トポロジー火曜セミナー
過去の記録 ~11/23|次回の予定|今後の予定 11/24~
| 開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
|---|---|
| 担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也, 葉廣和夫 |
| セミナーURL | https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
過去の記録
2025年11月18日(火)
17:30-18:30 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
塚本 真輝 氏 (京都大学)
ランダムなブロディ曲線のレート歪み次元 (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
塚本 真輝 氏 (京都大学)
ランダムなブロディ曲線のレート歪み次元 (JAPANESE)
[ 講演概要 ]
複素平面から複素多様体への正則写像は整正則曲線と呼ばれ,ネヴァンリンナ理論の一般化として一世紀近くにわたり研究されている.この講演では整正則曲線に対して従来とは大きく異なるエルゴード理論的アプローチを提案したい.複素平面から複素射影空間への1-リプシッツ正則写像をブロディ曲線と呼ぼう.ブロディ曲線全体はコンパクト空間になり自然な群作用を持つ.これを力学系とみなして,その上の不変確率測度を研究したい.最初の主結果は,「ブロディ曲線の空間上の任意の不変確率測度に対して,そのレート歪み次元が幾何学的ポテンシャル関数の積分で上からおえられる」という主張である.この定理は可微分エルゴード理論におけるルエル不等式の類似とみなすことができる.第二の主結果は,「ブロディ曲線に対するルエル不等式の等号を成立させる不変確率測度が豊富に存在する」という主張である.主定理の証明は「ポテンシャル付き平均次元に対する変分原理」に基づいており,これは双曲力学系のエルゴード理論における「熱力学形式」のアイデアに動機づけられている.詳しい内容に興味のある方は論文 arXiv:2403.11442 を見てほしい.
[ 参考URL ]複素平面から複素多様体への正則写像は整正則曲線と呼ばれ,ネヴァンリンナ理論の一般化として一世紀近くにわたり研究されている.この講演では整正則曲線に対して従来とは大きく異なるエルゴード理論的アプローチを提案したい.複素平面から複素射影空間への1-リプシッツ正則写像をブロディ曲線と呼ぼう.ブロディ曲線全体はコンパクト空間になり自然な群作用を持つ.これを力学系とみなして,その上の不変確率測度を研究したい.最初の主結果は,「ブロディ曲線の空間上の任意の不変確率測度に対して,そのレート歪み次元が幾何学的ポテンシャル関数の積分で上からおえられる」という主張である.この定理は可微分エルゴード理論におけるルエル不等式の類似とみなすことができる.第二の主結果は,「ブロディ曲線に対するルエル不等式の等号を成立させる不変確率測度が豊富に存在する」という主張である.主定理の証明は「ポテンシャル付き平均次元に対する変分原理」に基づいており,これは双曲力学系のエルゴード理論における「熱力学形式」のアイデアに動機づけられている.詳しい内容に興味のある方は論文 arXiv:2403.11442 を見てほしい.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年11月11日(火)
9:30-10:30 オンライン開催
参加を希望される場合は、下記URLから参加登録を行って下さい。
Richard Hain 氏 (Duke University)
Mapping class group actions on the homology of configuration spaces (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、下記URLから参加登録を行って下さい。
Richard Hain 氏 (Duke University)
Mapping class group actions on the homology of configuration spaces (ENGLISH)
[ 講演概要 ]
The action of the mapping class group of a surface S on the homology of the space F_n(S) of ordered configurations of n points in S is well understood when S has genus 0, but is not very well understood when S has positive genus. In this talk I will report on joint work with Clément Dupont (Montpellier) in the case where S is a surface of finite type of genus at least 2. We give a strong lower bound on the size of the Zariski closure of the image of the Torelli and mapping class groups in the automorphism group of the degree n cohomology of F_n(S). Our main tools are Hodge theory and the Goldman Lie algebra of the surface, which is the free abelian group generated by the conjugacy classes in the fundamental group of S.
[ 参考URL ]The action of the mapping class group of a surface S on the homology of the space F_n(S) of ordered configurations of n points in S is well understood when S has genus 0, but is not very well understood when S has positive genus. In this talk I will report on joint work with Clément Dupont (Montpellier) in the case where S is a surface of finite type of genus at least 2. We give a strong lower bound on the size of the Zariski closure of the image of the Torelli and mapping class groups in the automorphism group of the degree n cohomology of F_n(S). Our main tools are Hodge theory and the Goldman Lie algebra of the surface, which is the free abelian group generated by the conjugacy classes in the fundamental group of S.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年11月11日(火)
17:00-18:30 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Serban Matei Mihalache 氏 (東京大学大学院数理科学研究科)
Polygon 方程式と Simplex 方程式の解の構成 (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Serban Matei Mihalache 氏 (東京大学大学院数理科学研究科)
Polygon 方程式と Simplex 方程式の解の構成 (JAPANESE)
[ 講演概要 ]
Polygon 方程式は Dimakis--Müller-Hoissen により定式化された. これは, n次元PL多様体の三角形分割に対する Pachner (⌊(n+1)/2⌋+1, ⌈(n+1)/2⌉)-変形に対応する代数的な方程式であると解釈でき, n 次元 PL 多様体の不変量の構成に用いることができるのではないかと期待される. この講演では, 低次元の"可換"な Polygon 方程式の解の組を用いることで, 高次元の Polygon 方程式の解が構成できることを示し, Polygon方程式の解の具体例を与える. また, Polygon 方程式の解の組で mixed 関係式と呼ばれるものを満たすものが与えられたとき, Yang-Baxter 方程式の高次元版である Simplex 方程式の解が構成できることを示す. この講演は持田知朗との共同研究に基づく.
