Seminar information archive
Seminar information archive ~01/21|Today's seminar 01/22 | Future seminars 01/23~
2010/12/20
Seminar on Geometric Complex Analysis
Hiroshi Yamaguchi (Shiga Univ*)
Pseudoconvex domains in Hopf surfaces (JAPANESE)
Algebraic Geometry Seminar
Yoshinori Gongyo (Univ. of Tokyo)
On the minimal model theory from a viewpoint of numerical invariants (JAPANESE)
I will introduce the numerical Kodaira dimension for pseudo-effective divisors after N. Nakayama and explain the minimal model theory of numerical Kodaira dimension zero. I also will talk about the applications. ( partially joint work with B. Lehmann.)
2010/12/16
Operator Algebra Seminars
Marco Merkli (Memorial Univ. Newfoundland)
Evolution of Quantum Dynamical Systems (ENGLISH)
Operator Algebra Seminars
Nicolas Monod (EPFL)
Fixed point theorems and derivations (ENGLISH)
Lectures
Sebastien Hitier (BNP Paribas, Head of Quantitative Research, Credit Asia)
Credit Derivatives Modelling and the concept of Background Intensity I (ENGLISH)
Session 1: Introducing background intensity models
- Motivation for the concept of background intensity
- The default realisation marker
- Definition of background filtration and background intensity
- Reformulating the H hypothesis, and Kusuoka’s “remark”
- Generalised HJM formula and Credit Risk neutral dynamics
Session 2: Five useful properties of background intensity models
- Generalised HJM formula for credit
- Definition of conditionally independent defaults
- Diversification effects: results on forward loss distribution
- Stronger conditional independence effect for spot loss
- Existence of a canonical copula
- Properties of the portfolio loss copula
Lectures
Sebastien Hitier (BNP Paribas, Head of Quantitative Research, Credit Asia)
Credit Derivatives Modelling and the concept of Background Intensity II (ENGLISH)
Session 1: Introducing background intensity models
- Motivation for the concept of background intensity
- The default realisation marker
- Definition of background filtration and background intensity
- Reformulating the H hypothesis, and Kusuoka’s “remark”
- Generalised HJM formula and Credit Risk neutral dynamics
Session 2: Five useful properties of background intensity models
- Generalised HJM formula for credit
- Definition of conditionally independent defaults
- Diversification effects: results on forward loss distribution
- Stronger conditional independence effect for spot loss
- Existence of a canonical copula
- Properties of the portfolio loss copula
2010/12/14
Tuesday Seminar on Topology
Kenneth Schackleton (IPMU)
On the coarse geometry of Teichmueller space (ENGLISH)
We discuss the synthetic geometry of the pants graph in
comparison with the Weil-Petersson metric, whose geometry the
pants graph coarsely models following work of Brock’s. We also
restrict our attention to the 5-holed sphere, studying the Gromov
bordification of the pants graph and the dynamics of pseudo-Anosov
mapping classes.
2010/12/13
Seminar on Geometric Complex Analysis
Katsutoshi Yamanoi (Tokyo Institute of Technology)
An equality estimate for the second main theorem (JAPANESE)
Algebraic Geometry Seminar
Sergey Fomin (University of Michigan)
Enumeration of plane curves and labeled floor diagrams (ENGLISH)
Floor diagrams are a class of weighted oriented graphs introduced by E. Brugalle and G. Mikhalkin. Tropical geometry arguments yield combinatorial descriptions of (ordinary and relative) Gromov-Witten invariants of projective spaces in terms of floor diagrams and their generalizations. In the case of the projective plane, these descriptions can be used to obtain new formulas for the corresponding enumerative invariants. In particular, we give a proof of Goettsche's polynomiality conjecture for plane curves, and enumerate plane rational curves of given degree passing through given points and having maximal tangency to a given line. On the combinatorial side, we show that labeled floor diagrams of genus 0 are equinumerous to labeled trees, and therefore counted by the celebrated Cayley's formula. The corresponding bijections lead to interpretations of the Kontsevich numbers (the genus-0 Gromov-Witten invariants of the projective plane) in terms of certain statistics on trees.
This is joint work with Grisha Mikhalkin.
2010/12/10
Colloquium
Yoshikazu Giga (The University of Tokyo, Graduate School of Mathematical Sciences)
Hamilton-Jacobi equations and crystal growth (JAPANESE)
2010/12/09
Operator Algebra Seminars
Ryszard Nest (Univ. Copenhagen)
Spectral flow associated to KMS states with periodic KMS group action (ENGLISH)
2010/12/07
Tuesday Seminar on Topology
Raphael Ponge (The University of Tokyo)
Diffeomorphism-invariant geometries and noncommutative geometry (ENGLISH)
In many geometric situations we may encounter the action of
a group $G$ on a manifold $M$, e.g., in the context of foliations. If
the action is free and proper, then the quotient $M/G$ is a smooth
manifold. However, in general the quotient $M/G$ need not even be
Hausdorff. Furthermore, it is well-known that a manifold has structure
invariant under the full group of diffeomorphisms except the
differentiable structure itself. Under these conditions how can one do
diffeomorphism-invariant geometry?
Noncommutative geometry provides us with the solution of trading the
ill-behaved space $M/G$ for a non-commutative algebra which
essentially plays the role of the algebra of smooth functions on that
space. The local index formula of Atiyah-Singer ultimately holds in
the setting of noncommutative geometry. Using this framework Connes
and Moscovici then obtained in the 90s a striking reformulation of the
local index formula in diffeomorphism-invariant geometry.
