Seminar information archive
Seminar information archive ~09/14|Today's seminar 09/15 | Future seminars 09/16~
Operator Algebra Seminars
16:30-18:00 Room #128 (Graduate School of Math. Sci. Bldg.)
小西由紀子 (東大数理)
ミラー対称性
小西由紀子 (東大数理)
ミラー対称性
2007/04/11
Seminar on Mathematics for various disciplines
10:30-11:30 Room #056 (Graduate School of Math. Sci. Bldg.)
C. W. Oosterlee (Delft University of Technology)
The numerical treatment of pricing early exercise options under L'evy processes
http://coe.math.sci.hokudai.ac.jp/
C. W. Oosterlee (Delft University of Technology)
The numerical treatment of pricing early exercise options under L'evy processes
[ Abstract ]
In this presentation we will discuss the pricing of American and Bermudan options under L'evy process dynamics.
Two different approaches will be discussed: First of all, modelling with differential operators gives rise to the numerical solution of a partial-integro differential equation for obtaining European option prices. For American prices a linear complementarity problem with the partial integro-differential operator needs to be solved. We outline the difficulties and possible solutions in this context.
At the same time we would also like to present a different pricing approach based on numerical integration and the fast Fourier Transform. Both approaches are compared in terms of accuracy and efficiency.
[ Reference URL ]In this presentation we will discuss the pricing of American and Bermudan options under L'evy process dynamics.
Two different approaches will be discussed: First of all, modelling with differential operators gives rise to the numerical solution of a partial-integro differential equation for obtaining European option prices. For American prices a linear complementarity problem with the partial integro-differential operator needs to be solved. We outline the difficulties and possible solutions in this context.
At the same time we would also like to present a different pricing approach based on numerical integration and the fast Fourier Transform. Both approaches are compared in terms of accuracy and efficiency.
http://coe.math.sci.hokudai.ac.jp/
Number Theory Seminar
16:30-17:30 Room #117 (Graduate School of Math. Sci. Bldg.)
斎藤 毅 (東京大学大学院数理科学研究科)
l進層の暴分岐と特性サイクル
斎藤 毅 (東京大学大学院数理科学研究科)
l進層の暴分岐と特性サイクル
2007/04/10
Lectures
15:00-16:00 Room #370 (Graduate School of Math. Sci. Bldg.)
Thomas DURT (ブリユッセル自由大学・VUB)
Applications of the Generalised Pauli Group in Quantum Information
[ Reference URL ]
https://www.ms.u-tokyo.ac.jp/~willox/abstractDurt.pdf
Thomas DURT (ブリユッセル自由大学・VUB)
Applications of the Generalised Pauli Group in Quantum Information
[ Reference URL ]
https://www.ms.u-tokyo.ac.jp/~willox/abstractDurt.pdf
2007/04/05
Applied Analysis
16:00-17:30 Room #126 (Graduate School of Math. Sci. Bldg.)
Robert P. GILBERT (デラウェア大学・数学教室)
Acoustic Modeling and Osteoporotic Evaluation of Bone
Robert P. GILBERT (デラウェア大学・数学教室)
Acoustic Modeling and Osteoporotic Evaluation of Bone
[ Abstract ]
In this talk we discuss the modeling of the acoustic response of cancellous bone using the methods of homogenization.
This can lead to Biot type equations or more generalized equations. We develop the effective acoustic equations for cancellous bone. It is assumed that the bone matrix is elastic and the interstitial blood-marrow can be modeled as a Navier-Stokes system.
We also discuss the use of the Biot model and consider its applicability to cancellous bone. One of the questions this talk addresses is whether the clinical experiments customarily performed can be used to determine the parameters of the Biot or other bone models. A parameter recovery algorithm which uses parallel processing is developed and tested.
In this talk we discuss the modeling of the acoustic response of cancellous bone using the methods of homogenization.
This can lead to Biot type equations or more generalized equations. We develop the effective acoustic equations for cancellous bone. It is assumed that the bone matrix is elastic and the interstitial blood-marrow can be modeled as a Navier-Stokes system.