[ 参考URL ]Polygon 方程式は Dimakis--Müller-Hoissen により定式化された. これは, n次元PL多様体の三角形分割に対する Pachner (⌊(n+1)/2⌋+1, ⌈(n+1)/2⌉)-変形に対応する代数的な方程式であると解釈でき, n 次元 PL 多様体の不変量の構成に用いることができるのではないかと期待される. この講演では, 低次元の"可換"な Polygon 方程式の解の組を用いることで, 高次元の Polygon 方程式の解が構成できることを示し, Polygon方程式の解の具体例を与える. また, Polygon 方程式の解の組で mixed 関係式と呼ばれるものを満たすものが与えられたとき, Yang-Baxter 方程式の高次元版である Simplex 方程式の解が構成できることを示す. この講演は持田知朗との共同研究に基づく.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年11月04日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
高尾 和人 氏 (東北大学)
Heegaard分解の強既約性とGoeritz群の有限性の判定条件 (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
高尾 和人 氏 (東北大学)
Heegaard分解の強既約性とGoeritz群の有限性の判定条件 (JAPANESE)
[ 講演概要 ]
3次元多様体のHeegaard分解に対して,Casson-Gordonは,その強既約性を保証する判定条件を導入した.Lustig-Moriahによって,その強化版も定義され,Heegaard分解のGoeritz群の有限性をも保証する判定条件となっている.それらに用いる情報源はHeegaard図式,ただし,各ハンドル体の最大の円盤系から構成されるHeegaard図式だった.本講演では,最小の場合も含む任意の円盤系に対して,上記の判定条件を一般化する.また,その応用により,最小ではない種数を持ちながらGoeritz群は有限となるHeegaard分解の具体例も与える.れらは古宇田悠哉氏との共同研究に基づく.
[ 参考URL ]3次元多様体のHeegaard分解に対して,Casson-Gordonは,その強既約性を保証する判定条件を導入した.Lustig-Moriahによって,その強化版も定義され,Heegaard分解のGoeritz群の有限性をも保証する判定条件となっている.それらに用いる情報源はHeegaard図式,ただし,各ハンドル体の最大の円盤系から構成されるHeegaard図式だった.本講演では,最小の場合も含む任意の円盤系に対して,上記の判定条件を一般化する.また,その応用により,最小ではない種数を持ちながらGoeritz群は有限となるHeegaard分解の具体例も与える.れらは古宇田悠哉氏との共同研究に基づく.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年10月28日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
井上 歩 氏 (津田塾大学)
On a relationship between quandle homology and relative group homology, from the view point of Seifert surfaces (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
井上 歩 氏 (津田塾大学)
On a relationship between quandle homology and relative group homology, from the view point of Seifert surfaces (JAPANESE)
[ 講演概要 ]
Quandles and their homology are known to have good chemistry with knot theory. Associated with a triple of a group G, its automorphism, and its subgroup H satisfying a certain condition, we have a quandle. In this talk, we see that we have a chain map from the quandle chain complex of the quandle to the (Adamson/Hochschild) relative group chain complex of (G, H). We also see that this chain map has good chemistry with a triangulation of Seifert surface of a knot.
[ 参考URL ]Quandles and their homology are known to have good chemistry with knot theory. Associated with a triple of a group G, its automorphism, and its subgroup H satisfying a certain condition, we have a quandle. In this talk, we see that we have a chain map from the quandle chain complex of the quandle to the (Adamson/Hochschild) relative group chain complex of (G, H). We also see that this chain map has good chemistry with a triangulation of Seifert surface of a knot.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年10月14日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
小木曾 啓示 氏 (東京大学大学院数理科学研究科)
On K3 surfaces with non-elementary hyperbolic automorphism group (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
小木曾 啓示 氏 (東京大学大学院数理科学研究科)
On K3 surfaces with non-elementary hyperbolic automorphism group (JAPANESE)
[ 講演概要 ]
This talk is based on my joint work with Professor Koji Fujiwara (Kyoto University) and Professor Xun Yu (Tianjin University).
Main result of this talk is the finiteness of the Néron-Severi lattices of complex projective K3 surfaces whose automorphism groups are non-elementary hyperbolic, under the assumption that the Picard number greater than or equal to 6 (which is optimal to ensure the finiteness). In this talk, after recalling basic facts and some special nice properties of K3 surfaces, the notion of hyperbolicity of group due to Gromov, and their importance and interest (in our view), I would like to explain first why the non-elementary hyperbolicity of K3 surface automorphism group is the problem of the Néron-Severi lattices and then how one can deduce the above-mentioned finiteness, via a recent important observation by Professors Kikuta and Takatsu (independently) on geometrically finiteness, with a new algebro-geometric study of genus one fibrations on K3 surfaces by us.
