-Campana's problem on (uni)rationality of manifolds of torus
quotient.
Birational geometry and complex dymanics are rich subjects having
interactions with many branches of mathematics. On the other hand,
though these two subjects share many common interests hidden especially
when one considers group symmetry of manifolds, it seems rather recent
that their rich interations are really notified, perhaps after breaking
through works for surface automorphisms in the view of topological
entropy by Cantat and McMullen early in this century, by which I was so
mpressed.
The notion of entropy of automorphism is a fundamental invariant which
measures how fast two general points spread out fast under iteration. So,
the exisitence of surface automorphism of positive entropy with Siegel
disk due to McMullen was quite surprizing. The entropy also measures, by
the fundamenal theorem of Gromov-Yomdin, the
logarithmic growth of the degree of polarization under iteration. For
instance, the Mordell-Weil group of an elliptic fibration is a very
intersting rich subject in algebraic geometry and number theory, but the
group preserves the fibration so that it might not be so interesting
from dynamical view point. However, if the surface admits two different
elliptic fibrations, which often happens in K3 surfaces of higher Picard
number, then highly non-commutative dynamically rich phenomena can be
observed.
In this talk, I would like to explain the above mentioned phenomena with
a few unexpected applications that I noticed in these years:
(1) Kodaira problem on small deformation of compact Kaehler manifolds in
higher dimension via K3 surface automorphism with Siegel disk;
(2) Geometric liftability problem of automorphisms in positive
characteristic to chacateristic 0 via Mordell-Weil groups and number
theoretic aspect of entropy;
(3) Existence problem on primitive automorphisms of projective manifolds,
through (relative) dynamical degrees due to Dinh-Sibony, Dinh-Nguyen-
Troung, a powerful refinement of the notion of entropy, with by-product
for Ueno-Campana's problem on (uni)rationality of manifolds of torus
quotient.
2016/01/06
Operator Algebra Seminars
16:45-18:15 Room #118 (Graduate School of Math. Sci. Bldg.)
Benoit Collins (Kyoto Univ.)
Quantum channels from the free orthogonal quantum group (English)
Benoit Collins (Kyoto Univ.)
Quantum channels from the free orthogonal quantum group (English)
2016/01/05
Tuesday Seminar of Analysis
16:50-18:20 Room #126 (Graduate School of Math. Sci. Bldg.)
Eric Skibsted (Aarhus University, Denmark)
Stationary scattering theory on manifolds (English)
Eric Skibsted (Aarhus University, Denmark)
Stationary scattering theory on manifolds (English)
[ Abstract ]
We present a stationary scattering theory for the Schrödinger operator on Riemannian manifolds with the structure of ends each of which is equipped with an escape function (for example a convex distance function). This includes manifolds with ends modeled as cone-like subsets of the Euclidean space and/or the hyperbolic space. Our results include Rellich’s theorem, the limiting absorption principle, radiation condition bounds, the Sommerfeld uniqueness result, and we give complete characterization/asymptotics of the generalized eigenfunctions in a certain Besov space and show asymptotic completeness (with K. Ito).
We present a stationary scattering theory for the Schrödinger operator on Riemannian manifolds with the structure of ends each of which is equipped with an escape function (for example a convex distance function). This includes manifolds with ends modeled as cone-like subsets of the Euclidean space and/or the hyperbolic space. Our results include Rellich’s theorem, the limiting absorption principle, radiation condition bounds, the Sommerfeld uniqueness result, and we give complete characterization/asymptotics of the generalized eigenfunctions in a certain Besov space and show asymptotic completeness (with K. Ito).
2015/12/21
Tokyo Probability Seminar
16:50-18:20 Room #128 (Graduate School of Math. Sci. Bldg.)
David Croydon (University of Warwick)
Scaling limits of random walks on trees (English)
David Croydon (University of Warwick)
Scaling limits of random walks on trees (English)
[ Abstract ]
I will survey some recent work regarding the scaling limits of random walks on trees, as well as the scaling of the associated local times and cover time. The trees considered will include self-similar pre-fractal graphs, critical Galton-Watson trees and the uniform spanning tree in two dimensions.
I will survey some recent work regarding the scaling limits of random walks on trees, as well as the scaling of the associated local times and cover time. The trees considered will include self-similar pre-fractal graphs, critical Galton-Watson trees and the uniform spanning tree in two dimensions.
Seminar on Geometric Complex Analysis
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Katsutoshi Yamanoi (Osaka Univ.)
On pseudo Kobayashi hyperbolicity of subvarieties of abelian varieties
(Japanese)
Katsutoshi Yamanoi (Osaka Univ.)
