## Seminar information archive

Seminar information archive ～02/15｜Today's seminar 02/16 | Future seminars 02/17～

### 2018/10/26

#### Colloquium

15:30-16:30 Room #002 (Graduate School of Math. Sci. Bldg.)

Asymptotic behavior of generalized eigenfunctions and scattering theory

(JAPANESE)

**Kenichi ITO**(The University of Tokyo)Asymptotic behavior of generalized eigenfunctions and scattering theory

(JAPANESE)

### 2018/10/24

#### Operator Algebra Seminars

16:45-18:15 Room #126 (Graduate School of Math. Sci. Bldg.)

The Mazur-Ulam property for unital C*-algebras (English)

**Michiya Mori**(the University of Tokyo)The Mazur-Ulam property for unital C*-algebras (English)

#### FMSP Lectures

15:00-16:30 Room #123 (Graduate School of Math. Sci. Bldg.)

K-THEORY AND THE DIRAC OPERATOR (2/4)

Lecture 2. THE DIRAC OPERATOR (ENGLISH)

http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Baum.pdf

**Paul Baum**(The Pennsylvania State University)K-THEORY AND THE DIRAC OPERATOR (2/4)

Lecture 2. THE DIRAC OPERATOR (ENGLISH)

[ Abstract ]

The Dirac operator of R^n will be defined. This is a first order elliptic differential operator with constant coefficients.

Next, the class of differentiable manifolds which come equipped with an order one differential operator which (at the symbol level)is locally isomorphic to the Dirac operator of R^n will be considered. These are the Spin-c manifolds.

Spin-c is slightly stronger than oriented, so Spin-c can be viewed as "oriented plus epsilon". Most of the oriented manifolds that occur in practice are Spin-c. The Dirac operator of a closed Spin-c manifold is the basic example for the Hirzebruch-Riemann-Roch theorem and the Atiyah-Singer index theorem.

[ Reference URL ]The Dirac operator of R^n will be defined. This is a first order elliptic differential operator with constant coefficients.

Next, the class of differentiable manifolds which come equipped with an order one differential operator which (at the symbol level)is locally isomorphic to the Dirac operator of R^n will be considered. These are the Spin-c manifolds.

Spin-c is slightly stronger than oriented, so Spin-c can be viewed as "oriented plus epsilon". Most of the oriented manifolds that occur in practice are Spin-c. The Dirac operator of a closed Spin-c manifold is the basic example for the Hirzebruch-Riemann-Roch theorem and the Atiyah-Singer index theorem.

http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Baum.pdf

### 2018/10/23

#### PDE Real Analysis Seminar

10:30-11:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Least action principle for incompressible flow with free boundary (English)

**Jian-Guo Liu**(Duke University)Least action principle for incompressible flow with free boundary (English)

[ Abstract ]

In this talk I will describe a connection between Arnold's least-action principle for incompressible flows with free boundary and geodesic paths for Wasserstein distance. The least-action problem for geodesic distance on the "manifold" of fluid-blob shapes exhibits instability due to microdroplet formation. Using a conformal map formulation we investigate singularity formation in water-wave dynamics neglecting gravity. A connection with fluid mixture models via a variant of Brenier's relaxed least-action principle for generalized Euler flows will also be discussed.

In this talk I will describe a connection between Arnold's least-action principle for incompressible flows with free boundary and geodesic paths for Wasserstein distance. The least-action problem for geodesic distance on the "manifold" of fluid-blob shapes exhibits instability due to microdroplet formation. Using a conformal map formulation we investigate singularity formation in water-wave dynamics neglecting gravity. A connection with fluid mixture models via a variant of Brenier's relaxed least-action principle for generalized Euler flows will also be discussed.