[ 参考URL ]This talk is based on my joint work with Professor Koji Fujiwara (Kyoto University) and Professor Xun Yu (Tianjin University).
Main result of this talk is the finiteness of the Néron-Severi lattices of complex projective K3 surfaces whose automorphism groups are non-elementary hyperbolic, under the assumption that the Picard number greater than or equal to 6 (which is optimal to ensure the finiteness). In this talk, after recalling basic facts and some special nice properties of K3 surfaces, the notion of hyperbolicity of group due to Gromov, and their importance and interest (in our view), I would like to explain first why the non-elementary hyperbolicity of K3 surface automorphism group is the problem of the Néron-Severi lattices and then how one can deduce the above-mentioned finiteness, via a recent important observation by Professors Kikuta and Takatsu (independently) on geometrically finiteness, with a new algebro-geometric study of genus one fibrations on K3 surfaces by us.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年10月07日(火)
17:00-18:00 オンライン開催
セミナーのホームページから参加登録を行って下さい。
菅原 朔見 氏 (北海道大学)
Topology of hyperplane arrangements and related 3-manifolds (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
セミナーのホームページから参加登録を行って下さい。
菅原 朔見 氏 (北海道大学)
Topology of hyperplane arrangements and related 3-manifolds (JAPANESE)
[ 講演概要 ]
One of the central questions in the topology of hyperplane arrangements is whether several topological invariants are combinatorially determined. While the cohomology ring of the complement has a combinatorial description, it remains open whether even the first Betti number of the Milnor fiber is. In contrast, the homeomorphism types of 3-manifolds appearing as the boundary manifold of projective line arrangements and the Milnor fiber boundary of arrangements in a 3-dimensional space are combinatorially determined. In this talk, we focus on these 3-manifolds. In particular, we will present the cohomology ring structure for the boundary manifold, originally due to Cohen-Suciu, and an explicit formula for the homology group of the Milnor fiber boundary of generic arrangements.
[ 参考URL ]One of the central questions in the topology of hyperplane arrangements is whether several topological invariants are combinatorially determined. While the cohomology ring of the complement has a combinatorial description, it remains open whether even the first Betti number of the Milnor fiber is. In contrast, the homeomorphism types of 3-manifolds appearing as the boundary manifold of projective line arrangements and the Milnor fiber boundary of arrangements in a 3-dimensional space are combinatorially determined. In this talk, we focus on these 3-manifolds. In particular, we will present the cohomology ring structure for the boundary manifold, originally due to Cohen-Suciu, and an explicit formula for the homology group of the Milnor fiber boundary of generic arrangements.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年07月22日(火)
17:00-18:30 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Alexis Marchand 氏 (京都大学)
Sharp spectral gaps for scl from negative curvature (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Alexis Marchand 氏 (京都大学)
Sharp spectral gaps for scl from negative curvature (ENGLISH)
[ 講演概要 ]
Stable commutator length is a measure of homological complexity of group elements, with connections to many topics in geometric topology, including quasimorphisms, bounded cohomology, and simplicial volume. The goal of this talk is to shed light on some of its relations with negative curvature. We will present a new geometric proof of a theorem of Heuer on sharp lower bounds for scl in right-angled Artin groups. Our proof relates letter-quasimorphisms (which are analogues of real-valued quasimorphisms with image in free groups) to negatively curved angle structures for surfaces estimating scl.
[ 参考URL ]Stable commutator length is a measure of homological complexity of group elements, with connections to many topics in geometric topology, including quasimorphisms, bounded cohomology, and simplicial volume. The goal of this talk is to shed light on some of its relations with negative curvature. We will present a new geometric proof of a theorem of Heuer on sharp lower bounds for scl in right-angled Artin groups. Our proof relates letter-quasimorphisms (which are analogues of real-valued quasimorphisms with image in free groups) to negatively curved angle structures for surfaces estimating scl.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年07月15日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Anastasiia Tsvietkova 氏 (Rutgers University)
Polynomially many genus g surfaces in a hyperbolic 3-manifold (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Anastasiia Tsvietkova 氏 (Rutgers University)
Polynomially many genus g surfaces in a hyperbolic 3-manifold (ENGLISH)
[ 講演概要 ]
For a low-dimensional manifold, one often tries to understand its intrinsic topology through its submanifolds, in particular of co-dimension 1. For example,
it was noticed before that presence of embedded essential surfaces in a 3-manifold can give information about that manifold. However to construct, classify or count such surfaces is a non-trivial task. We will discuss a universal upper bound for the number of non-isotopic genus g surfaces embedded in a hyperbolic 3-manifold, polynomial in hyperbolic volume. The surfaces are all closed essential surfaces, oriented and connected. This is joint work with Marc Lackenby.
