Seminar information archive
Seminar information archive ~06/30|Today's seminar 07/01 | Future seminars 07/02~
Tuesday Seminar of Analysis
Naotaka Shouji (Graduate School of Pure and Applied Sciences, University of Tsukuba)
Interior transmission eigenvalue problems on manifolds (Japanese)
2016/11/28
Seminar on Geometric Complex Analysis
Satoshi Nakamura (Tohoku University)
(JAPANESE)
Operator Algebra Seminars
Takahiro Hasebe (Hokkaido University)
Fock space deformed by Coxeter groups (English)
Discrete mathematical modelling seminar
Alfred Ramani (IMNC, Universite de Paris 7 et 11)
Who cares about integrability ? (ENGLISH)
I will start my talk with an introduction to integrability of continuous systems. Why is it important? Is it possible to give a definition of integrability which will satisfy everybody? (Short answer: No). I will then present the most salient discoveries of integrable systems, from Newton to Toda. Next I will address the question of discrete integrability. This will lead naturally to the question of discretisation (of continuous systems) and its importance in modelling. I will deal with the construction of integrable discretisations of continuous integrable systems and introduce the singularity confinement discrete integrability criterion. The final part of my talk will be devoted to discrete Painlevé equations. Due to obvious time constraints I will concentrate on one special class of these equations, namely those associated to the E8 affine Weyl group. I will present a succinct summary of our recent results as well as indications for future investigations.
2016/11/25
FMSP Lectures
Arthur Ogus (University of California, Berkeley)
Introduction to Logarithmic Geometry V (ENGLISH)
Logarithmic Geometry was invented (or discovered) in the 1980's, with crucial ideas contributed by Deligne, Faltings, Fontaine, Illusie, and especially K. Kato. It provides a systematic framework for the study of the related phenomena of compactification and degeneration in algebraic and arithmetic geometry, with applications to number theory. I will attempt to explain the main ideas and foundations of Kato's version of log geometry, with an emphasis on its geometric and topological aspects.
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Ogus.pdf
Colloquium
Tsuyoshi Yoneda (Graduate School of Mathematical Sciences, The University of Tokyo)
An instability mechanism of pulsatile flow along particle trajectories for the axisymmetric Euler equations
[ Reference URL ]
https://www.ms.u-tokyo.ac.jp/~yoneda/index.html
2016/11/22
PDE Real Analysis Seminar
Yannick Sire (Johns Hopkins University)
De Giorgi conjecture and minimal surfaces for integro-differential operators (English)
I will review the classical De Giorgi conjecture and its link with minimal surfaces. Then I will move on recent results for flatness of level sets of solutions of semi linear equations involving anomalous diffusion. First I will deal with the fractional laplacian; second with quite general integral operators in 2 dimensions.
Tuesday Seminar on Topology
Takahito Naito (The University of Tokyo)
Sullivan's coproduct on the reduced loop homology (JAPANESE)
In string topology, Sullivan introduced a coproduct on the reduced loop homology and showed that the homology has an infinitesimal bialgebra structure with respect to the coproduct and Chas-Sullivan loop product. In this talk, I will give a homotopy theoretic description of Sullivan's coproduct. By using the description, we obtain some computational examples of the structure over the rational number field. Moreover, I will also discuss a based loop space version of the coproduct.
2016/11/21
FMSP Lectures
Arthur Ogus (University of California, Berkeley)
Introduction to Logarithmic Geometry IV (ENGLISH)
Logarithmic Geometry was invented (or discovered) in the 1980's, with crucial ideas contributed by Deligne, Faltings, Fontaine, Illusie, and especially K. Kato. It provides a systematic framework for the study of the related phenomena of compactification and degeneration in algebraic and arithmetic geometry, with applications to number theory. I will attempt to explain the main ideas and foundations of Kato's version of log geometry, with an emphasis on its geometric and topological aspects.
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Ogus.pdf
Seminar on Geometric Complex Analysis
Toshihiro Nose (Fukuoka Institute of Technology)
(JAPANESE)
Numerical Analysis Seminar
Sotirios E. Notaris (National and Kapodistrian University of Athens)
Gauss-Kronrod quadrature formulae (English)
In 1964, the Russian mathematician A.S. Kronrod, in an attempt to estimate practically the error term of the well-known Gauss quadrature formula, presented a new quadrature rule, which since then bears his name. It turns out that the new rule was related to some polynomials that Stieltjes developed some 70 years earlier, through his work on continued fractions and the moment problem. We give an overview of the Gauss-Kronrod quadrature formulae, which are interesting from both the mathematical and the applicable point of view.
The talk will be expository without requiring any previous knowledge of numerical integration.
Operator Algebra Seminars
Narutaka Ozawa (RIMS, Kyoto Univ.)
Finite-dimensional representations constructed from random walks (joint work with A. Erschler)
Tokyo Probability Seminar
Yukio Nagahata (Faculty of Engineering, Niigata University)
On scaling limit of a cost in adhoc network model
2016/11/19
Discrete mathematical modelling seminar
Takayuki Hasegawa (Toyama National College of Technology) 14:00-15:15
(JAPANESE)
Hironobu Fujishima (Canon) 15:45-17:00
(JAPANESE)
2016/11/18
FMSP Lectures
Arthur Ogus (University of California, Berkeley)
Introduction to Logarithmic Geometry III (ENGLISH)
Logarithmic Geometry was invented (or discovered) in the 1980's, with crucial ideas contributed by Deligne, Faltings, Fontaine, Illusie, and especially K. Kato. It provides a systematic framework for the study of the related phenomena of compactification and degeneration in algebraic and arithmetic geometry, with applications to number theory. I will attempt to explain the main ideas and foundations of Kato's version of log geometry, with an emphasis on its geometric and topological aspects.