We also discuss the use of the Biot model and consider its applicability to cancellous bone. One of the questions this talk addresses is whether the clinical experiments customarily performed can be used to determine the parameters of the Biot or other bone models. A parameter recovery algorithm which uses parallel processing is developed and tested.
2007/03/26
Algebraic Geometry Seminar
15:30-17:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Professor Caucher Birkar (University of Cambridge)
Existence of minimal models and flips (3rd talk of three)
Professor Caucher Birkar (University of Cambridge)
Existence of minimal models and flips (3rd talk of three)
2007/03/22
PDE Real Analysis Seminar
10:30-11:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Matteo Novaga (Hokkaido University / Universita di Pisa)
A semidiscrete scheme for the Perona Malik equation
http://coe.math.sci.hokudai.ac.jp/
Matteo Novaga (Hokkaido University / Universita di Pisa)
A semidiscrete scheme for the Perona Malik equation
[ Abstract ]
We discuss the convergence of the spatial semidiscrete scheme for the one-dimensional Perona-Malik equation. If the initial datum is 1-Lipschitz out of a finite number of jump points, we haracterize the problem satisfied by the limit solution. In the general case, we construct a solution by a careful inspection of the behaviour of the approximating solutions in a space-time neighbourhood of the jump points.
[ Reference URL ]We discuss the convergence of the spatial semidiscrete scheme for the one-dimensional Perona-Malik equation. If the initial datum is 1-Lipschitz out of a finite number of jump points, we haracterize the problem satisfied by the limit solution. In the general case, we construct a solution by a careful inspection of the behaviour of the approximating solutions in a space-time neighbourhood of the jump points.
http://coe.math.sci.hokudai.ac.jp/
Algebraic Geometry Seminar
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Professor Caucher Birkar (University of Cambridge)
On boundedness of log Fano varieties (2nd talk of three)
Professor Caucher Birkar (University of Cambridge)
On boundedness of log Fano varieties (2nd talk of three)
2007/03/20
Algebraic Geometry Seminar
16:30-18:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Professor Caucher Birkar (University of Cambridge
)
Singularities and termination of flips (1st talk of three)
Professor Caucher Birkar (University of Cambridge
)
Singularities and termination of flips (1st talk of three)
2007/03/17
Infinite Analysis Seminar Tokyo
13:30-14:30 Room #117 (Graduate School of Math. Sci. Bldg.)
Paul Wiegmann (Chicago Univ.)
Calogero model and Quantum Benjamin-Ono Equation
Paul Wiegmann (Chicago Univ.)
Calogero model and Quantum Benjamin-Ono Equation
[ Abstract ]
TBA
TBA
2007/03/09
Lectures
10:30-12:00 Room #123 (Graduate School of Math. Sci. Bldg.)
Kazufumi Ito (North Carolina State University)
Nonsmooth Optimization and Applications in PDEs
Kazufumi Ito (North Carolina State University)
Nonsmooth Optimization and Applications in PDEs
[ Abstract ]
Semismooth Newton method for solving nonlinear non-smooth equations in Banach spaces is discussed.
Applications include complementarity problems, variational inequalities and optimal control problems with control or state constraints, Black Scholes model with American option and imaging analysis.
Semismooth Newton method for solving nonlinear non-smooth equations in Banach spaces is discussed.
Applications include complementarity problems, variational inequalities and optimal control problems with control or state constraints, Black Scholes model with American option and imaging analysis.
2007/03/08
Lectures
15:30-17:00 Room #123 (Graduate School of Math. Sci. Bldg.)
Kazufumi Ito (North Carolina State University)
Nonsmooth Optimization and Applications in PDEs
Kazufumi Ito (North Carolina State University)
Nonsmooth Optimization and Applications in PDEs
[ Abstract ]
Semismooth Newton method for solving nonlinear non-smooth equations in Banach spaces is discussed.