[ 参考URL ]For a low-dimensional manifold, one often tries to understand its intrinsic topology through its submanifolds, in particular of co-dimension 1. For example,
it was noticed before that presence of embedded essential surfaces in a 3-manifold can give information about that manifold. However to construct, classify or count such surfaces is a non-trivial task. We will discuss a universal upper bound for the number of non-isotopic genus g surfaces embedded in a hyperbolic 3-manifold, polynomial in hyperbolic volume. The surfaces are all closed essential surfaces, oriented and connected. This is joint work with Marc Lackenby.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年07月08日(火)
17:00-18:30 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
石倉 宙樹 氏 (東京大学大学院数理科学研究科)
Stallings-Swan’s Theorem for Borel graphs (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
石倉 宙樹 氏 (東京大学大学院数理科学研究科)
Stallings-Swan’s Theorem for Borel graphs (JAPANESE)
[ 講演概要 ]
A Borel graph is a simplicial graph on a standard Borel space X such that the edge set is a Borel subset of X^2. Such objects have been studied in the context of countable Borel equivalence relations, and recently there are many attempts to apply the ideas of geometric group theory to them. Stallings-Swan's theorem states that groups of cohomological dimension 1 are free groups. We will talk about an analog of this theorem for Borel graphs: A Borel graph on X with uniformly bounded degrees of cohomological dimension 1 is Lipschitz equivalent to a Borel acyclic graph on X. This is proved by establishing a criterion for certain decomposition of Borel graphs, which is inspired by Dunwoody's work on accessibility of groups.
[ 参考URL ]A Borel graph is a simplicial graph on a standard Borel space X such that the edge set is a Borel subset of X^2. Such objects have been studied in the context of countable Borel equivalence relations, and recently there are many attempts to apply the ideas of geometric group theory to them. Stallings-Swan's theorem states that groups of cohomological dimension 1 are free groups. We will talk about an analog of this theorem for Borel graphs: A Borel graph on X with uniformly bounded degrees of cohomological dimension 1 is Lipschitz equivalent to a Borel acyclic graph on X. This is proved by establishing a criterion for certain decomposition of Borel graphs, which is inspired by Dunwoody's work on accessibility of groups.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年07月01日(火)
17:00-18:00 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
佐藤 玄基 氏 (株式会社 fcuro)
Presentation of finite Reedy categories as localizations of finite direct categories (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
佐藤 玄基 氏 (株式会社 fcuro)
Presentation of finite Reedy categories as localizations of finite direct categories (JAPANESE)
[ 講演概要 ]
In this talk, we present a novel construction that, for a given Reedy category $C$, produces a direct category $\operatorname{Down}(C)$ and a functor $\operatorname{Down}(C) \to C$, exhibiting $C$ as an $(\infty,1)$-categorical localization of $\operatorname{Down}(C)$. This result refines previous constructions in the literature by ensuring that $\operatorname{Down}(C)$ is finite whenever $C$ is finite—a property not guaranteed by existing approaches, such as those by Lurie or by Barwick and Kan. As an intended future application, this finiteness property is expected to be useful for embedding the construction into the syntax of a (non-infinitary) logic. In particular, I expect that the construction may be used to develop a meta-theory of finitely truncated simplicial types and other finite Reedy presheaves for homotopy type theory, thereby extending Kraus and Sattler's unfinished approach. This talk is based on arXiv:2502.05096.
[ 参考URL ]In this talk, we present a novel construction that, for a given Reedy category $C$, produces a direct category $\operatorname{Down}(C)$ and a functor $\operatorname{Down}(C) \to C$, exhibiting $C$ as an $(\infty,1)$-categorical localization of $\operatorname{Down}(C)$. This result refines previous constructions in the literature by ensuring that $\operatorname{Down}(C)$ is finite whenever $C$ is finite—a property not guaranteed by existing approaches, such as those by Lurie or by Barwick and Kan. As an intended future application, this finiteness property is expected to be useful for embedding the construction into the syntax of a (non-infinitary) logic. In particular, I expect that the construction may be used to develop a meta-theory of finitely truncated simplicial types and other finite Reedy presheaves for homotopy type theory, thereby extending Kraus and Sattler's unfinished approach. This talk is based on arXiv:2502.05096.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年06月26日(木)
15:30-17:00 数理科学研究科棟(駒場) hybrid/122号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Danny Calegari 氏 (The University of Chicago)
Universal circles and Zippers (2) (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Danny Calegari 氏 (The University of Chicago)
Universal circles and Zippers (2) (ENGLISH)
[ 講演概要 ]
If M is a hyperbolic 3-manifold fibering over the circle, then the fundamental group of M acts faithfully by homeomorphisms on a circle—the circle at infinity of the universal cover of the fiber—preserving a pair of invariant (stable and unstable) laminations. Many different kinds of dynamical structures including taut foliations and quasigeodesic or pseudo-Anosov flows are known to give rise to universal circles—a circle with a faithful action of the fundamental group preserving a pair of invariant laminations—and those universal circles play a key role in relating the dynamical structure to the geometry of M. In these two talks, I will introduce the idea of *zippers*, which give a new and direct way to construct universal circles, streamlining the known constructions in many cases, and giving a host of new constructions in others. In particular, zippers—and their associated universal circles—may be constructed directly from homological objects (uniform quasimorphisms), causal structures (uniform left orders), and many other structures. This is joint work with Ino Loukidou.
