Seminar information archive
Seminar information archive ~12/10|Today's seminar 12/11 | Future seminars 12/12~
Lie Groups and Representation Theory
17:00-18:30 Room #122 (Graduate School of Math. Sci. Bldg.)
Paul Baum (Penn State University)
GEOMETRIC STRUCTURE IN SMOOTH DUAL
Paul Baum (Penn State University)
GEOMETRIC STRUCTURE IN SMOOTH DUAL
[ Abstract ]
Let G be a connected split reductive p-adic group. Examples are GL(n, F) , SL(n, F) , SO(n, F) , Sp(2n, F) , PGL(n, F) where n can be any positive integer and F can be any finite extension of the field Q_p of p-adic numbers. The smooth (or admissible) dual of G is the set of equivalence classes of smooth irreducible representations of G. This talk will first review the theory of the Bernstein center. According to this theory, the smooth dual of G is the disjoint union of subsets known as the Bernstein components. The talk will then explain the ABPS (Aubert-Baum-Plymen-Solleveld) conjecture which states that each Bernstein component is a complex affine variety. Each of these complex affine varieties is explicitly identified as the extended quotient associated to the given Bernstein component.
The ABPS conjecture has been proved for GL(n, F), SO(n, F), and Sp(2n, F).
Let G be a connected split reductive p-adic group. Examples are GL(n, F) , SL(n, F) , SO(n, F) , Sp(2n, F) , PGL(n, F) where n can be any positive integer and F can be any finite extension of the field Q_p of p-adic numbers. The smooth (or admissible) dual of G is the set of equivalence classes of smooth irreducible representations of G. This talk will first review the theory of the Bernstein center. According to this theory, the smooth dual of G is the disjoint union of subsets known as the Bernstein components. The talk will then explain the ABPS (Aubert-Baum-Plymen-Solleveld) conjecture which states that each Bernstein component is a complex affine variety. Each of these complex affine varieties is explicitly identified as the extended quotient associated to the given Bernstein component.
The ABPS conjecture has been proved for GL(n, F), SO(n, F), and Sp(2n, F).
Lie Groups and Representation Theory
15:30-16:30 Room #122 (Graduate School of Math. Sci. Bldg.)
Toshiaki Hattori (Tokyo Institute of Technology)
(Japanese)
Toshiaki Hattori (Tokyo Institute of Technology)
(Japanese)
2015/07/17
Geometry Colloquium
10:00-11:30 Room #126 (Graduate School of Math. Sci. Bldg.)
Takeo Nishinou (Rikkyo University)
Realization of tropical curves in complex tori (Japanese)
Takeo Nishinou (Rikkyo University)
Realization of tropical curves in complex tori (Japanese)
[ Abstract ]
Tropical curves are combinatorial object satisfying certain harmonicity condition. They reflect properties of holomorphic curves, and rather precise correspondence is known between tropical curves in real affine spaces and holomorphic curves in toric varieties. In this talk we extend this correspondence to the periodic case. Namely, we give a correspondence between periodic plane tropical curves and holomorphic curves in complex tori. This is a joint work with Tony Yue Yu.
Tropical curves are combinatorial object satisfying certain harmonicity condition. They reflect properties of holomorphic curves, and rather precise correspondence is known between tropical curves in real affine spaces and holomorphic curves in toric varieties. In this talk we extend this correspondence to the periodic case. Namely, we give a correspondence between periodic plane tropical curves and holomorphic curves in complex tori. This is a joint work with Tony Yue Yu.
Infinite Analysis Seminar Tokyo
14:00-16:00 Room #002 (Graduate School of Math. Sci. Bldg.)