Applications include complementarity problems, variational inequalities and optimal control problems with control or state constraints, Black Scholes model with American option and imaging analysis.
Semismooth Newton method for solving nonlinear non-smooth equations in Banach spaces is discussed.
Applications include complementarity problems, variational inequalities and optimal control problems with control or state constraints, Black Scholes model with American option and imaging analysis.
2007/03/07
Seminar on Mathematics for various disciplines
14:00-15:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Seung Yeal Ha (Seoul National University)
Stability theory in L^p for the space-inhomogeneous Boltzmann equation
http://coe.math.sci.hokudai.ac.jp/index.html.en
Seung Yeal Ha (Seoul National University)
Stability theory in L^p for the space-inhomogeneous Boltzmann equation
[ Abstract ]
In this talk, I will present kinetic nonlinear funtionals which are similar in sprit to Glimm type functionals in one-dimensional hyperbolic conservation laws. These functionals measures the dispersive mechanism of the Boltzmann equation near vacuum and can be used to the study of the large-time behavior and L^p-stability of the Boltzmann equation near vacuum. This is a joint work with M. Yamazaki (Univ. of Tsukuba) and Seok-Bae Yun (Seoul National Univ.)
[ Reference URL ]In this talk, I will present kinetic nonlinear funtionals which are similar in sprit to Glimm type functionals in one-dimensional hyperbolic conservation laws. These functionals measures the dispersive mechanism of the Boltzmann equation near vacuum and can be used to the study of the large-time behavior and L^p-stability of the Boltzmann equation near vacuum. This is a joint work with M. Yamazaki (Univ. of Tsukuba) and Seok-Bae Yun (Seoul National Univ.)
http://coe.math.sci.hokudai.ac.jp/index.html.en
2007/02/22
Lectures
10:30-12:00 Room #123 (Graduate School of Math. Sci. Bldg.)
Stan Osher (UCLA)
The level set method, multivalued solutions and image science
Stan Osher (UCLA)
The level set method, multivalued solutions and image science
[ Abstract ]
During the past two decades variational and partial differential based methods have greatly affected the fields of image processing, computer vision and graphics (image science in general). Almost simultaneously the level set method for computing moving interfaces has impacted many areas of mathematics, engineering and applied science, including image science. I will try to give an overview of the basics and recent advances in these topics.
During the past two decades variational and partial differential based methods have greatly affected the fields of image processing, computer vision and graphics (image science in general). Almost simultaneously the level set method for computing moving interfaces has impacted many areas of mathematics, engineering and applied science, including image science. I will try to give an overview of the basics and recent advances in these topics.
Lectures
13:00-15:00 Room #123 (Graduate School of Math. Sci. Bldg.)
Dietmar Hoemberg (Berlin Technical University)
Optimal control of semilinear parabolic equations and an application to laser material treatments
Dietmar Hoemberg (Berlin Technical University)
Optimal control of semilinear parabolic equations and an application to laser material treatments
[ Abstract ]
Many technological processes can be described by partial differential equations. For many years the role of industrial mathematics was mainly to try to understand the respective process, to derive an appropriate PDE or ODE model for it and to simulate it using, e.g., a finite-element code.
However, the ultimate goal usually is to try to optimize the process. Mathematically, this requires the solution of an optimal control problem, i.e., a constrained nonlinear optimization problem in which the constraints are PDEs.
The goal of these two talks is to give an overview of the theory and numerics of optimal control of PDEs for the case of parabolic state equations including an application in laser material treatments. More specifically, I will focus on the following topics.
Many technological processes can be described by partial differential equations. For many years the role of industrial mathematics was mainly to try to understand the respective process, to derive an appropriate PDE or ODE model for it and to simulate it using, e.g., a finite-element code.
However, the ultimate goal usually is to try to optimize the process. Mathematically, this requires the solution of an optimal control problem, i.e., a constrained nonlinear optimization problem in which the constraints are PDEs.
The goal of these two talks is to give an overview of the theory and numerics of optimal control of PDEs for the case of parabolic state equations including an application in laser material treatments. More specifically, I will focus on the following topics.