[ 参考URL ]If M is a hyperbolic 3-manifold fibering over the circle, then the fundamental group of M acts faithfully by homeomorphisms on a circle—the circle at infinity of the universal cover of the fiber—preserving a pair of invariant (stable and unstable) laminations. Many different kinds of dynamical structures including taut foliations and quasigeodesic or pseudo-Anosov flows are known to give rise to universal circles—a circle with a faithful action of the fundamental group preserving a pair of invariant laminations—and those universal circles play a key role in relating the dynamical structure to the geometry of M. In these two talks, I will introduce the idea of *zippers*, which give a new and direct way to construct universal circles, streamlining the known constructions in many cases, and giving a host of new constructions in others. In particular, zippers—and their associated universal circles—may be constructed directly from homological objects (uniform quasimorphisms), causal structures (uniform left orders), and many other structures. This is joint work with Ino Loukidou.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年06月24日(火)
17:00-18:30 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Danny Calegari 氏 (The University of Chicago)
Universal circles and Zippers (1) (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Danny Calegari 氏 (The University of Chicago)
Universal circles and Zippers (1) (ENGLISH)
[ 講演概要 ]
If M is a hyperbolic 3-manifold fibering over the circle, then the fundamental group of M acts faithfully by homeomorphisms on a circle—the circle at infinity of the universal cover of the fiber—preserving a pair of invariant (stable and unstable) laminations. Many different kinds of dynamical structures including taut foliations and quasigeodesic or pseudo-Anosov flows are known to give rise to universal circles—a circle with a faithful action of the fundamental group preserving a pair of invariant laminations—and those universal circles play a key role in relating the dynamical structure to the geometry of M. In these two talks, I will introduce the idea of *zippers*, which give a new and direct way to construct universal circles, streamlining the known constructions in many cases, and giving a host of new constructions in others. In particular, zippers—and their associated universal circles—may be constructed directly from homological objects (uniform quasimorphisms), causal structures (uniform left orders), and many other structures. This is joint work with Ino Loukidou.
[ 参考URL ]If M is a hyperbolic 3-manifold fibering over the circle, then the fundamental group of M acts faithfully by homeomorphisms on a circle—the circle at infinity of the universal cover of the fiber—preserving a pair of invariant (stable and unstable) laminations. Many different kinds of dynamical structures including taut foliations and quasigeodesic or pseudo-Anosov flows are known to give rise to universal circles—a circle with a faithful action of the fundamental group preserving a pair of invariant laminations—and those universal circles play a key role in relating the dynamical structure to the geometry of M. In these two talks, I will introduce the idea of *zippers*, which give a new and direct way to construct universal circles, streamlining the known constructions in many cases, and giving a host of new constructions in others. In particular, zippers—and their associated universal circles—may be constructed directly from homological objects (uniform quasimorphisms), causal structures (uniform left orders), and many other structures. This is joint work with Ino Loukidou.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年06月17日(火)
17:00-18:30 数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
佐野 岳人 氏 (理化学研究所 数理創造研究センタ)
Rasmussen 不変量のコボルディズム的解釈と図式的な計算 (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
佐野 岳人 氏 (理化学研究所 数理創造研究センタ)
Rasmussen 不変量のコボルディズム的解釈と図式的な計算 (JAPANESE)
[ 講演概要 ]
Rasmussen の s-不変量は Khovanov ホモロジーから得られる整数値の結び目不変量で,Milnor 予想の組合せ的な再証明を与えるなどトポロジーへの目覚ましい応用を持つ.s-不変量は量子次数によるホモロジー群のフィルトレーションを用いて定義されるものであるが,そこから幾何的な意味を読み取るのは難しい.本講演では,Bar-Natan による Khovanov ホモロジーのタングルとコボルディズムを用いた定式化に基づいて,s-不変量にもコボルディズム的な解釈を与える.この解釈によって,s-不変量は結び目のタングル分解から計算ができるようになる.
応用として,特定のプレッツェル結び目の無限族の s-不変量が手計算によって決定できることを示す.
[ 参考URL ]Rasmussen の s-不変量は Khovanov ホモロジーから得られる整数値の結び目不変量で,Milnor 予想の組合せ的な再証明を与えるなどトポロジーへの目覚ましい応用を持つ.s-不変量は量子次数によるホモロジー群のフィルトレーションを用いて定義されるものであるが,そこから幾何的な意味を読み取るのは難しい.本講演では,Bar-Natan による Khovanov ホモロジーのタングルとコボルディズムを用いた定式化に基づいて,s-不変量にもコボルディズム的な解釈を与える.この解釈によって,s-不変量は結び目のタングル分解から計算ができるようになる.
応用として,特定のプレッツェル結び目の無限族の s-不変量が手計算によって決定できることを示す.
プレプリント: https://arxiv.org/abs/2503.05414
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年06月10日(火)
17:00-18:30 数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
森藤 孝之 氏 (慶應義塾大学)
Bell polynomials and hyperbolic volume of knots (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
森藤 孝之 氏 (慶應義塾大学)
Bell polynomials and hyperbolic volume of knots (JAPANESE)
[ 講演概要 ]
In this talk, we introduce two volume formulas for hyperbolic knot complements using Bell polynomials. The first applies to hyperbolic fibered knots and expresses the volume of the complement in terms of the trace of the monodromy matrix. The second provides a formula for the volume of general hyperbolic knot complements based on a weighted adjacency matrix. This talk is based on joint work with Hiroshi Goda.