On pseudo Kobayashi hyperbolicity of subvarieties of abelian varieties
(Japanese)
[ Abstract ]
A subvariety of an abelian variety is of general type if and only if it is pseudo Kobayashi hyperbolic. I will discuss the proof of this result.
A subvariety of an abelian variety is of general type if and only if it is pseudo Kobayashi hyperbolic. I will discuss the proof of this result.
2015/12/17
Algebraic Geometry Seminar
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Dulip Piyaratne (IPMU)
Polarization and stability on a derived equivalent abelian variety (English)
http://db.ipmu.jp/member/personal/3989en.html
Dulip Piyaratne (IPMU)
Polarization and stability on a derived equivalent abelian variety (English)
[ Abstract ]
In this talk I will explain how one can define a polarization on a derived equivalent abelian variety by using Fourier-Mukai theory. Furthermore, we see how such a realisations is connected with stability conditions on their derived categories. Then I will discuss these ideas for abelian surfaces and abelian 3-folds in detail.
[ Reference URL ]In this talk I will explain how one can define a polarization on a derived equivalent abelian variety by using Fourier-Mukai theory. Furthermore, we see how such a realisations is connected with stability conditions on their derived categories. Then I will discuss these ideas for abelian surfaces and abelian 3-folds in detail.
http://db.ipmu.jp/member/personal/3989en.html
2015/12/16
Operator Algebra Seminars
16:45-18:15 Room #118 (Graduate School of Math. Sci. Bldg.)
Yul Otani (Univ. Tokyo)
Nuclearity in AQFT and related results
Yul Otani (Univ. Tokyo)
Nuclearity in AQFT and related results
thesis presentations
10:30-11:45 Room #122 (Graduate School of Math. Sci. Bldg.)
山本 光 (東京大学大学院数理科学研究科)
Special Lagrangian submanifolds and mean curvature flows(特殊ラグランジュ部分多様体と平均曲率流について) (JAPANESE)
山本 光 (東京大学大学院数理科学研究科)
Special Lagrangian submanifolds and mean curvature flows(特殊ラグランジュ部分多様体と平均曲率流について) (JAPANESE)
FMSP Lectures
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Yuri Luchko (University of Applied Sciences, Berlin)
Selected topics in fractional partial differential equations (ENGLISH)
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Luchko.pdf
Yuri Luchko (University of Applied Sciences, Berlin)
Selected topics in fractional partial differential equations (ENGLISH)
[ Abstract ]
In this talk, some remarkable mathematical and physical properties of solutions to the fractional diffusion equation, the alpha-fractional diffusion and alpha-fractional wave equations, the fractional reaction-diffusion equation, and the fractional Schrödinger equation are revisited. From the mathematical viewpoint, the maximum principle for the initial-boundary-value problems for the fractional diffusion equation, the scaling properties of the solutions to the alpha-fractional diffusion and alpha-fractional wave equations and the role of the Mellin integral transform technique for their analytical treatment, as well as the eigenvalue problem for the fractional Schrödinger equation are considered. Physical aspects include a discussion of a probabilistic interpretation of the fundamental solutions to the Cauchy problem for the alpha-fractional diffusion equation, their entropy and the entropy production rates, and some different concepts of the propagation velocities of the fractional wave processes.
[ Reference URL ]In this talk, some remarkable mathematical and physical properties of solutions to the fractional diffusion equation, the alpha-fractional diffusion and alpha-fractional wave equations, the fractional reaction-diffusion equation, and the fractional Schrödinger equation are revisited. From the mathematical viewpoint, the maximum principle for the initial-boundary-value problems for the fractional diffusion equation, the scaling properties of the solutions to the alpha-fractional diffusion and alpha-fractional wave equations and the role of the Mellin integral transform technique for their analytical treatment, as well as the eigenvalue problem for the fractional Schrödinger equation are considered. Physical aspects include a discussion of a probabilistic interpretation of the fundamental solutions to the Cauchy problem for the alpha-fractional diffusion equation, their entropy and the entropy production rates, and some different concepts of the propagation velocities of the fractional wave processes.
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Luchko.pdf
2015/12/15
Tuesday Seminar on Topology
17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Constantin Teleman (University of California, Berkeley)
The Curved Cartan Complex (ENGLISH)
Constantin Teleman (University of California, Berkeley)
The Curved Cartan Complex (ENGLISH)
[ Abstract ]
The Cartan model computes the equivariant cohomology of a smooth manifold X with
differentiable action of a compact Lie group G, from the invariant polynomial
functions on the Lie algebra with values in differential forms and a deformation
of the de Rham differential. Before extracting invariants, the Cartan differential
does not square to zero and is apparently meaningless. Unrecognised was the fact
that the full complex is a curved algebra, computing the quotient by G of the
algebra of differential forms on X. This generates, for example, a gauged version of
string topology. Another instance of the construction, applied to deformation
quantisation of symplectic manifolds, gives the BRST construction of the symplectic
quotient. Finally, the theory for a X point with an additional quadratic curving
computes the representation category of the compact group G, and this generalises
to the loop group of G and even to real semi-simple groups.