2007/02/21
Lectures
10:30-12:00 Room #123 (Graduate School of Math. Sci. Bldg.)
Stan Osher (UCLA)
The level set method, multivalued solutions and image science
Stan Osher (UCLA)
The level set method, multivalued solutions and image science
[ Abstract ]
During the past two decades variational and partial differential based methods have greatly affected the fields of image processing, computer vision and graphics (image science in general). Almost simultaneously the level set method for computing moving interfaces has impacted many areas of mathematics, engineering and applied science, including image science. I will try to give an overview of the basics and recent advances in these topics.
During the past two decades variational and partial differential based methods have greatly affected the fields of image processing, computer vision and graphics (image science in general). Almost simultaneously the level set method for computing moving interfaces has impacted many areas of mathematics, engineering and applied science, including image science. I will try to give an overview of the basics and recent advances in these topics.
Lectures
13:30-15:00 Room #123 (Graduate School of Math. Sci. Bldg.)
Dietmar Hoemberg (Berlin Technical University)
Optimal control of semilinear parabolic equations and an application to laser material treatments
Dietmar Hoemberg (Berlin Technical University)
Optimal control of semilinear parabolic equations and an application to laser material treatments
[ Abstract ]
Many technological processes can be described by partial differential equations. For many years the role of industrial mathematics was mainly to try to understand the respective process, to derive an appropriate PDE or ODE model for it and to simulate it using, e.g., a finite-element code.
However, the ultimate goal usually is to try to optimize the process. Mathematically, this requires the solution of an optimal control problem, i.e., a constrained nonlinear optimization problem in which the constraints are PDEs.
The goal of these two talks is to give an overview of the theory and numerics of optimal control of PDEs for the case of parabolic state equations including an application in laser material treatments. More specifically, I will focus on the following topics.
Many technological processes can be described by partial differential equations. For many years the role of industrial mathematics was mainly to try to understand the respective process, to derive an appropriate PDE or ODE model for it and to simulate it using, e.g., a finite-element code.
However, the ultimate goal usually is to try to optimize the process. Mathematically, this requires the solution of an optimal control problem, i.e., a constrained nonlinear optimization problem in which the constraints are PDEs.
The goal of these two talks is to give an overview of the theory and numerics of optimal control of PDEs for the case of parabolic state equations including an application in laser material treatments. More specifically, I will focus on the following topics.
2007/02/20
Lectures
10:30-17:20 Room #123 (Graduate School of Math. Sci. Bldg.)
Erwin Bolthausen (University of Zurich) 10:30-12:00
Exit distributions for random walks in random environments
Erwin Bolthausen (University of Zurich) 14:00-15:30
Quasi one-dimensional random walks in random environments
田村要造 (慶応大理工) 15:50-16:30
Large deviation principle for currents generated by stochasticline integrals
on compact Riemannian manifolds (joint work with S. Kusuoka and K. Kuwada)
長田博文 (九大数理) 16:40-17:20
Interacting Brownian motions related to Ginibre random point field
Erwin Bolthausen (University of Zurich) 10:30-12:00
Exit distributions for random walks in random environments
Erwin Bolthausen (University of Zurich) 14:00-15:30
Quasi one-dimensional random walks in random environments
田村要造 (慶応大理工) 15:50-16:30
Large deviation principle for currents generated by stochasticline integrals
on compact Riemannian manifolds (joint work with S. Kusuoka and K. Kuwada)
長田博文 (九大数理) 16:40-17:20
Interacting Brownian motions related to Ginibre random point field
Tuesday Seminar of Analysis
16:30-18:00 Room #117 (Graduate School of Math. Sci. Bldg.)
Patrick G¥'erard (パリ南大学)
On the dynamics of the Gross-Pitaevskii equation
Patrick G¥'erard (パリ南大学)
On the dynamics of the Gross-Pitaevskii equation
2007/02/17
Infinite Analysis Seminar Tokyo
13:30-16:00 Room #117 (Graduate School of Math. Sci. Bldg.)