Simon Wood (The Australian National University)
Classifying simple modules at admissible levels through symmetric polynomials (ENGLISH)
Simon Wood (The Australian National University)
Classifying simple modules at admissible levels through symmetric polynomials (ENGLISH)
[ Abstract ]
From infinite dimensional Lie algebras such as the Virasoro
algebra or affine Lie (super)algebras one can construct universal
vertex operator algebras. These vertex operator algebras are simple at
generic central charges or levels and only contain proper ideals at so
called admissible levels. The simple quotient vertex operator algebras
at these admissible levels are called minimal model algebras. In this
talk I will present free field realisations of the universal vertex
operator algebras and show how they allow one to elegantly classify
the simple modules over the simple quotient vertex operator algebras
by using a deep connection to symmetric polynomials.
From infinite dimensional Lie algebras such as the Virasoro
algebra or affine Lie (super)algebras one can construct universal
vertex operator algebras. These vertex operator algebras are simple at
generic central charges or levels and only contain proper ideals at so
called admissible levels. The simple quotient vertex operator algebras
at these admissible levels are called minimal model algebras. In this
talk I will present free field realisations of the universal vertex
operator algebras and show how they allow one to elegantly classify
the simple modules over the simple quotient vertex operator algebras
by using a deep connection to symmetric polynomials.
2015/07/16
Applied Analysis
16:00-17:30 Room #128 (Graduate School of Math. Sci. Bldg.)
Yoshihiro Tonegawa (Tokyo Institute of Technology)
(Japanese)
Yoshihiro Tonegawa (Tokyo Institute of Technology)
(Japanese)
2015/07/14
Tuesday Seminar on Topology
17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Carlos Moraga Ferrandiz (The University of Tokyo, JSPS)
How homoclinic orbits explain some algebraic relations holding in Novikov rings. (ENGLISH)
Carlos Moraga Ferrandiz (The University of Tokyo, JSPS)
How homoclinic orbits explain some algebraic relations holding in Novikov rings. (ENGLISH)
[ Abstract ]
Given u, a de-Rham cohomology class of degree 1 of a closed manifold M, we consider the space F_u of (closed) Morse 1-forms in this class. In Morse theory, it is important to equip each α in F_u with a descending pseudo-gradient X. The case u=0 yields usual Morse theory, while u ≠ 0 yields Morse-Novikov theory, which is devoted to the understanding of the space of equipped 1-forms (α,X) with α in F_u.
Here, X is a descending pseudo-gradient, which is said to be adapted to α.
The morphism π1(M) → R induced by u (given by the integral of any α in F_u over a loop of M) determines a set of u-negative loops.
We show that for every u-negative g in π1(M), there exists a co-dimension 1 C∞-stratum Sg of F_u which is naturally co-oriented. The stratum Sg is made of elements (α, X) such that X has exactly one homoclinic orbit L whose homotopy class is g.
The goal of this talk is to show that there exists a co-dimension 1 C∞-stratum Sg (0) of Sg which lies in the closure of Sg^2. This result explains geometrically an easy algebraic relation holding in the Novikov ring associated with u.
We will mention how this study generalizes to produce some non-evident symmetric formulas holding in the Novikov ring.
Given u, a de-Rham cohomology class of degree 1 of a closed manifold M, we consider the space F_u of (closed) Morse 1-forms in this class. In Morse theory, it is important to equip each α in F_u with a descending pseudo-gradient X. The case u=0 yields usual Morse theory, while u ≠ 0 yields Morse-Novikov theory, which is devoted to the understanding of the space of equipped 1-forms (α,X) with α in F_u.
Here, X is a descending pseudo-gradient, which is said to be adapted to α.
The morphism π1(M) → R induced by u (given by the integral of any α in F_u over a loop of M) determines a set of u-negative loops.
We show that for every u-negative g in π1(M), there exists a co-dimension 1 C∞-stratum Sg of F_u which is naturally co-oriented. The stratum Sg is made of elements (α, X) such that X has exactly one homoclinic orbit L whose homotopy class is g.
The goal of this talk is to show that there exists a co-dimension 1 C∞-stratum Sg (0) of Sg which lies in the closure of Sg^2. This result explains geometrically an easy algebraic relation holding in the Novikov ring associated with u.