#### Tuesday Seminar on Topology

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Co-Minkowski space and hyperbolic surfaces (ENGLISH)

**François Fillastre**(Université de Cergy-Pontoise)Co-Minkowski space and hyperbolic surfaces (ENGLISH)

[ Abstract ]

There are many ways to parametrize two copies of Teichmueller space by constant curvature -1 Riemannian or Lorentzian 3d manifolds (for example the Bers double uniformization theorem). We present the co-Minkowski space (or half-pipe space), which is a constant curvature -1 degenerated 3d space, and which is related to the tangent space of Teichmueller space. As an illustration, we give a new proof of a theorem of Thurston saying that, once the space of measured geodesic laminations on a compact hyperbolic surface is identified with the tangent space of Teichmueller space via infinitesimal earthquake, then the length of laminations is an asymmetric norm. Joint work with Thierry Barbot (Avignon).

There are many ways to parametrize two copies of Teichmueller space by constant curvature -1 Riemannian or Lorentzian 3d manifolds (for example the Bers double uniformization theorem). We present the co-Minkowski space (or half-pipe space), which is a constant curvature -1 degenerated 3d space, and which is related to the tangent space of Teichmueller space. As an illustration, we give a new proof of a theorem of Thurston saying that, once the space of measured geodesic laminations on a compact hyperbolic surface is identified with the tangent space of Teichmueller space via infinitesimal earthquake, then the length of laminations is an asymmetric norm. Joint work with Thierry Barbot (Avignon).

### 2018/10/22

#### Tokyo Probability Seminar

16:00-17:30 Room #126 (Graduate School of Math. Sci. Bldg.)

Limit theorems for random geometric complexes in the critical regime (ENGLISH)

**Trinh Khanh Duy**(Tohoku University)Limit theorems for random geometric complexes in the critical regime (ENGLISH)

[ Abstract ]

Geometric complexes (eg. Cech complexes or Rips complexes) are simplicial complexes defined on a finite set of points in a Euclidean space together with a radius parameter, which can be viewed as a higher dimensional generalization of geometric graphs. This talk concerns with random geometric complexes built over binomial point processes (collections of iid points). Like random geometric graphs, there are three regimes (subcritical(or dust, sparse) regime, critical (or thermodynamic) regime and supercritical regime) which are divided according the growth of the radius parameters in which the limiting behavior of random geometric complexes is totally different. This talk introduces some results on the strong law of large numbers and a central limit theorem in the critical regime.

Geometric complexes (eg. Cech complexes or Rips complexes) are simplicial complexes defined on a finite set of points in a Euclidean space together with a radius parameter, which can be viewed as a higher dimensional generalization of geometric graphs. This talk concerns with random geometric complexes built over binomial point processes (collections of iid points). Like random geometric graphs, there are three regimes (subcritical(or dust, sparse) regime, critical (or thermodynamic) regime and supercritical regime) which are divided according the growth of the radius parameters in which the limiting behavior of random geometric complexes is totally different. This talk introduces some results on the strong law of large numbers and a central limit theorem in the critical regime.

#### Seminar on Geometric Complex Analysis

10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)

On certain hyperconvex manifolds without non-constant bounded holomorphic functions (JAPANESE)

**Masanori Adachi**(Shizuoka University)On certain hyperconvex manifolds without non-constant bounded holomorphic functions (JAPANESE)

[ Abstract ]

For each compact Riemann surface of genus > 1, we can construct a Riemann sphere bundle over the given Riemann surface using the projective structure induced by its uniformization.

The total space of this bundle is divided into two 1-convex domains by a closed Levi-flat real hypersurface. Although these two domains are not biholomorphic, we see that they have several function theoretic properties in common. In this talk, I would like to explain these common properties: hyperconvexity and expressions for certain Green function, and Liouville property and growth estimates of holomorphic functions.

For each compact Riemann surface of genus > 1, we can construct a Riemann sphere bundle over the given Riemann surface using the projective structure induced by its uniformization.

