Seminar information archive

Seminar information archive ~02/19Today's seminar 02/20 | Future seminars 02/21~



16:30-17:30   Room #123 (Graduate School of Math. Sci. Bldg.)
A.P. Veselov (Loughborough, UK and Tokyo, Japan)
From hyperplane arrangements to Deligne-Mumford moduli spaces: Kohno-Drinfeld way (ENGLISH)
[ Abstract ]
Gaudin subalgebras are abelian Lie subalgebras of maximal
dimension spanned by generators of the Kohno-Drinfeld Lie algebra t_n,
associated to A-type hyperplane arrangement.
It turns out that Gaudin subalgebras form a smooth algebraic variety
isomorphic to the Deligne-Mumford moduli space \\bar M_{0,n+1} of
stable genus zero curves with n+1 marked points.
A real version of this result allows to describe the
moduli space of integrable n-dimensional tops and
separation coordinates on the unit sphere
in terms of the geometry of Stasheff polytope.

The talk is based on joint works with L. Aguirre and G. Felder and with K.


Number Theory Seminar

16:40-17:40   Room #056 (Graduate School of Math. Sci. Bldg.)
Takuya Maruyama (University of Tokyo)
An effective upper bound for the number of principally polarized Abelian schemes (JAPANESE)

Operator Algebra Seminars

16:30-18:00   Room #122 (Graduate School of Math. Sci. Bldg.)
Narutaka Ozawa (RIMS, Kyoto University)
Noncommutative real algebraic geometry of Kazhdan's property (T) (ENGLISH)


Seminar on Geometric Complex Analysis

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Sunsuke Saito (The University of Tokyo)
On the existence problem of Kähler-Ricci solitons (JAPANESE)

Algebraic Geometry Seminar

15:30-17:00   Room #122 (Graduate School of Math. Sci. Bldg.)
Alexandru Dimca (Institut Universitaire de France )
Syzygies of jacobian ideals and Torelli properties (ENGLISH)
[ Abstract ]
Let $C$ be a reduced complex projective plane curve defined by a homogeneous equation $f(x,y,z)=0$. We consider syzygies of the type $af_x+bf_y+cf_z=0$, where $a,b,c$ are homogeneous polynomials and $f_x,f_y,f_z$ stand for the partial derivatives of $f$. In our talk we relate such syzygies with stable or splittable rank two vector bundles on the projective plane, and to Torelli properties of plane curves in the sense of Dolgachev-Kapranov.


Monthly Seminar on Arithmetic of Automorphic Forms

13:30-16:00   Room #123 (Graduate School of Math. Sci. Bldg.)
Ryutarou Okazaki (Doushisha Univ. until March, 2014) 13:30-14:30
The estimate of integral points of F(X,Y)=1, with F being a integral homogeneous quartic form F of degree 4 (JAPANESE)
Ryutarou Okazaki (Doushisha Univ. until March, 2014) 15:00-16:00
Moduli of teh pairs of algebraic curve of genus 2 and its unramified cover of degree 7 (joint work with Hoffmann) (JAPANESE)


Geometry Colloquium

10:00-11:30   Room #122 (Graduate School of Math. Sci. Bldg.)
Hiraku Nozawa (Ritsumeikan University)
On rigidity of Lie foliations (JAPANESE)
[ Abstract ]
If the leaves of a Lie foliation are isometric to a symmetric space of noncompact type of higher rank, then, by a theorem of Zimmer, the holonomy group of the Lie foliation has rigidity similar to that of lattices of semisimple Lie groups of higher rank. The main result of this talk is a generalization of Zimmer's theorem including the case of real rank one based on an application of a variant of Mostow rigidity. (This talk is based on a joint work with Ga¥"el Meigniez.)