阿部 友紀 (上智理工数学) 13:30-14:30
Finite-dimensional representations of the small quantum algebras
Combinatorics of Young walls and crystal bases
阿部 友紀 (上智理工数学) 13:30-14:30
Finite-dimensional representations of the small quantum algebras
[ Abstract ]
量子代数は定義にパラメーターを一つ含み、量子代数の表現論は、
そのパラメーターが1のべき根であるか、そうでないかによって大きく異なる。
さらに、1のべき根の場合は、Lusztig氏によって定義された「制限型量子代数」と、
De Conini-Kac氏らによって定義された「非制限型量子代数」の2種類が存在し、
それぞれ表現論が異なる。
また、制限型量子代数は、「小型量子代数(=small quantum algebra)」と
呼ばれる真部分代数を含み、その表現論は、制限型量子代数と非制限型量子代数の
どちらの表現論においても重要な役割を果たしている。
今回の講演では、主に以下の3点について説明したい:
●小型量子代数が、非制限型量子代数のある商代数と同型になることを、
有限型とループ型の場合に示す。
●A, B, C, D, G型の小型量子代数の有限次元既約表現を、
Schnizer表現の部分表現として構成する。
●A型の小型ループ量子代数のevaluation表現の性質を調べる。
Seok-Jin Kang (Seoul National University) 15:00-16:00量子代数は定義にパラメーターを一つ含み、量子代数の表現論は、
そのパラメーターが1のべき根であるか、そうでないかによって大きく異なる。
さらに、1のべき根の場合は、Lusztig氏によって定義された「制限型量子代数」と、
De Conini-Kac氏らによって定義された「非制限型量子代数」の2種類が存在し、
それぞれ表現論が異なる。
また、制限型量子代数は、「小型量子代数(=small quantum algebra)」と
呼ばれる真部分代数を含み、その表現論は、制限型量子代数と非制限型量子代数の
どちらの表現論においても重要な役割を果たしている。
今回の講演では、主に以下の3点について説明したい:
●小型量子代数が、非制限型量子代数のある商代数と同型になることを、
有限型とループ型の場合に示す。
●A, B, C, D, G型の小型量子代数の有限次元既約表現を、
Schnizer表現の部分表現として構成する。
●A型の小型ループ量子代数のevaluation表現の性質を調べる。
Combinatorics of Young walls and crystal bases
[ Abstract ]
We introduce combinatorics of Young walls and give a realization of crystal bases in terms of reduced Young walls. We also discuss their connection with representation theory of Hecke algebras.
We introduce combinatorics of Young walls and give a realization of crystal bases in terms of reduced Young walls. We also discuss their connection with representation theory of Hecke algebras.
2007/02/16
Colloquium
16:30-17:30 Room #123 (Graduate School of Math. Sci. Bldg.)
松本幸夫 (東京大学・大学院数理科学研究科)
トポロジーと私の思い出
松本幸夫 (東京大学・大学院数理科学研究科)
トポロジーと私の思い出
[ Abstract ]
大学院に入ったのが1967年ですから、ちょうど40年前の
ことになります。それから「多様体のトポロジー」の分野で研究を
してきましたが、この40年間にトポロジーもずいぶん変化した
ように思います。自分の思い出話を交えて、その変化の様子をお話
できればと思います。私的な観点のものですので、それほど大所
高所からの話ではありません。
大学院に入ったのが1967年ですから、ちょうど40年前の
ことになります。それから「多様体のトポロジー」の分野で研究を
してきましたが、この40年間にトポロジーもずいぶん変化した
ように思います。自分の思い出話を交えて、その変化の様子をお話
できればと思います。私的な観点のものですので、それほど大所
高所からの話ではありません。
Applied Analysis
15:00-16:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Ratnasingham SHIVAJI (ミシシッピ州立大学)
Multiple positive solutions for classes of elliptic systems with combined nonlinear effects
Ratnasingham SHIVAJI (ミシシッピ州立大学)
Multiple positive solutions for classes of elliptic systems with combined nonlinear effects
[ Abstract ]
We study the existence of multiple positive solutions to systems of the form
-\\Delta u = \\lambda f(v)
-\\Delta v = \\lambda g(u)
in a bounded domain in R^N under the Dirichlet boundary conditions. Here f, g belong to a class of positive functions having a combined sublinear effect at infinity. Our result also easily extends to the corresponding p-Laplacian systems. We prove our results by the method of sub and super solutions.