The total space of this bundle is divided into two 1-convex domains by a closed Levi-flat real hypersurface. Although these two domains are not biholomorphic, we see that they have several function theoretic properties in common. In this talk, I would like to explain these common properties: hyperconvexity and expressions for certain Green function, and Liouville property and growth estimates of holomorphic functions.

#### Numerical Analysis Seminar

16:50-18:20 Room #002 (Graduate School of Math. Sci. Bldg.)

Residual smoothing technique for short-recurrence Krylov subspace methods (Japanese)

**Kensuke Aihara**(Tokyo City University)Residual smoothing technique for short-recurrence Krylov subspace methods (Japanese)

#### FMSP Lectures

15:00-16:30 Room #123 (Graduate School of Math. Sci. Bldg.)

K-THEORY AND THE DIRAC OPERATOR (1/4)

Lecture 1. WHAT IS K-THEORY AND WHAT IS IT GOOD FOR? (ENGLISH)

http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Baum.pdf

**Paul Baum**(The Pennsylvania State University)K-THEORY AND THE DIRAC OPERATOR (1/4)

Lecture 1. WHAT IS K-THEORY AND WHAT IS IT GOOD FOR? (ENGLISH)

[ Abstract ]

This talk will consist of four points.

1. The basic definition of K-theory

2. A brief history of K-theory

3. Algebraic versus topological K-theory

4. The unity of K-theory

[ Reference URL ]This talk will consist of four points.

1. The basic definition of K-theory

2. A brief history of K-theory

3. Algebraic versus topological K-theory

4. The unity of K-theory

http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Baum.pdf

### 2018/10/16

#### Tuesday Seminar of Analysis

16:50-18:20 Room #128 (Graduate School of Math. Sci. Bldg.)

Positive solutions of Schr\"odinger equations in product form (日本語)

**TSUCHIDA Tetsuo**(Meijo University)Positive solutions of Schr\"odinger equations in product form (日本語)

#### Tuesday Seminar on Topology

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Resonance varieties and matrix tree theorems (ENGLISH)

**Daniel Matei**(IMAR Bucharest)Resonance varieties and matrix tree theorems (ENGLISH)

[ Abstract ]

We discuss the resonance varieties, encoding vanishing of cohomology cup products, of various classes of finitely presented groups of geometric and combinatorial origin. We describe the ideals defining those varieties in terms spanning trees in a similar vein with the classical matrix tree theorem in graph theory. We present applications of this description to 3-manifold groups and Artin groups.

We discuss the resonance varieties, encoding vanishing of cohomology cup products, of various classes of finitely presented groups of geometric and combinatorial origin. We describe the ideals defining those varieties in terms spanning trees in a similar vein with the classical matrix tree theorem in graph theory. We present applications of this description to 3-manifold groups and Artin groups.

#### Algebraic Geometry Seminar

15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)

A countable characterisation of smooth algebraic plane curves, and generalisations (English)

**Tuyen Truong**(Oslo)A countable characterisation of smooth algebraic plane curves, and generalisations (English)

[ Abstract ]

Given a smooth algebraic curve X in C^3, I will present a way to construct a sequence of algebraic varieties (whose ideals are explicitly determined from the ideal defining X), whose solution set is non-empty iff the curve X can be algebraically embedded into C^2.

Various other questions, such as whether two given algebraic varieties are birational, can be similarly treated. Some related conjectures are stated.

Given a smooth algebraic curve X in C^3, I will present a way to construct a sequence of algebraic varieties (whose ideals are explicitly determined from the ideal defining X), whose solution set is non-empty iff the curve X can be algebraically embedded into C^2.

Various other questions, such as whether two given algebraic varieties are birational, can be similarly treated. Some related conjectures are stated.

### 2018/10/15

#### Seminar on Geometric Complex Analysis

10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)

Recent problems on Loewner theory (JAPANESE)

**Ikkei Hotta**(Yamaguchi University)Recent problems on Loewner theory (JAPANESE)

[ Abstract ]

Loewner Theory, which goes back to the parametric representation of univalent functions introduced by Loewner in 1923, has recently undergone significant development in various directions, including Schramm’s stochastic version of the Loewner differential equation and the new intrinsic approach suggested by Bracci, Contreras, Diaz-Madrigal and Gumenyuk.

