Tokyo Probability Seminar

Seminar information archive ~05/21Next seminarFuture seminars 05/22~

Date, time & place Monday 16:00 - 17:30 126Room #126 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Makiko Sasada, Shuta Nakajima, Masato Hoshino

2025/01/20

16:00-17:30   Room #126 (Graduate School of Math. Sci. Bldg.)
We are having teatime from 15:15 in the common room on the second floor. Please join us.
Arka Adhikari (University of Maryland)
Spectral measure for uniform d-regular digraphs
[ Abstract ]
Consider the matrix $\sfA_\GG$ chosen uniformly at random from the finite
set of all $N$-dimensional matrices of zero main-diagonal and binary entries,
having each row and column of $\sfA_\GG$ sum to $d$.
That is, the adjacency matrix for the uniformly random
$d$-regular simple digraph $\GG$. Fixing $d \ge 3$, it has long been conjectured
that as $N \to \infty$ the corresponding empirical eigenvalue distributions converge
weakly, in probability, to an explicit non-random limit,
given by the Brown measure of the free sum of $d$ Haar unitary operators.
We reduce this conjecture to bounding the decay in $N$ of the probability that
the minimal singular value of the shifted matrix $\sfA(w) = \sfA_\GG - w \sfI$
is very small. While the latter remains a challenging task, the required bound is
comparable to the recently established control on the singularity of $\sfA_\GG$.
The reduction is achieved here by sharp estimates
on the behavior at large $N$, near the real line, of the Green's function (aka resolvent)
of the Hermitization of $\sfA(w)$, which is of independent interest.
Joint w/ A. Dembo