We will mention how this study generalizes to produce some non-evident symmetric formulas holding in the Novikov ring.
PDE Real Analysis Seminar
10:30-11:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Lin Wang (Tsinghua University)
Viscosity solutions of Hamilton-Jacobi equations from a dynamical viewpoint (English)
Lin Wang (Tsinghua University)
Viscosity solutions of Hamilton-Jacobi equations from a dynamical viewpoint (English)
[ Abstract ]
By establishing an implicit variational principle for contact Hamiltonian systems, we detect some properties of viscosity solutions of Hamilton-Jacobi equations of certain Hamilton-Jacobi equations depending on unknown functions, including large time behavior and regularity on certain sets. Besides, I will talk about some connections with contact geometry, thermodynamics and nonholonomic mechanics.
By establishing an implicit variational principle for contact Hamiltonian systems, we detect some properties of viscosity solutions of Hamilton-Jacobi equations of certain Hamilton-Jacobi equations depending on unknown functions, including large time behavior and regularity on certain sets. Besides, I will talk about some connections with contact geometry, thermodynamics and nonholonomic mechanics.
Tuesday Seminar of Analysis
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Li Yutian (Department of Mathematics, Hong Kong Baptist University)
Small-time Asymptotics for Subelliptic Heat Kernels (English)
Li Yutian (Department of Mathematics, Hong Kong Baptist University)
Small-time Asymptotics for Subelliptic Heat Kernels (English)
[ Abstract ]
Subelliptic operators are the natural generalizations of the Laplace- Beltrami operators, and they play important roles in geometry, several complex variables, probability and physics. As in the classical spectral theory for the elliptic operators, some geometrical properties of the induced subRiemannian geometry can be extracted from the analysis of the heat kernels for subelliptic operators. In this talk we shall review the recent progress in the heat kernel asymptotics for subelliptic operators. We concentrate on the small-time asymptotics of the heat kernel on the diagonal, or equivalently, the asymptotics for the trace. Our interest is to find the exact form of the leading term, and this will lead to a Weyl’s asymptotic formula for the subelliptic operators. This is a joint work with Professor Der-Chen Chang.
Subelliptic operators are the natural generalizations of the Laplace- Beltrami operators, and they play important roles in geometry, several complex variables, probability and physics. As in the classical spectral theory for the elliptic operators, some geometrical properties of the induced subRiemannian geometry can be extracted from the analysis of the heat kernels for subelliptic operators. In this talk we shall review the recent progress in the heat kernel asymptotics for subelliptic operators. We concentrate on the small-time asymptotics of the heat kernel on the diagonal, or equivalently, the asymptotics for the trace. Our interest is to find the exact form of the leading term, and this will lead to a Weyl’s asymptotic formula for the subelliptic operators. This is a joint work with Professor Der-Chen Chang.
Lie Groups and Representation Theory
17:00-18:30 Room #122 (Graduate School of Math. Sci. Bldg.)
Paul Baum (Penn State University)
MORITA EQUIVALENCE REVISITED
Paul Baum (Penn State University)
MORITA EQUIVALENCE REVISITED
[ Abstract ]
Let X be a complex affine variety and k its coordinate algebra. A k- algebra is an algebra A over the complex numbers which is a k-module (with an evident compatibility between the algebra structure of A and the k-module structure of A). A is not required to have a unit. A k-algebra A is of finite type if as a k-module A is finitely generated. This talk will review Morita equivalence for k-algebras and will then introduce --- for finite type k-algebras ---a weakening of Morita equivalence called geometric equivalence. The new equivalence relation preserves the primitive ideal space (i.e. the set of isomorphism classes of irreducible A-modules) and the periodic cyclic homology of A. However, the new equivalence relation permits a tearing apart of strata in the primitive ideal space which is not allowed by Morita equivalence.