In this talk, we firstly review the theory of Loewner equations in classical and modern treatments. Then we discuss some recent problems on the theory:

(i) Quasiconformal extensions of Loewner chains;

(ii) Hydrodynamics of multiple SLE.

Loewner Theory, which goes back to the parametric representation of univalent functions introduced by Loewner in 1923, has recently undergone significant development in various directions, including Schramm’s stochastic version of the Loewner differential equation and the new intrinsic approach suggested by Bracci, Contreras, Diaz-Madrigal and Gumenyuk.

In this talk, we firstly review the theory of Loewner equations in classical and modern treatments. Then we discuss some recent problems on the theory:

(i) Quasiconformal extensions of Loewner chains;

(ii) Hydrodynamics of multiple SLE.

#### Numerical Analysis Seminar

16:50-18:20 Room #002 (Graduate School of Math. Sci. Bldg.)

Möbius invariant discretizations and decomposition of the Möbius energy (Japanese)

**Takeyuki Nagasawa**(Saitama University)Möbius invariant discretizations and decomposition of the Möbius energy (Japanese)

### 2018/10/11

#### Applied Analysis

16:00-17:30 Room #118 (Graduate School of Math. Sci. Bldg.)

(Japanese)

**Takahito Kashiwabara**(University of Tokyo)(Japanese)

### 2018/10/10

#### Operator Algebra Seminars

16:45-18:15 Room #126 (Graduate School of Math. Sci. Bldg.)

Extension modules over some conformal algebras related Virasoro algebra (English)

**Kaijing Ling**(Harbin Institute of Technology/Univ. Tokyo)Extension modules over some conformal algebras related Virasoro algebra (English)

#### Number Theory Seminar

18:00-19:00 Room #056 (Graduate School of Math. Sci. Bldg.)

Beilinson-Bloch-Kato conjecture for Rankin-Selberg motives (ENGLISH)

**Yichao Tian**(Université de Strasbourg)Beilinson-Bloch-Kato conjecture for Rankin-Selberg motives (ENGLISH)

[ Abstract ]

In my talk, I will report on my ongoing collaborating project together with Yifeng Liu, Liang Xiao, Wei Zhang, and Xinwen Zhu, which concerns the rank 0 case of the Beilinson-Bloch-Kato conjecture on the relation between L-functions and Selmer groups for certain Rankin--Selberg motives for GL(n) x GL(n+1). I will state the main results with some examples coming from elliptic curves, sketch the strategy of the proof, and then focus on the key geometric ingredients, namely the semi-stable reduction of unitary Shimura varieties of type U(1,n) at non-quasi-split places.

In my talk, I will report on my ongoing collaborating project together with Yifeng Liu, Liang Xiao, Wei Zhang, and Xinwen Zhu, which concerns the rank 0 case of the Beilinson-Bloch-Kato conjecture on the relation between L-functions and Selmer groups for certain Rankin--Selberg motives for GL(n) x GL(n+1). I will state the main results with some examples coming from elliptic curves, sketch the strategy of the proof, and then focus on the key geometric ingredients, namely the semi-stable reduction of unitary Shimura varieties of type U(1,n) at non-quasi-split places.

### 2018/10/09

#### Tuesday Seminar on Topology

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Foulon surgery, new contact flows, and dynamical complexity (ENGLISH)

**Boris Hasselblatt**(Tufts University)Foulon surgery, new contact flows, and dynamical complexity (ENGLISH)

[ Abstract ]

A refinement of Dehn surgery produces new contact flows that are unusual and interesting in several ways. The geodesic flow of a hyperbolic surface becomes a nonalgebraic contact Anosov flow with larger orbit growth, and the purely periodic fiber flow becomes parabolic or hyperbolic. Moreover, Reeb flows for other contact forms for the same contact structure have the same complexity. Finally, an idea by Vinhage promises a quantification of the complexity increase.