Operator Algebra Seminars

16:30-18:00   Room #122 (Graduate School of Math. Sci. Bldg.)
Takuya Takeishi (Univ. Tokyo)
Bost-Connes system for local fields of characteristic zero (ENGLISH)

Number Theory Seminar

16:40-17:40   Room #002 (Graduate School of Math. Sci. Bldg.)
Yoichi Mieda (University of Tokyo)
Non-tempered A-packets and the Rapoport-Zink spaces (JAPANESE)

Mathematical Biology Seminar

14:50-16:20   Room #128 (Graduate School of Math. Sci. Bldg.)
Yukihiko Nakata (Graduate School of Mathematical Sciences, University of Tokyo)
Age-structured epidemic model with infection during transportation (JAPANESE)


Tuesday Seminar of Analysis

16:30-18:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Yohei Tsutsui (The University of Tokyo)
Bounded small solutions to a chemotaxis system with
non-diffusive chemical (JAPANESE)
[ Abstract ]
We consider a chemotaxis system with a logarithmic
sensitivity and a non-diffusive chemical substance. For some chemotactic
sensitivity constants, Ahn and Kang proved the existence of bounded
global solutions to the system. An entropy functional was used in their
argument to control the cell density by the density of the chemical
substance. Our purpose is to show the existence of bounded global
solutions for all the chemotactic sensitivity constants. Assuming the
smallness on the initial data in some sense, we can get uniform
estimates for time. These estimates are used to extend local solutions.
This talk is partially based on joint work with Yoshie Sugiyama (Kyusyu
Univ.) and Juan J. L. Vel\\'azquez (Univ. of Bonn).


Numerical Analysis Seminar

16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Takashi Nakazawa (Tohoku University)
Shape optimization problems for time-periodic solutions of the Navier-Stokes equations (JAPANESE)
[ Reference URL ]

Seminar on Geometric Complex Analysis

10:30-12:00   Room #126 (Graduate School of Math. Sci. Bldg.)
Hikaru Yamamoto (The University of Tokyo)
Lagrangian mean curvature flows and some examples (JAPANESE)


Harmonic Analysis Komaba Seminar

13:30-17:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Ryo Takada (Tohoku University) 13:30-15:00
Strichartz estimates for incompressible rotating fluids (JAPANESE)
Masami Okada (Tokyo Metropolitan Unversity) 15:30-16:30
On the interpolation of functions for scattered data on random infinite points with a sharp error estimate (JAPANESE)


Number Theory Seminar

17:30-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Olivier Wittenberg (ENS and CNRS)
On the cycle class map for zero-cycles over local fields (ENGLISH)
[ Abstract ]
The Chow group of zero-cycles of a smooth and projective variety defined over a field k is an invariant of an arithmetic and geometric nature which is well understood only when k is a finite field (by higher-dimensional class field theory). In this talk, we will discuss the case of local and strictly local fields. We prove in particular the injectivity of the cycle class map to integral l-adic cohomology for a large class of surfaces with positive geometric genus over p-adic fields. The same statement holds for semistable K3 surfaces over C((t)), but does not hold in general for surfaces over C((t)) or over the maximal unramified extension of a p-adic field. This is a joint work with Hélène Esnault.


Tuesday Seminar on Topology

16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Takahito Naito (The University of Tokyo)
On the rational string operations of classifying spaces and the
Hochschild cohomology (JAPANESE)
[ Abstract ]
Chataur and Menichi initiated the theory of string topology of
classifying spaces.
In particular, the cohomology of the free loop space of a classifying
space is endowed with a product
called the dual loop coproduct. In this talk, I will discuss the
algebraic structure and relate the rational dual loop coproduct to the
cup product on the Hochschild cohomology via the Van den Bergh isomorphism.

PDE Real Analysis Seminar

10:30-11:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Yohei Tsutsui (The University of Tokyo)
An application of weighted Hardy spaces to the Navier-Stokes equations (JAPANESE)
[ Abstract ]
The purpose of this talk is to investigate decay orders of the L^2 energy of solutions to the incompressible homogeneous Navier-Stokes equations on the whole spaces by the aid of the theory of weighted Hardy spaces. The main estimates are two weighted inequalities for heat semigroup on weighted Hardy spaces and a weighted version of the div-curl lemma due to Coifman-Lions-Meyer-Semmes. It turns out that because of the use of weighted Hardy spaces, our decay orders of the energy can be close to the critical one of Wiegner.

Lie Groups and Representation Theory

16:30-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
Shunsuke Tsuchioka (the University of Tokyo)
Toward the graded Cartan invariants of the symmetric groups (JAPANESE)
[ Abstract ]
We propose a graded analog of Hill's conjecture which is equivalent to K\\"ulshammer-Olsson-Robinson's conjecture on the generalized Cartan invariants of the symmetric groups.
We give justifications for it and discuss implications between the variants.
Some materials are based on the joint work with Anton Evseev.