We study the existence of multiple positive solutions to systems of the form
-\\Delta u = \\lambda f(v)
-\\Delta v = \\lambda g(u)
in a bounded domain in R^N under the Dirichlet boundary conditions. Here f, g belong to a class of positive functions having a combined sublinear effect at infinity. Our result also easily extends to the corresponding p-Laplacian systems. We prove our results by the method of sub and super solutions.
2007/02/01
Lectures
15:00-16:00 Room #118 (Graduate School of Math. Sci. Bldg.)
Lassi Paivarinta (Helsinki University of Technology, Finland)
On Calderon's inverse conductivity problem in the plane.
Lassi Paivarinta (Helsinki University of Technology, Finland)
On Calderon's inverse conductivity problem in the plane.
Lectures
16:15-17:15 Room #118 (Graduate School of Math. Sci. Bldg.)
Nuuti Huyvonen (Helsinki University of Technology,
Finland)
Locating transparent cavities in optical absorption and scattering
tomography
Nuuti Huyvonen (Helsinki University of Technology,
Finland)
Locating transparent cavities in optical absorption and scattering
tomography
2007/01/31
Seminar on Mathematics for various disciplines
10:30-11:30 Room #123 (Graduate School of Math. Sci. Bldg.)
小谷正博 (学習院大学)
ガラスに吸着した色素分子の一分子観察――ランダムウォークと拡散――
http://coe.math.sci.hokudai.ac.jp/sympo/various/index.html
小谷正博 (学習院大学)
ガラスに吸着した色素分子の一分子観察――ランダムウォークと拡散――
[ Abstract ]
夜空の星を望遠鏡で観察できる。星の望遠鏡観察から星の一生、ひいては宇宙の成因まで議論できる。同様に蛍光を使えば色素分子一匹を顕微鏡で見ることができる。一分子観察は個々の分子の挙動が見えるので、分子レベルでの確率的な過程を調べる手段、分子のおかれた環境の不均一を研究する手段になることが認識されてきた。
ガラスの上に希薄に吸着した蛍光性の色素を使って分子の表面拡散をしらべた。平均自乗偏位は時間に比例して増大するようにみえ、これから拡散係数を見積もることができる。
このようにして求めた拡散係数は測定環境の湿度に大きく依存することがわかった。こうして、問題はガラス表面にある数ナノメートルの吸着水のなかでの色素分子の運動の議論になってきた。拡散係数に場所ムラはあるのか、時間依存性はあるのか、実験は進行中である。
[ Reference URL ]夜空の星を望遠鏡で観察できる。星の望遠鏡観察から星の一生、ひいては宇宙の成因まで議論できる。同様に蛍光を使えば色素分子一匹を顕微鏡で見ることができる。一分子観察は個々の分子の挙動が見えるので、分子レベルでの確率的な過程を調べる手段、分子のおかれた環境の不均一を研究する手段になることが認識されてきた。
ガラスの上に希薄に吸着した蛍光性の色素を使って分子の表面拡散をしらべた。平均自乗偏位は時間に比例して増大するようにみえ、これから拡散係数を見積もることができる。
このようにして求めた拡散係数は測定環境の湿度に大きく依存することがわかった。こうして、問題はガラス表面にある数ナノメートルの吸着水のなかでの色素分子の運動の議論になってきた。拡散係数に場所ムラはあるのか、時間依存性はあるのか、実験は進行中である。
http://coe.math.sci.hokudai.ac.jp/sympo/various/index.html
< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 Next >