[ 参考URL ]In this talk, we introduce two volume formulas for hyperbolic knot complements using Bell polynomials. The first applies to hyperbolic fibered knots and expresses the volume of the complement in terms of the trace of the monodromy matrix. The second provides a formula for the volume of general hyperbolic knot complements based on a weighted adjacency matrix. This talk is based on joint work with Hiroshi Goda.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年06月03日(火)
17:00-18:30 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
諏訪 立雄 氏 (北海道大学)
Localized intersection product for maps and applications (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
諏訪 立雄 氏 (北海道大学)
Localized intersection product for maps and applications (JAPANESE)
[ 講演概要 ]
We define localized intersection product in manifolds using combinatorial topology, which corresponds to the cup product in relative cohomology via the Alexander duality. It is extended to localized intersection product for maps. Combined with the relative Cech-de Rham cohomology, it is effectively used in the residue theory of vector bundles and coherent sheaves. As an application, we have the functoriality of Baum-Bott residues of singular holomorphic foliations under certain conditions, which yields answers to problems and conjectures posed by various authors concerning singular holomorphic foliations and complex Poisson structures. This includes a joint work with M. Correa.
References
[1] M. Correa and T. Suwa, On functoriality of Baum-Bott residues, arXiv:2501.15133.
[2] T. Suwa, Complex Analytic Geometry - From the Localization Viewpoint,
World Scientific, 2024.
[ 参考URL ]We define localized intersection product in manifolds using combinatorial topology, which corresponds to the cup product in relative cohomology via the Alexander duality. It is extended to localized intersection product for maps. Combined with the relative Cech-de Rham cohomology, it is effectively used in the residue theory of vector bundles and coherent sheaves. As an application, we have the functoriality of Baum-Bott residues of singular holomorphic foliations under certain conditions, which yields answers to problems and conjectures posed by various authors concerning singular holomorphic foliations and complex Poisson structures. This includes a joint work with M. Correa.
References
[1] M. Correa and T. Suwa, On functoriality of Baum-Bott residues, arXiv:2501.15133.
[2] T. Suwa, Complex Analytic Geometry - From the Localization Viewpoint,
World Scientific, 2024.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年05月13日(火)
17:00-18:30 数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
池 祐一 氏 (東京大学大学院数理科学研究科)
Interleaving distance for sheaves and its application to symplectic geometry (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
池 祐一 氏 (東京大学大学院数理科学研究科)
Interleaving distance for sheaves and its application to symplectic geometry (JAPANESE)
[ 講演概要 ]
The Interleaving distance was first introduced in the context of the stability of persistent homology and is now used in various fields. It was adapted to sheaves by the pioneering work of Curry, and later in the derived setting by Kashiwara and Schapira. In this talk, I will explain that the interleaving distance for sheaves is related to the energy of Hamiltonian actions on cotangent bundles. Moreover, I will show that the derived interleaving distance is complete, which enables us to treat non-smooth objects in symplectic geometry using sheaf-theoretic methods. This is based on joint work with Tomohiro Asano, Stéphane Guillermou, Vincent Humilière, and Claude Viterbo.
[ 参考URL ]The Interleaving distance was first introduced in the context of the stability of persistent homology and is now used in various fields. It was adapted to sheaves by the pioneering work of Curry, and later in the derived setting by Kashiwara and Schapira. In this talk, I will explain that the interleaving distance for sheaves is related to the energy of Hamiltonian actions on cotangent bundles. Moreover, I will show that the derived interleaving distance is complete, which enables us to treat non-smooth objects in symplectic geometry using sheaf-theoretic methods. This is based on joint work with Tomohiro Asano, Stéphane Guillermou, Vincent Humilière, and Claude Viterbo.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年04月22日(火)
17:30-18:30 数理科学研究科棟(駒場) hybrid/056号室
Lie 群論・表現論セミナーと合同。 参加を希望される場合は、セミナーのウェブページをご覧下さい。
奥田 隆幸 氏 (広島大学)
Coarse coding theory and discontinuous groups on homogeneous spaces (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
Lie 群論・表現論セミナーと合同。 参加を希望される場合は、セミナーのウェブページをご覧下さい。
奥田 隆幸 氏 (広島大学)
Coarse coding theory and discontinuous groups on homogeneous spaces (JAPANESE)
[ 講演概要 ]
Let $M$ and $\mathcal{I}$ be sets, and consider a surjective map
\[ R : M \times M \to \mathcal{I}. \]
For each subset $\mathcal{A} \subseteq \mathcal{I}$, we define $\mathcal{A}$-free codes on $M$ as subsets $C \subseteq M$ satisfying
\[ R(C \times C) \cap \mathcal{A} = \emptyset. \]
This definition encompasses various types of codes, including error-correcting codes, spherical codes, and those defined on association schemes or homogeneous spaces. In this talk, we introduce a "pre-bornological coarse structure" on $\mathcal{I}$ and define the notion of coarsely $\mathcal{A}$-free codes on $M$. This extends the concept of $\mathcal{A}$-free codes introduced above. As a main result, we establish relationships between coarse coding theory on Riemannian homogeneous spaces $M = G/K$ and discontinuous group theory on non-Riemannian homogeneous spaces $X = G/H$.