The Cartan model computes the equivariant cohomology of a smooth manifold X with
differentiable action of a compact Lie group G, from the invariant polynomial
functions on the Lie algebra with values in differential forms and a deformation
of the de Rham differential. Before extracting invariants, the Cartan differential
does not square to zero and is apparently meaningless. Unrecognised was the fact
that the full complex is a curved algebra, computing the quotient by G of the
algebra of differential forms on X. This generates, for example, a gauged version of
string topology. Another instance of the construction, applied to deformation
quantisation of symplectic manifolds, gives the BRST construction of the symplectic
quotient. Finally, the theory for a X point with an additional quadratic curving
computes the representation category of the compact group G, and this generalises
to the loop group of G and even to real semi-simple groups.
2015/12/14
Seminar on Geometric Complex Analysis
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Fuminori Nakata (Fukushima Univ.)
Twistor correspondence for associative Grassmanniann
Fuminori Nakata (Fukushima Univ.)
Twistor correspondence for associative Grassmanniann
[ Abstract ]
It is well known that the 6-dimensional sphere has a non-integrable almost complex structure which is introduced from the (right) multiplication of imaginary octonians. On this 6-sphere, there is a family of psuedo-holomorphic $\mathbb{C}\mathbb{P}^1$ parameterised by the associative Grassmannian, where the associative Grassmaniann is an 8-dimensional quaternion Kaehler manifold defined as the set of associative 3-planes in the 7-dimensional real vector space of the imaginary octonians. In the talk, we show that this story is quite analogous to the Penrose's twistor correspondence and that the geometric structures on the associative Grassmaniann nicely fit to this construction. This is a joint work with H. Hashimoto, K. Mashimo and M. Ohashi.
It is well known that the 6-dimensional sphere has a non-integrable almost complex structure which is introduced from the (right) multiplication of imaginary octonians. On this 6-sphere, there is a family of psuedo-holomorphic $\mathbb{C}\mathbb{P}^1$ parameterised by the associative Grassmannian, where the associative Grassmaniann is an 8-dimensional quaternion Kaehler manifold defined as the set of associative 3-planes in the 7-dimensional real vector space of the imaginary octonians. In the talk, we show that this story is quite analogous to the Penrose's twistor correspondence and that the geometric structures on the associative Grassmaniann nicely fit to this construction. This is a joint work with H. Hashimoto, K. Mashimo and M. Ohashi.
Algebraic Geometry Seminar
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Atsushi Kanazawa (Harvard)
Extending Hori-Vafa toric mirror symmetry via SYZ and modular forms (English)
Atsushi Kanazawa (Harvard)
Extending Hori-Vafa toric mirror symmetry via SYZ and modular forms (English)
[ Abstract ]
In this talk, I will introduce partial compactification for a class of toric Calabi-Yau manifolds. A fundamental question is how the Hori-Vafa toric mirror symmetry extends to this new class of Calabi-Yau manifolds. The answer leads us to a new connection between SYZ mirror symmetry and modular forms. If time permits, I will also discuss higher dimensional analogues of the Yau-Zaslow formula (for an elliptic K3 surface) in terms of Siegel modular forms. This talk is based on a joint work with Siu-Cheong Lau.
In this talk, I will introduce partial compactification for a class of toric Calabi-Yau manifolds. A fundamental question is how the Hori-Vafa toric mirror symmetry extends to this new class of Calabi-Yau manifolds. The answer leads us to a new connection between SYZ mirror symmetry and modular forms. If time permits, I will also discuss higher dimensional analogues of the Yau-Zaslow formula (for an elliptic K3 surface) in terms of Siegel modular forms. This talk is based on a joint work with Siu-Cheong Lau.
2015/12/09
Operator Algebra Seminars
16:45-18:15 Room #118 (Graduate School of Math. Sci. Bldg.)
David E. Evans (Cardiff Univ.)
K-theory in subfactors and conformal field theory
David E. Evans (Cardiff Univ.)
K-theory in subfactors and conformal field theory
Number Theory Seminar
18:00-19:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Ted Chinburg (University of Pennsylvania & IHES)
Chern classes in Iwasawa theory (English)
Ted Chinburg (University of Pennsylvania & IHES)
Chern classes in Iwasawa theory (English)
[ Abstract ]
Many of the main conjectures in Iwasawa theory can be phrased as saying that the first Chern class of an Iwasawa module is generated by a p-adic L-series. In this talk I will describe how higher Chern classes pertain to the higher codimension behavior of Iwasawa modules. I'll then describe a template for conjectures which would link such higher Chern classes to elements in the K-theory of Iwasawa algebras which are constructed from tuples of Katz p-adic L-series. I will finally describe an instance in which a result of this kind, for the second Chern class of an unramified Iwasawa module, can be proved over an imaginary quadratic field. This is joint work with F. Bleher, R. Greenberg, M. Kakde, G. Pappas, R. Sharifi and M. J. Taylor.