Seminar on Geometric Complex Analysis

10:30-12:00   Room #126 (Graduate School of Math. Sci. Bldg.)
Katsutoshi Yamanoi (Tokyo Institute of Technology)
Alternative proof of the geometric vrsion of Lemma on logarithmic derivatives (JAPANESE)


Geometry Colloquium

10:00-11:30   Room #122 (Graduate School of Math. Sci. Bldg.)
Kotaro Kawai ( University of Tokyo)
Deformations of homogeneous Cayley cone submanifolds (JAPANESE)
[ Abstract ]
A Cayley submanifold is a minimal submanifold in a Spin(7)-manifold, and is a special class of calibrated submanifolds introduced by Harvey and Lawson. The deformation of calibrated submanifolds is first studied by Mclean. He studied the compact case, and many people try to generalize it to noncompact cases (conical case, asymptotically conical case etc.). In general, the moduli space of deformations of a Cayley cone is known not to be smooth. In this talk, we focus on the homogeneous Cayley cones in R^8, and study their deformation spaces explicitly.


Operator Algebra Seminars

16:30-18:00   Room #122 (Graduate School of Math. Sci. Bldg.)
Ryszard Nest (Univ. Copenhagen)
Index and determnant of n-tuples of commuting operators (ENGLISH)


Tuesday Seminar on Topology

16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Hidetoshi Masai (The University of Tokyo)
On the number of commensurable fibrations on a hyperbolic 3-manifold. (JAPANESE)
[ Abstract ]
By work of Thurston, it is known that if a hyperbolic fibred
$3$-manifold $M$ has Betti number greater than 1, then
$M$ admits infinitely many distinct fibrations.
For any fibration $\\omega$ on a hyperbolic $3$-manifold $M$,
the number of fibrations on $M$ that are commensurable in the sense of
Calegari-Sun-Wang to $\\omega$ is known to be finite.
In this talk, we prove that the number can be arbitrarily large.

Seminar on Probability and Statistics

13:00-14:10   Room #052 (Graduate School of Math. Sci. Bldg.)
Alexandre Brouste (Universite du Maine, France)
Parametric estimation in fractional Ornstein-Uhlenbeck process (ENGLISH)
[ Abstract ]
Several statistical models that imply the fractional Ornstein-Uhlenbeck (fOU) process will be presented: direct observations of the process or partial observations in an additive independent noise, continuous observations or discrete observations. In this different settings, we exhibit large sample (or high-frequency) asymptotic properties of the estimators (maximum likelihood estimator, quadratic variation based estimator, moment estimator, …) for all parameters of interest of the fOU. We also illustrate our results with the R package yuima.
[ Reference URL ]


Classical Analysis

16:00-17:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Anton Dzhamay (University of Northern Colorado)
Discrete Schlesinger Equations and Difference Painlevé Equations (ENGLISH)
[ Abstract ]
The theory of Schlesinger equations describing isomonodromic
dynamic on the space of matrix coefficients of a Fuchsian system
w.r.t.~continuous deformations is well-know. In this talk we consider
a discrete version of this theory. Discrete analogues of Schlesinger
deformations are Schlesinger transformations that shift the eigenvalues
of the coefficient matrices by integers. By discrete Schlesinger equations
we mean the evolution equations on the matrix coefficients describing
such transformations. We derive these equations, show how they can be
split into the evolution equations on the space of eigenvectors of the
coefficient matrices, and explain how to write the latter equations in
the discrete Hamiltonian form. We also consider some reductions of those
equations to the difference Painlevé equations, again in complete parallel
to the differential case.

This is a joint work with H. Sakai (the University of Tokyo) and
T.Takenawa (Tokyo Institute of Marine Science and Technology).


GCOE Seminars

16:00-16:50   Room #118 (Graduate School of Math. Sci. Bldg.)
Kazufumi Ito (North Carolina State Univ.)
A new finite difference scheme based on staggered grids for Navier Stokes equations (ENGLISH)
[ Abstract ]
We develop a new method that uses the staggered grid only for the pressure node, i.e., the pressure gird is the center of the square cell and the velocities are at the node. The advantage of the proposed method compared to the standard staggered grid methods is that it is very straight forward to treat the boundary conditions for the velocity field, the fluid structure interaction, and to deal with the multiphase flow using the immersed interface methods. We present our analysis and numerical tests.

< Previous 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 Next >