[ 参考URL ]Let $M$ and $\mathcal{I}$ be sets, and consider a surjective map
\[ R : M \times M \to \mathcal{I}. \]
For each subset $\mathcal{A} \subseteq \mathcal{I}$, we define $\mathcal{A}$-free codes on $M$ as subsets $C \subseteq M$ satisfying
\[ R(C \times C) \cap \mathcal{A} = \emptyset. \]
This definition encompasses various types of codes, including error-correcting codes, spherical codes, and those defined on association schemes or homogeneous spaces. In this talk, we introduce a "pre-bornological coarse structure" on $\mathcal{I}$ and define the notion of coarsely $\mathcal{A}$-free codes on $M$. This extends the concept of $\mathcal{A}$-free codes introduced above. As a main result, we establish relationships between coarse coding theory on Riemannian homogeneous spaces $M = G/K$ and discontinuous group theory on non-Riemannian homogeneous spaces $X = G/H$.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年04月15日(火)
17:00-18:30 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
坂井 健人 氏 (東京大学大学院数理科学研究科)
Harmonic maps and uniform degeneration of hyperbolic surfaces with boundary (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
坂井 健人 氏 (東京大学大学院数理科学研究科)
Harmonic maps and uniform degeneration of hyperbolic surfaces with boundary (JAPANESE)
[ 講演概要 ]
If holomorphic quadratic differentials on a punctured Riemann surface have poles of order >1 at the punctures, they correspond to hyperbolic surfaces with geodesic boundary via harmonic maps. This correspondence is known as the harmonic map parametrization of hyperbolic surfaces. In this talk, we use this parametrization to describe the degeneration of hyperbolic surfaces via Gromov-Hausdorff convergence. As an application, we study the limit of a one-parameter family of hyperbolic surfaces in the Thurston boundary of Teichmüller space.
[ 参考URL ]If holomorphic quadratic differentials on a punctured Riemann surface have poles of order >1 at the punctures, they correspond to hyperbolic surfaces with geodesic boundary via harmonic maps. This correspondence is known as the harmonic map parametrization of hyperbolic surfaces. In this talk, we use this parametrization to describe the degeneration of hyperbolic surfaces via Gromov-Hausdorff convergence. As an application, we study the limit of a one-parameter family of hyperbolic surfaces in the Thurston boundary of Teichmüller space.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年04月08日(火)
17:00-18:30 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
高津 飛鳥 氏 (東京大学大学院数理科学研究科)
Concavity and Dirichlet heat flow (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
高津 飛鳥 氏 (東京大学大学院数理科学研究科)
Concavity and Dirichlet heat flow (JAPANESE)
[ 講演概要 ]
In a convex domain of Euclidean space, the Dirichlet heat flow transmits log-concavity from the initial time to any time. I first introduce a notion of generalized concavity and specify a concavity preserved by the Dirichlet heat flow. Then I show that in a totally convex domain of a Riemannian manifold, if some concavity is preserved by the Dirichlet heat flow, then the sectional curvature must vanish on the domain. The first part is based on joint work with Kazuhiro Ishige and Paolo Salani, and the second part is based on joint work with Kazuhiro Ishige and Haruto Tokunaga.
[ 参考URL ]In a convex domain of Euclidean space, the Dirichlet heat flow transmits log-concavity from the initial time to any time. I first introduce a notion of generalized concavity and specify a concavity preserved by the Dirichlet heat flow. Then I show that in a totally convex domain of a Riemannian manifold, if some concavity is preserved by the Dirichlet heat flow, then the sectional curvature must vanish on the domain. The first part is based on joint work with Kazuhiro Ishige and Paolo Salani, and the second part is based on joint work with Kazuhiro Ishige and Haruto Tokunaga.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年01月21日(火)
17:00-18:00 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
小菅 亮太朗 氏 (東京大学大学院数理科学研究科)
Rational abelianizations of Chillingworth subgroups of mapping class groups and automorphism groups of free groups (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
小菅 亮太朗 氏 (東京大学大学院数理科学研究科)
Rational abelianizations of Chillingworth subgroups of mapping class groups and automorphism groups of free groups (JAPANESE)
[ 講演概要 ]
The Chillingworth subgroup of the mapping class group of a surface is defined as the subgroup consisting of elements that preserve nonsingular vector fields up to homotopy. The action of the mapping class group on the set of homotopy classes of nonsingular vector fields is described using the concept of the winding number. By employing a cohomological approach, we extend the notion of the winding number to general manifolds, introducing the definition of the Chillingworth subgroup for both the mapping class group of general manifolds and the automorphism group of a free group. In this work, we determine the rational abelianization of the Chillingworth subgroup of the mapping class group of a surface and, under a certain assumption, also determine the rational abelianization of the Chillingworth subgroup for the automorphism group of a free group.