Let G be a connected split reductive p-adic group, The ABPS (Aubert- Baum-Plymen-Solleveld) conjecture states that the finite type algebra which Bernstein assigns to any given Bernstein component in the smooth dual of G, is geometrically equivalent to the coordinate algebra of the associated extended quotient. The second talk will give an exposition of the ABPS conjecture.
Let X be a complex affine variety and k its coordinate algebra. A k- algebra is an algebra A over the complex numbers which is a k-module (with an evident compatibility between the algebra structure of A and the k-module structure of A). A is not required to have a unit. A k-algebra A is of finite type if as a k-module A is finitely generated. This talk will review Morita equivalence for k-algebras and will then introduce --- for finite type k-algebras ---a weakening of Morita equivalence called geometric equivalence. The new equivalence relation preserves the primitive ideal space (i.e. the set of isomorphism classes of irreducible A-modules) and the periodic cyclic homology of A. However, the new equivalence relation permits a tearing apart of strata in the primitive ideal space which is not allowed by Morita equivalence.
Let G be a connected split reductive p-adic group, The ABPS (Aubert- Baum-Plymen-Solleveld) conjecture states that the finite type algebra which Bernstein assigns to any given Bernstein component in the smooth dual of G, is geometrically equivalent to the coordinate algebra of the associated extended quotient. The second talk will give an exposition of the ABPS conjecture.
2015/07/13
Seminar on Geometric Complex Analysis
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Yoshihiko Matsumoto (Tokyo Institute of Technology)
$L^2$ cohomology and deformation of Einstein metrics on strictly pseudo convex domains
Yoshihiko Matsumoto (Tokyo Institute of Technology)
$L^2$ cohomology and deformation of Einstein metrics on strictly pseudo convex domains
[ Abstract ]
Consider a bounded domain of a Stein manifold, with strictly pseudo convex smooth boundary, endowed with an ACH-Kähler metric (examples being domains of $\mathbb{C}^n$ with their Bergman metrics or Cheng-Yau’s Einstein metrics). We give a vanishing theorem on the $L^2$ $\overline{\partial}$-cohomology group with values in the holomorphic tangent bundle. As an application, Einstein perturbations of the Cheng-Yau metric are discussed.
Consider a bounded domain of a Stein manifold, with strictly pseudo convex smooth boundary, endowed with an ACH-Kähler metric (examples being domains of $\mathbb{C}^n$ with their Bergman metrics or Cheng-Yau’s Einstein metrics). We give a vanishing theorem on the $L^2$ $\overline{\partial}$-cohomology group with values in the holomorphic tangent bundle. As an application, Einstein perturbations of the Cheng-Yau metric are discussed.
Tokyo Probability Seminar
16:30-18:20 Room #128 (Graduate School of Math. Sci. Bldg.)
Mykhaylo Shkolnikov (Mathematics Department, Princeton University) 16:30-17:20
On interacting particle systems in beta random matrix theory
Random field of gradients and elasticity
Mykhaylo Shkolnikov (Mathematics Department, Princeton University) 16:30-17:20
On interacting particle systems in beta random matrix theory
[ Abstract ]
I will first introduce multilevel Dyson Brownian motions and review how those extend to the setting of beta random matrix theory. Then, I will describe a connection between multilevel Dyson Brownian motions and interacting particle systems on the real line with local interactions. This is the first connection of this kind for values of beta different from 1 and 2. Based on joint work with Vadim Gorin.
Stefan Adams (Mathematics Institute, Warwick University) 17:30-18:20I will first introduce multilevel Dyson Brownian motions and review how those extend to the setting of beta random matrix theory. Then, I will describe a connection between multilevel Dyson Brownian motions and interacting particle systems on the real line with local interactions. This is the first connection of this kind for values of beta different from 1 and 2. Based on joint work with Vadim Gorin.