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Ogus.pdf
2016/11/17
Seminar on Mathematics for various disciplines
Qing Liu (Fukuoka University)
Convexity preserving properties for nonlinear evolution equations (English)
It is well known that convexity of solutions to a general class of nonlinear parabolic equations in the Euclidean space is preserved as time develops. In this talk, we first revisit this property for the normalized infinity Laplace equation and the curvature flow equation by introducing an alternative approach based on discrete game theory. We then extend our discussion to Hamilton-Jacobi equations in the Heisenberg group and in more general geodesic metric spaces.
2016/11/16
FMSP Lectures
Arthur Ogus (University of California, Berkeley)
Introduction to Logarithmic Geometry II (ENGLISH)
Logarithmic Geometry was invented (or discovered) in the 1980's, with crucial ideas contributed by Deligne, Faltings, Fontaine, Illusie, and especially K. Kato. It provides a systematic framework for the study of the related phenomena of compactification and degeneration in algebraic and arithmetic geometry, with applications to number theory. I will attempt to explain the main ideas and foundations of Kato's version of log geometry, with an emphasis on its geometric and topological aspects.
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Ogus.pdf
2016/11/15
Tuesday Seminar on Topology
Takuya Sakasai (The University of Tokyo)
Cohomology of the moduli space of graphs and groups of homology cobordisms of surfaces (JAPANESE)
We construct an abelian quotient of the symplectic derivation Lie algebra of the free Lie algebra generated by the fundamental representation of the symplectic group. It gives an alternative proof of the fact first shown by Bartholdi that the top rational homology group of the moduli space of metric graphs of rank 7 is one dimensional. As an application, we construct a non-trivial abelian quotient of the homology cobordism group of a surface of positive genus. This talk is based on joint works with Shigeyuki Morita, Masaaki Suzuki and Gwénaël Massuyeau.
2016/11/14
FMSP Lectures
Arthur Ogus (University of California, Berkeley)
Introduction to Logarithmic Geometry I (ENGLISH)
Logarithmic Geometry was invented (or discovered) in the 1980's, with crucial ideas contributed by Deligne, Faltings, Fontaine, Illusie, and especially K. Kato. It provides a systematic framework for the study of the related phenomena of compactification and degeneration in algebraic and arithmetic geometry, with applications to number theory. I will attempt to explain the main ideas and foundations of Kato's version of log geometry, with an emphasis on its geometric and topological aspects.
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Ogus.pdf
Seminar on Geometric Complex Analysis
Sachiko Hamano (Osaka City University)
(JAPANESE)
2016/11/10
FMSP Lectures
Piotr Rybka (the University of Warsaw)
The BV space in variational and evolution problems (9) (ENGLISH)
https://www.ms.u-tokyo.ac.jp/kyoumu/docs/20160907.pdf を参照
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Rybka.pdf
FMSP Lectures
Piotr Rybka (the University of Warsaw)
The BV space in variational and evolution problems (10) (ENGLISH)
https://www.ms.u-tokyo.ac.jp/kyoumu/docs/20160907.pdf を参照
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Rybka.pdf
Infinite Analysis Seminar Tokyo
Yohei Kashima (Graduate School of Mathematical Scineces, The University of Tokyo)
Superconducting phase in the BCS model with imaginary
magnetic field (JAPANESE)
We prove that in the BCS model with an imaginary magnetic field
at positive temperature a spontaneous symmetry breaking (SSB) and
an off-diagonal long range order (ODLRO) occur. Here the BCS model
is meant to be a self-adjoint operator on the Fermionic Fock space,
consisting of a free part describing the electrons' nearest neighbor
hopping and a quartic interacting part describing a long range
interaction between Cooper pairs. The interaction with the imaginary
magnetic field is given by the z-component of the spin operator
multiplied by a pure imaginary parameter. The SSB and the ODLRO are
shown in the infinite-volume limit of the thermal average over the
full Fermionic Fock space. The insertion of the imaginary magnetic
field changes the gap equation. Consequently the SSB and the ODLRO
are shown in high temperature, weak coupling regimes where these
phenomena do not take place in the conventional BCS model. The proof
is based on the method of Grassmann integration.
2016/11/09
FMSP Lectures
Piotr Rybka (the University of Warsaw)
The BV space in variational and evolution problems (7) (ENGLISH)
https://www.ms.u-tokyo.ac.jp/kyoumu/docs/20160907.pdf を参照
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Rybka.pdf
FMSP Lectures
Piotr Rybka (the University of Warsaw)
The BV space in variational and evolution problems (8) (ENGLISH)
https://www.ms.u-tokyo.ac.jp/kyoumu/docs/20160907.pdf を参照
http://fmsp.ms.u-tokyo.ac.jp/FMSPLectures_Rybka.pdf
< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 Next >