Many of the main conjectures in Iwasawa theory can be phrased as saying that the first Chern class of an Iwasawa module is generated by a p-adic L-series. In this talk I will describe how higher Chern classes pertain to the higher codimension behavior of Iwasawa modules. I'll then describe a template for conjectures which would link such higher Chern classes to elements in the K-theory of Iwasawa algebras which are constructed from tuples of Katz p-adic L-series. I will finally describe an instance in which a result of this kind, for the second Chern class of an unramified Iwasawa module, can be proved over an imaginary quadratic field. This is joint work with F. Bleher, R. Greenberg, M. Kakde, G. Pappas, R. Sharifi and M. J. Taylor.
2015/12/08
Tuesday Seminar on Topology
17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Yuichi Yamada (The Univ. of Electro-Comm.)
Lens space surgery and Kirby calculus of 4-manifolds (JAPANESE)
Yuichi Yamada (The Univ. of Electro-Comm.)
Lens space surgery and Kirby calculus of 4-manifolds (JAPANESE)
[ Abstract ]
The problem asking "Which knot yields a lens space by Dehn surgery" is
called "lens space surgery". Berge's list ('90) is believed to be the
complete list, but it is still unproved, even after some progress by
Heegaard Floer Homology.
This problem seems to enter a new aspect: study using 4-manifolds, lens
space surgery from lens spaces, checking hyperbolicity by computer.
In the talk, we review the structure of Berge's list and talk on our
study on pairs of distinct knots but yield same lens spaces, and
4-maniolds constructed from such pairs. This is joint work with Motoo
Tange (Tsukuba University).
The problem asking "Which knot yields a lens space by Dehn surgery" is
called "lens space surgery". Berge's list ('90) is believed to be the
complete list, but it is still unproved, even after some progress by
Heegaard Floer Homology.
This problem seems to enter a new aspect: study using 4-manifolds, lens
space surgery from lens spaces, checking hyperbolicity by computer.
In the talk, we review the structure of Berge's list and talk on our
study on pairs of distinct knots but yield same lens spaces, and
4-maniolds constructed from such pairs. This is joint work with Motoo
Tange (Tsukuba University).
2015/12/07
Tokyo Probability Seminar
16:50-18:20 Room #128 (Graduate School of Math. Sci. Bldg.)
Jean-Dominique Deuschel (TU Berlin)
Quenched invariance principle for random walks in time-dependent balanced random environment
Jean-Dominique Deuschel (TU Berlin)
Quenched invariance principle for random walks in time-dependent balanced random environment
[ Abstract ]
We prove an almost sure functional limit theorem for a random walk in an space-time ergodic balanced environment under certain moment conditions. The proof is based on the maximal principle for parabolic difference operators. We also deal with the non-elliptic case, where the corresponding limiting diffusion matrix can be random in higher dimensions. This is a joint work with N. Berger, X. Guo and A. Ramirez.
We prove an almost sure functional limit theorem for a random walk in an space-time ergodic balanced environment under certain moment conditions. The proof is based on the maximal principle for parabolic difference operators. We also deal with the non-elliptic case, where the corresponding limiting diffusion matrix can be random in higher dimensions. This is a joint work with N. Berger, X. Guo and A. Ramirez.
Seminar on Geometric Complex Analysis
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Tatsuki Hayama (Senshu Univ.)
Cycle connectivity and pseudoconcavity of flag domains (Japanese)
Tatsuki Hayama (Senshu Univ.)
Cycle connectivity and pseudoconcavity of flag domains (Japanese)
[ Abstract ]
We consider an open real group orbit in a complex flag variety which has no non-constant function. We introduce Huckleberry's results on cycle connectivity and show that it is pseudoconcave if it satisfies a certain condition on the root system of the Lie algebra. In Hodge theory, we are mainly interested in the case where it is a Mumford-Tate domain. We also discuss Hodge theoretical meanings of this work.
We consider an open real group orbit in a complex flag variety which has no non-constant function. We introduce Huckleberry's results on cycle connectivity and show that it is pseudoconcave if it satisfies a certain condition on the root system of the Lie algebra. In Hodge theory, we are mainly interested in the case where it is a Mumford-Tate domain. We also discuss Hodge theoretical meanings of this work.
< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 Next >