Random field of gradients and elasticity
[ Abstract ]
Random fields of gradients are a class of model systems arising in the studies of random interfaces, random geometry, field theory, and elasticity theory. These random objects pose challenging problems for probabilists as even an a priori distribution involves strong correlations, and are likely to be an universal class of models combining probability, analysis and physics in the study of critical phenomena. They emerge in the following three areas, effective models for random interfaces, Gaussian Free Fields (scaling limits), and mathematical models for the Cauchy-Born rule of materials, i.e., a microscopic approach to nonlinear elasticity. The latter class of models requires that interaction energies are non-convex functions of the gradients. Open problems over the last decades include unicity of Gibbs measures, the scaling to GFF and strict convexity of the free energy. We present in the talk first results for the free energy and the scaling limit at low temperatures using Gaussian measures and rigorous renormalisation group techniques yielding an analysis in terms of dynamical systems. The key ingredient is a finite range decomposition for parameter dependent families of Gaussian measures. (partly joint work with S. Mueller & R. Kotecky)
Random fields of gradients are a class of model systems arising in the studies of random interfaces, random geometry, field theory, and elasticity theory. These random objects pose challenging problems for probabilists as even an a priori distribution involves strong correlations, and are likely to be an universal class of models combining probability, analysis and physics in the study of critical phenomena. They emerge in the following three areas, effective models for random interfaces, Gaussian Free Fields (scaling limits), and mathematical models for the Cauchy-Born rule of materials, i.e., a microscopic approach to nonlinear elasticity. The latter class of models requires that interaction energies are non-convex functions of the gradients. Open problems over the last decades include unicity of Gibbs measures, the scaling to GFF and strict convexity of the free energy. We present in the talk first results for the free energy and the scaling limit at low temperatures using Gaussian measures and rigorous renormalisation group techniques yielding an analysis in terms of dynamical systems. The key ingredient is a finite range decomposition for parameter dependent families of Gaussian measures. (partly joint work with S. Mueller & R. Kotecky)
2015/07/11
Harmonic Analysis Komaba Seminar
13:30-17:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Mitsuo Izuki (Okayama University) 13:30 -15:00
An intrinsic square function on weighted Herz spaces with variable exponent
(日本語)
Toshio Horiuchi (Ibaraki University) 15:30 -17:00
Remarks on the strong maximum principle involving p-Laplacian
(日本語)
Mitsuo Izuki (Okayama University) 13:30 -15:00
An intrinsic square function on weighted Herz spaces with variable exponent
(日本語)
Toshio Horiuchi (Ibaraki University) 15:30 -17:00
Remarks on the strong maximum principle involving p-Laplacian
(日本語)
2015/07/10
thesis presentations
13:30-14:45 Room #128 (Graduate School of Math. Sci. Bldg.)
中安 淳 (東京大学大学院数理科学研究科)
On stability of viscosity solutions under non-Euclidean metrics(非ユークリッド距離構造の下での粘性解の安定性) (JAPANESE)
中安 淳 (東京大学大学院数理科学研究科)
On stability of viscosity solutions under non-Euclidean metrics(非ユークリッド距離構造の下での粘性解の安定性) (JAPANESE)
2015/07/09
Infinite Analysis Seminar Tokyo
15:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Yuta Nozaki (Graduate School of Mathematical Sciences, the University of Tokyo) 15:00-16:30
An extension of the LMO functor and formal Gaussian integrals (JAPANESE)
On the relative number of ends of higher dimensional Thompson groups (JAPANESE)
Yuta Nozaki (Graduate School of Mathematical Sciences, the University of Tokyo) 15:00-16:30
An extension of the LMO functor and formal Gaussian integrals (JAPANESE)
[ Abstract ]
Cheptea, Habiro and Massuyeau introduced the LMO functor as an
extension of the LMO invariant of closed 3-manifolds.
The LMO functor is “the monoidal category of Lagrangian cobordisms
between surfaces with at most one boundary component” to “the monoidal
category of certain Jacobi diagrams”.
In this talk, we extend the LMO functor to the case of any number of
boundary components.