An important part the talk will be devoted to reviewing noncommutative
geometry and Connes-Moscovici's index formula. We will then hint to on-
going projects about reformulating the local index formula in two new
geometric settings: biholomorphism-invariant geometry of strictly
pseudo-convex domains and contactomorphism-invariant geometry.
Numerical Analysis Seminar
Akitoshi Takayasu (Waseda University)
Numerical verification of existence for solutions to Dirichlet
boundary value problems of semilinear elliptic equations
(JAPANESE)
[ Reference URL ]
http://www.infsup.jp/utnas/
2010/12/06
Seminar on Geometric Complex Analysis
Hajime Ono (Tokyo Univ of Science)
Chow semistability of polarized toric manifolds (JAPANESE)
2010/12/04
Classical Analysis
Toshihiko Matsuki (Kyoto University)
Orbit decomposition of multiple flag varieties and representations of of quiver (JAPANESE)
Classical Analysis
Kouichi Takemura (Chuo University)
Integral transformations on the Heun equation and its applications (JAPANESE)
Classical Analysis
Kazuki Hiroe (University of Tokyo)
Weyl group symmetries of double confluent Heun equations (JAPANESE)
Classical Analysis
Takao Suzuki (Kobe University)
Affine root systems, monodromy preserving deformation, and hypergeometric functions (JAPANESE)
Classical Analysis
Jiro Sekiguchi (Tokyo University of Agriculture and Technology)
On the uniformization equations which have singularities along discriminant of complex reflection groups of rank three (JAPANESE)
2010/12/03
GCOE Seminars
Jarmo Hietarinta (University of Turku)
Discrete Integrability and Consistency-Around-the-Cube (CAC) (ENGLISH)
For integrable lattice equations we can still apply many integrability criteria that are regularly used for continuous systems, but there are also some that are specific for discrete systems. One particularly successful discrete integrability criterion is the multidimensional consistency, or CAC. We review the classic results of Nijhoff and of Adler-Bobenko-Suris and then present some extensions.
GCOE Seminars
Nalini Joshi (University of Sydney)
Geometric asymptotics of the first Painleve equation (ENGLISH)
I will report on my recent collaboration with Hans Duistermaat on the geometry of the space of initial values of the first Painleve equation, which was first constructed by Okamoto. We show that highly accurate information about solutions can be found by utilizing the regularized and compactified space of initial values in Boutroux's coordinates. I will also describe numerical explorations based on this work obtained in collaboration with Holger Dullin.
Classical Analysis
Daisuke Yamakawa (Kobe University)
The third Painlev¥'e equation and quiver varieties (JAPANESE)
2010/12/01
Number Theory Seminar
Yuichiro Hoshi (RIMS, Kyoto University) 16:30-17:30
On a problem of Matsumoto and Tamagawa concerning monodromic fullness of hyperbolic curves (JAPANESE)
In this talk, we will discuss the following problem posed by Makoto Matsumoto and Akio Tamagawa concerning monodromic fullness of hyperbolic curves.
For a hyperbolic curve X over a number field, are the following three conditions equivalent?
(A) For any prime number l, X is quasi-l-monodromically full.
(B) There exists a prime number l such that X is l-monodromically full.
(C) X is l-monodromically full for all but finitely many prime numbers l.
The property of being (quasi-)monodromically full may be regarded as an analogue for hyperbolic curves of the property of not admitting complex multiplication for elliptic curves, and the above equivalence may be regarded as an analogue for hyperbolic curves of the following result concerning the Galois representation on the Tate module of an elliptic curve over a number field proven by Jean-Pierre Serre.
For an elliptic curve E over a number field, the following four conditions are equivalent:
(0) E does not admit complex multiplication.
(1) For any prime number l, the image of the l-adic Galois representation associated to E is open.
(2) There exists a prime number l such that the l-adic Galois representation associated to E is surjective.
(3) The l-adic Galois representation associated to E is surjective for all but finitely many prime numbers l.
In this talk, I will present some results concerning the above problem in the case where the given hyperbolic curve is of genus zero. In particular, I will give an example of a hyperbolic curve of type (0,4) over a number field which satisfies condition (C) but does not satisfy condition (A).
Galois theory for schemes (ENGLISH)
We discuss some aspects of finite group scheme actions: the Galois correspondence and the notion of Galois closure.
2010/11/30
Numerical Analysis Seminar
Yasunori Aoki (University of Waterloo/NII)
Finite volume element method for singular solutions of elliptic PDEs
(JAPANESE)
[ Reference URL ]
http://www.infsup.jp/utnas/
Tuesday Seminar on Topology
Nobuhiro Nakamura (The University of Tokyo)
Pin^-(2)-monopole equations and intersection forms with local coefficients of 4-manifolds (JAPANESE)
We introduce a variant of the Seiberg-Witten equations, Pin^-(2)-monopole equations, and explain its applications to intersection forms with local coefficients of 4-manifolds.
The first application is an analogue of Froyshov's results on 4-manifolds which have definite forms with local coefficients.
The second one is a local coefficient version of Furuta's 10/8-inequality.
As a corollary, we construct nonsmoothable spin 4-manifolds satisfying Rohlin's theorem and the 10/8-inequality.
< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 Next >


Text only print
Full screen print