A refinement of Dehn surgery produces new contact flows that are unusual and interesting in several ways. The geodesic flow of a hyperbolic surface becomes a nonalgebraic contact Anosov flow with larger orbit growth, and the purely periodic fiber flow becomes parabolic or hyperbolic. Moreover, Reeb flows for other contact forms for the same contact structure have the same complexity. Finally, an idea by Vinhage promises a quantification of the complexity increase.

#### Algebraic Geometry Seminar

15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)

Stability conditions on threefolds with nef tangent bundles (English)

**Naoki Koseki**(Tokyo/IPMU)Stability conditions on threefolds with nef tangent bundles (English)

[ Abstract ]

The construction of Bridgeland stability conditions on threefolds

is an open problem in general.

The problem is reduced to proving

the so-called Bogomolov-Gieseker (BG) type inequality conjecture,

proposed by Bayer, Macrí, and Toda.

In this talk, I will explain how to prove the BG type inequality

conjecture

for threefolds in the title.

The construction of Bridgeland stability conditions on threefolds

is an open problem in general.

The problem is reduced to proving

the so-called Bogomolov-Gieseker (BG) type inequality conjecture,

proposed by Bayer, Macrí, and Toda.

In this talk, I will explain how to prove the BG type inequality

conjecture

for threefolds in the title.

### 2018/10/04

#### Mathematical Biology Seminar

15:00-16:00 Room #056 (Graduate School of Math. Sci. Bldg.)

Modelling the beginnings, middles and ends of infectious disease outbreaks

(ENGLISH)

http://www.robin-thompson.co.uk/

**Robin Thompson**(University of Oxford, UK)Modelling the beginnings, middles and ends of infectious disease outbreaks

(ENGLISH)

[ Abstract ]

There have been a number of high profile infectious disease epidemics recently. For example, the 2013-16 Ebola epidemic in West Africa led to more than 11,000 deaths, putting it at the centre of the news agenda. However, when a pathogen enters a host population, it is not necessarily the case that a major epidemic follows. The Ebola virus survives in animal populations, and enters human populations every few years. Typically, a small number of individuals are infected in an Ebola outbreak, with the 2013-16 epidemic being anomalous. During this talk, using Ebola as a case study, I will discuss how stochastic epidemiological models can be used at different stages of infectious disease outbreaks. At the beginning of an outbreak, key questions include: how can surveillance be performed effectively, and will the outbreak develop into a major epidemic? When a major epidemic is ongoing, modelling can be used to predict the final size and to plan control interventions. And at the apparent end of an epidemic, an important question is whether the epidemic is really over once there are no new symptomatic cases. If time permits, I will also discuss several current projects that I am working on. One of these - in collaboration with Professor Hiroshi Nishiura at Hokkaido University - involves appropriately modelling disease detection during epidemics, and investigating the impact of the sensitivity of surveillance on the outcome of control interventions.

Relevant references:

Thompson RN, Hart WS, Effect of confusing symptoms and infectiousness on forecasting and control of Ebola outbreaks, Clin. Inf. Dis., In Press, 2018.

Thompson RN, Gilligan CA and Cunniffe NJ, Control fast or control Smart: when should invading pathogens be controlled?, PLoS Comp. Biol., 14(2):e1006014, 2018.

Thompson RN, Gilligan CA and Cunniffe NJ, Detecting presymptomatic infection is necessary to forecast major epidemics in the earliest stages of infectious disease outbreaks, PLoS Comp. Biol., 12(4):e1004836, 2016.

Thompson RN, Cobb RC, Gilligan CA and Cunniffe NJ, Management of invading pathogens should be informed by epidemiology rather than administrative boundaries, Ecol. Model., 324:28-32, 2016.