In particular, we focus on a formal Gaussian integral, that is an
essential tool to construct the LMO functor.
Motoko Kato (Graduate School of Mathematical Sciences, the University of Tokyo) 17:00-18:30Cheptea, Habiro and Massuyeau introduced the LMO functor as an
extension of the LMO invariant of closed 3-manifolds.
The LMO functor is “the monoidal category of Lagrangian cobordisms
between surfaces with at most one boundary component” to “the monoidal
category of certain Jacobi diagrams”.
In this talk, we extend the LMO functor to the case of any number of
boundary components.
In particular, we focus on a formal Gaussian integral, that is an
essential tool to construct the LMO functor.
On the relative number of ends of higher dimensional Thompson groups (JAPANESE)
[ Abstract ]
In 2004, Brin defined n−dimensional Thompson group nV for every natural number n ≥ 1. nV is a generalization of the Thompson group V . The Thompson group V can be described as a subgroup of the homeomorphism group of the Cantor set C. In this point of view, nV is a subgroup of the homeomorphism group of Cn. We prove that the number of ends of nV is equal to 1 and there is a subgroup of nV such that the relative number of ends is ∞. As a corollary of the second result, for each n, nV has Haagerup property and it can not be the fundamental group of a compact K ̈ahler manifold. These results are the generalizations of the corresponding results of Farley, who studied the Thompson group V .
In 2004, Brin defined n−dimensional Thompson group nV for every natural number n ≥ 1. nV is a generalization of the Thompson group V . The Thompson group V can be described as a subgroup of the homeomorphism group of the Cantor set C. In this point of view, nV is a subgroup of the homeomorphism group of Cn. We prove that the number of ends of nV is equal to 1 and there is a subgroup of nV such that the relative number of ends is ∞. As a corollary of the second result, for each n, nV has Haagerup property and it can not be the fundamental group of a compact K ̈ahler manifold. These results are the generalizations of the corresponding results of Farley, who studied the Thompson group V .
2015/07/08
Operator Algebra Seminars
16:45-18:15 Room #122 (Graduate School of Math. Sci. Bldg.)
Marcel Bischoff (Vanderbilt Univ.)
Conformal field theory, subfactors and planar algebras
Marcel Bischoff (Vanderbilt Univ.)
Conformal field theory, subfactors and planar algebras
FMSP Lectures
16:45-18:15 Room #122 (Graduate School of Math. Sci. Bldg.)
Marcel Bischoff (Vanderbilt Univ.)
Conformal field theory, subfactors and planar algebras (ENGLISH)
[ Reference URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm
Marcel Bischoff (Vanderbilt Univ.)
Conformal field theory, subfactors and planar algebras (ENGLISH)
[ Reference URL ]
https://www.ms.u-tokyo.ac.jp/~yasuyuki/tokyo-seminar.htm
2015/07/07
Tuesday Seminar on Topology
17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Takahiro Kitayama (Tokyo Institute of Technology)
Representation varieties detect essential surfaces (JAPANESE)
Takahiro Kitayama (Tokyo Institute of Technology)
Representation varieties detect essential surfaces (JAPANESE)
[ Abstract ]
Extending Culler-Shalen theory, Hara and I presented a way to construct
certain kinds of branched surfaces (possibly without any branch) in a 3-
manifold from an ideal point of a curve in the SL_n-character variety.
There exists an essential surface in some 3-manifold known to be not
detected in the classical SL_2-theory. We show that every essential
surface in a 3-manifold is given by the ideal point of a line in the SL_
n-character variety for some n. The talk is partially based on joint
works with Stefan Friedl and Matthias Nagel, and also with Takashi Hara.
Extending Culler-Shalen theory, Hara and I presented a way to construct
certain kinds of branched surfaces (possibly without any branch) in a 3-
manifold from an ideal point of a curve in the SL_n-character variety.
There exists an essential surface in some 3-manifold known to be not
detected in the classical SL_2-theory. We show that every essential
surface in a 3-manifold is given by the ideal point of a line in the SL_
n-character variety for some n. The talk is partially based on joint
works with Stefan Friedl and Matthias Nagel, and also with Takashi Hara.
2015/07/06
Seminar on Geometric Complex Analysis
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Akio Kodama
On the structure of holomorphic automorphism groups of generalized complex ellipsoids and generalized Hartogs triangles (JAPANESE)
Akio Kodama
On the structure of holomorphic automorphism groups of generalized complex ellipsoids and generalized Hartogs triangles (JAPANESE)
[ Abstract ]
In this talk, we first review the structure of holomorphic automorphism groups of generalized complex ellipsoids and, as an application of this, we clarify completely the structure of generalized Hartogs triangles. Finally, if possible, I will mention some known results on proper holomorphic self-mappings of generalized complex ellipsoids, generalized Hartogs triangles, and discuss a related question to these results.
In this talk, we first review the structure of holomorphic automorphism groups of generalized complex ellipsoids and, as an application of this, we clarify completely the structure of generalized Hartogs triangles. Finally, if possible, I will mention some known results on proper holomorphic self-mappings of generalized complex ellipsoids, generalized Hartogs triangles, and discuss a related question to these results.
2015/07/03
Geometry Colloquium
10:00-11:30 Room #126 (Graduate School of Math. Sci. Bldg.)
Takayuki OKUDA (HIroshima University)
Proper actions of reductive groups on pseudo-Riemannian symmetric spaces and its compact dual. (日本語)
Takayuki OKUDA (HIroshima University)
Proper actions of reductive groups on pseudo-Riemannian symmetric spaces and its compact dual. (日本語)
[ Abstract ]
Let G be a non-compact semisimple Lie group. We take a pair of symmetric pairs (G,H) and (G,L) such that the diagonal action of G on G/H \times G/L is proper. In this talk, we show that by taking ``the compact dual of triple (G,H,L)'', we obtain a compact symmetric space M = U/K and its reflective submanifolds S_1 and S_2 satisfying that the intersection of S_1 and gS_2 is discrete in M for any g in U. In particular, we give a classification of such triples (G,H,L).
Let G be a non-compact semisimple Lie group. We take a pair of symmetric pairs (G,H) and (G,L) such that the diagonal action of G on G/H \times G/L is proper. In this talk, we show that by taking ``the compact dual of triple (G,H,L)'', we obtain a compact symmetric space M = U/K and its reflective submanifolds S_1 and S_2 satisfying that the intersection of S_1 and gS_2 is discrete in M for any g in U. In particular, we give a classification of such triples (G,H,L).
2015/07/01
Operator Algebra Seminars
16:45-18:15 Room #122 (Graduate School of Math. Sci. Bldg.)
Koichi Shimada (Univ. Tokyo)
Approximate unitary equivalence of finite index endomorphisms of the AFD
factors
Koichi Shimada (Univ. Tokyo)
Approximate unitary equivalence of finite index endomorphisms of the AFD
factors
2015/06/30
Lie Groups and Representation Theory
17:00-18:30 Room #122 (Graduate School of Math. Sci. Bldg.)
Anatoly Vershik (St. Petersburg Department of Steklov Institute of Mathematics)
Random subgroups and representation theory
Anatoly Vershik (St. Petersburg Department of Steklov Institute of Mathematics)
Random subgroups and representation theory
[ Abstract ]
The following problem had been appeared independently in different teams and various reason:
to describe the Borel measures on the lattice of all subgroups of given group, which are invariant with respect to the action of the group by conjugacy. The main interest of course represents nonatomic measures which exist not for any group.
I will explain how these measures connected with characters and representations of the group, and describe the complete list of such measures for infinite symmetric group.
The following problem had been appeared independently in different teams and various reason:
to describe the Borel measures on the lattice of all subgroups of given group, which are invariant with respect to the action of the group by conjugacy. The main interest of course represents nonatomic measures which exist not for any group.