[ Reference URL ]There have been a number of high profile infectious disease epidemics recently. For example, the 2013-16 Ebola epidemic in West Africa led to more than 11,000 deaths, putting it at the centre of the news agenda. However, when a pathogen enters a host population, it is not necessarily the case that a major epidemic follows. The Ebola virus survives in animal populations, and enters human populations every few years. Typically, a small number of individuals are infected in an Ebola outbreak, with the 2013-16 epidemic being anomalous. During this talk, using Ebola as a case study, I will discuss how stochastic epidemiological models can be used at different stages of infectious disease outbreaks. At the beginning of an outbreak, key questions include: how can surveillance be performed effectively, and will the outbreak develop into a major epidemic? When a major epidemic is ongoing, modelling can be used to predict the final size and to plan control interventions. And at the apparent end of an epidemic, an important question is whether the epidemic is really over once there are no new symptomatic cases. If time permits, I will also discuss several current projects that I am working on. One of these - in collaboration with Professor Hiroshi Nishiura at Hokkaido University - involves appropriately modelling disease detection during epidemics, and investigating the impact of the sensitivity of surveillance on the outcome of control interventions.

Relevant references:

Thompson RN, Hart WS, Effect of confusing symptoms and infectiousness on forecasting and control of Ebola outbreaks, Clin. Inf. Dis., In Press, 2018.

Thompson RN, Gilligan CA and Cunniffe NJ, Control fast or control Smart: when should invading pathogens be controlled?, PLoS Comp. Biol., 14(2):e1006014, 2018.

Thompson RN, Gilligan CA and Cunniffe NJ, Detecting presymptomatic infection is necessary to forecast major epidemics in the earliest stages of infectious disease outbreaks, PLoS Comp. Biol., 12(4):e1004836, 2016.

Thompson RN, Cobb RC, Gilligan CA and Cunniffe NJ, Management of invading pathogens should be informed by epidemiology rather than administrative boundaries, Ecol. Model., 324:28-32, 2016.

http://www.robin-thompson.co.uk/

#### Infinite Analysis Seminar Tokyo

16:00-17:00 Room #002 (Graduate School of Math. Sci. Bldg.)

Integrable quad equations derived from the quantum Yang-Baxter

equation. (ENGLISH)

**Andrew Kels**(Graduate School of Arts and Sciences, University of Tokyo)Integrable quad equations derived from the quantum Yang-Baxter

equation. (ENGLISH)

[ Abstract ]

I will give an overview of an explicit correspondence that exists between

two different types of integrable equations; 1) the quantum Yang-Baxter

equation in its star-triangle relation (STR) form, and 2) the classical

3D-consistent quad equations in the Adler-Bobenko-Suris (ABS)

classification. The fundamental aspect of this correspondence is that the

equation of the critical point of a STR is equivalent to an ABS quad

equation. The STR's considered here are in fact equivalent to

hypergeometric integral transformation formulas. For example, a STR for

$H1_{(\varepsilon=0)}$ corresponds to the Euler Beta function, a STR for

$Q1_{(\delta=0)}$ corresponds to the $n=1$ Selberg integral, and STR's for

$H2_{\varepsilon=0,1}$, $H1_{(\varepsilon=1)}$, correspond to different

hypergeometric integral formulas of Barnes. I will discuss some of these

examples and some directions for future research.

I will give an overview of an explicit correspondence that exists between

two different types of integrable equations; 1) the quantum Yang-Baxter

equation in its star-triangle relation (STR) form, and 2) the classical

3D-consistent quad equations in the Adler-Bobenko-Suris (ABS)

classification. The fundamental aspect of this correspondence is that the

equation of the critical point of a STR is equivalent to an ABS quad

equation. The STR's considered here are in fact equivalent to

hypergeometric integral transformation formulas. For example, a STR for

$H1_{(\varepsilon=0)}$ corresponds to the Euler Beta function, a STR for

$Q1_{(\delta=0)}$ corresponds to the $n=1$ Selberg integral, and STR's for

$H2_{\varepsilon=0,1}$, $H1_{(\varepsilon=1)}$, correspond to different

hypergeometric integral formulas of Barnes. I will discuss some of these

examples and some directions for future research.