I will explain how these measures connected with characters and representations of the group, and describe the complete list of such measures for infinite symmetric group.
Tuesday Seminar on Topology
17:30-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Makoto Sakuma (Hiroshima University)
The Cannon-Thurston maps and the canonical decompositions of punctured surface bundles over the circle (JAPANESE)
Makoto Sakuma (Hiroshima University)
The Cannon-Thurston maps and the canonical decompositions of punctured surface bundles over the circle (JAPANESE)
[ Abstract ]
To each once-punctured-torus bundle over the circle with pseudo-Anosov monodromy,
there are associated two tessellations of the complex plane:
one is the triangulation of a horosphere induced by the canonical decomposition into ideal tetrahedra,
and the other is a fractal tessellation given by the Cannon-Thurston map of the fiber group.
In a joint work with Warren Dicks, I had described the relation between these two tessellations.
This result was recently generalized by Francois Gueritaud to punctured surface bundles
with pseudo-Anosov monodromy where all singuraities of the invariant foliations are at punctures.
In this talk, I will explain Gueritaud's work and related work by Naoki Sakata.
To each once-punctured-torus bundle over the circle with pseudo-Anosov monodromy,
there are associated two tessellations of the complex plane:
one is the triangulation of a horosphere induced by the canonical decomposition into ideal tetrahedra,
and the other is a fractal tessellation given by the Cannon-Thurston map of the fiber group.
In a joint work with Warren Dicks, I had described the relation between these two tessellations.
This result was recently generalized by Francois Gueritaud to punctured surface bundles
with pseudo-Anosov monodromy where all singuraities of the invariant foliations are at punctures.
In this talk, I will explain Gueritaud's work and related work by Naoki Sakata.
2015/06/29
Seminar on Geometric Complex Analysis
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Yuta Suzuki (Univ. of Tokyo)
Cohomology Formula for Obstructions to Asymptotic Chow semistability (JAPANESE)
Yuta Suzuki (Univ. of Tokyo)
Cohomology Formula for Obstructions to Asymptotic Chow semistability (JAPANESE)
[ Abstract ]
Odaka and Wang proved the intersection formula for the Donaldson-Futaki invariant. We generalize this result for the higher Futaki invariants which are obstructions to asymptotic Chow semistability.
Odaka and Wang proved the intersection formula for the Donaldson-Futaki invariant. We generalize this result for the higher Futaki invariants which are obstructions to asymptotic Chow semistability.
Algebraic Geometry Seminar
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Manfred Lehn (Mainz/RIMS)
Twisted cubics and cubic fourfolds (English)
Manfred Lehn (Mainz/RIMS)
Twisted cubics and cubic fourfolds (English)
[ Abstract ]
The moduli scheme of generalised twisted cubics on a smooth
cubic fourfold Y non containing a plane is smooth projective of
dimension 10 and admits a contraction to an 8-dimensional
holomorphic symplectic manifold Z(Y). The latter is shown to be
birational to the Hilbert scheme of four points on a K3 surface if
Y is of Pfaffian type. This is a report on joint work with C. Lehn,
C. Sorger and D. van Straten and with N. Addington.
The moduli scheme of generalised twisted cubics on a smooth
cubic fourfold Y non containing a plane is smooth projective of
dimension 10 and admits a contraction to an 8-dimensional
holomorphic symplectic manifold Z(Y). The latter is shown to be
birational to the Hilbert scheme of four points on a K3 surface if
Y is of Pfaffian type. This is a report on joint work with C. Lehn,
C. Sorger and D. van Straten and with N. Addington.
Tokyo Probability Seminar
16:50-18:20 Room #128 (Graduate School of Math. Sci. Bldg.)
Kunio Nishioka (Faculty of Commerce, Chuo University)
Kunio Nishioka (Faculty of Commerce, Chuo University)
< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 Next >