#### Applied Analysis

16:00-17:30 Room #118 (Graduate School of Math. Sci. Bldg.)

(Japanese)

**Hiroko Yamamoto**(University of Tokyo)(Japanese)

### 2018/10/03

#### Operator Algebra Seminars

16:45-18:15 Room #126 (Graduate School of Math. Sci. Bldg.)

Structure of bicentralizer algebras and inclusions of type III factors

**Hiroshi Ando**(Chiba University)Structure of bicentralizer algebras and inclusions of type III factors

### 2018/10/02

#### Tuesday Seminar on Topology

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

An Alexander polynomial for MOY graphs (JAPANESE)

**Yuanyuan Bao**(The University of Tokyo)An Alexander polynomial for MOY graphs (JAPANESE)

[ Abstract ]

An MOY graph is a trivalent graph equipped with a balanced coloring. In this talk, we define a version of Alexander polynomial for an MOY graph. This polynomial is the Euler characteristic of the Heegaard Floer homology of an MOY graph. We give a characterization of the polynomial, which we call MOY-type relations, and show that it is equivalent to Viro’s gl(1 | 1)-Alexander polynomial of a graph. (A part of the talk is a joint work of Zhongtao Wu)

An MOY graph is a trivalent graph equipped with a balanced coloring. In this talk, we define a version of Alexander polynomial for an MOY graph. This polynomial is the Euler characteristic of the Heegaard Floer homology of an MOY graph. We give a characterization of the polynomial, which we call MOY-type relations, and show that it is equivalent to Viro’s gl(1 | 1)-Alexander polynomial of a graph. (A part of the talk is a joint work of Zhongtao Wu)

### 2018/09/25

#### Infinite Analysis Seminar Tokyo

16:00-17:00 Room #002 (Graduate School of Math. Sci. Bldg.)

Classification of quad-equations on a cuboctahedron (JAPANESE)

**Nobutaka Nakazono**(Aoyama Gakuin University Department of Physics and Mathematics)Classification of quad-equations on a cuboctahedron (JAPANESE)

[ Abstract ]

Adelr-Bobenko-Suris (2003, 2009) and Boll (2011) classified quad-equations on a cube using a consistency around a cube. By use of this consistency, we can define integrable two-dimensional partial difference equations called ABS equations. A major example of ABS equation is the lattice modified KdV equation, which is a discrete analogue of the modified KdV equation. It is known that Lax representations and Backlund transformations of ABS equations can be constructed by using the consistency around a cube, and ABS equations can be reduced to differential and difference Painlevé equations via periodically reductions.

In this talk, we show a classification of quad-equations on a cuboctahedron using a consistency around a cuboctahedron and the relation between a resulting partial difference equation and a discrete Painlevé equation.

This work has been done in collaboration with Prof Nalini Joshi (The University of Sydney).

Adelr-Bobenko-Suris (2003, 2009) and Boll (2011) classified quad-equations on a cube using a consistency around a cube. By use of this consistency, we can define integrable two-dimensional partial difference equations called ABS equations. A major example of ABS equation is the lattice modified KdV equation, which is a discrete analogue of the modified KdV equation. It is known that Lax representations and Backlund transformations of ABS equations can be constructed by using the consistency around a cube, and ABS equations can be reduced to differential and difference Painlevé equations via periodically reductions.

In this talk, we show a classification of quad-equations on a cuboctahedron using a consistency around a cuboctahedron and the relation between a resulting partial difference equation and a discrete Painlevé equation.

This work has been done in collaboration with Prof Nalini Joshi (The University of Sydney).

< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 Next >