[ 参考URL ]The Chillingworth subgroup of the mapping class group of a surface is defined as the subgroup consisting of elements that preserve nonsingular vector fields up to homotopy. The action of the mapping class group on the set of homotopy classes of nonsingular vector fields is described using the concept of the winding number. By employing a cohomological approach, we extend the notion of the winding number to general manifolds, introducing the definition of the Chillingworth subgroup for both the mapping class group of general manifolds and the automorphism group of a free group. In this work, we determine the rational abelianization of the Chillingworth subgroup of the mapping class group of a surface and, under a certain assumption, also determine the rational abelianization of the Chillingworth subgroup for the automorphism group of a free group.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年01月14日(火)
17:00-18:00 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
吉岡 玲音 氏 (東京大学大学院数理科学研究科)
Some non-trivial cycles of the space of long embeddings detected by configuration space integral invariants using g-loop graphs (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
吉岡 玲音 氏 (東京大学大学院数理科学研究科)
Some non-trivial cycles of the space of long embeddings detected by configuration space integral invariants using g-loop graphs (JAPANESE)
[ 講演概要 ]
In this talk, we give some non-trivial cocycles and cycles of the space of long embeddings R^j --> R^n modulo immersions. First, we construct a cocycle through configuration space integrals with the simplest 2-loop graph cocycle of the Bott-Cattaneo-Rossi graph complex for odd n and j. Then, we give a cycle from a chord diagram on oriented lines, which is associated with the simplest 2-loop hairy graph. We show the non-triviality of this (co)cycle by pairing argument, which is reduced to pairing of graphs with the chord diagram. This construction of cycles and the pairing argument to show the non-triviality is also applied to general 2-loop (co)cycles of top degree. If time permits, we introduce a modified graph complex and configuration space integrals to give more general cocycles. This new graph complex is quasi-isomorphic to both the hairy graph complex and the graph complex introduced in embedding calculus by Arone and Turchin. With these modified cocycles, our pairing argument provides an alternative proof of the non-finite generation of the (j-1)-th rational homotopy group of the space of long j-knots R^j -->R^{j+2}, which Budney-Gabai and Watanabe first established.
[ 参考URL ]In this talk, we give some non-trivial cocycles and cycles of the space of long embeddings R^j --> R^n modulo immersions. First, we construct a cocycle through configuration space integrals with the simplest 2-loop graph cocycle of the Bott-Cattaneo-Rossi graph complex for odd n and j. Then, we give a cycle from a chord diagram on oriented lines, which is associated with the simplest 2-loop hairy graph. We show the non-triviality of this (co)cycle by pairing argument, which is reduced to pairing of graphs with the chord diagram. This construction of cycles and the pairing argument to show the non-triviality is also applied to general 2-loop (co)cycles of top degree. If time permits, we introduce a modified graph complex and configuration space integrals to give more general cocycles. This new graph complex is quasi-isomorphic to both the hairy graph complex and the graph complex introduced in embedding calculus by Arone and Turchin. With these modified cocycles, our pairing argument provides an alternative proof of the non-finite generation of the (j-1)-th rational homotopy group of the space of long j-knots R^j -->R^{j+2}, which Budney-Gabai and Watanabe first established.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2024年12月17日(火)
17:00-18:30 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Emmanuel Graff 氏 (東京大学大学院数理科学研究科)
Is there torsion in the homotopy braid group? (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Emmanuel Graff 氏 (東京大学大学院数理科学研究科)
Is there torsion in the homotopy braid group? (ENGLISH)
[ 講演概要 ]
In the 'Kourovka notebook,' V. Lin questions the existence of a non-trivial epimorphism from the braid group onto a non-abelian torsion-free group. The homotopy braid group, studied by Goldsmith in 1974, naturally appears as a potential candidate. In 2001, Humphries showed that this homotopy braid group is torsion-free for less than six strands. In this presentation, we will see a new approach based on the broader concept of welded braids, along with algebraic techniques, to determine whether the homotopy braid group provides a complete answer to Lin’s question.
[ 参考URL ]In the 'Kourovka notebook,' V. Lin questions the existence of a non-trivial epimorphism from the braid group onto a non-abelian torsion-free group. The homotopy braid group, studied by Goldsmith in 1974, naturally appears as a potential candidate. In 2001, Humphries showed that this homotopy braid group is torsion-free for less than six strands. In this presentation, we will see a new approach based on the broader concept of welded braids, along with algebraic techniques, to determine whether the homotopy braid group provides a complete answer to Lin’s question.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2024年12月10日(火)
17:00-18:30 数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
若月 駿 氏 (名古屋大学)
Computation of the magnitude homology as a derived functor (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
若月 駿 氏 (名古屋大学)
Computation of the magnitude homology as a derived functor (JAPANESE)
[ 講演概要 ]
Asao-Ivanov showed that the magnitude homology of a finite metric space is isomorphic to the derived functor Tor over some ring. In this talk, I will explain an application of the theory of minimal projective resolution to this derived functor. Especially in the case of a geodetic graph, torsion-freeness and a criterion for diagonality of the magnitude homology are established. Moreover, I will give computational examples including cyclic graphs. This is a joint work with Yasuhiko Asao.
[ 参考URL ]Asao-Ivanov showed that the magnitude homology of a finite metric space is isomorphic to the derived functor Tor over some ring. In this talk, I will explain an application of the theory of minimal projective resolution to this derived functor. Especially in the case of a geodetic graph, torsion-freeness and a criterion for diagonality of the magnitude homology are established. Moreover, I will give computational examples including cyclic graphs. This is a joint work with Yasuhiko Asao.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2024年12月03日(火)
17:30-18:30 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
井ノ口 順一 氏 (北海道大学)
3次元空間内の曲面と可積分系 (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
井ノ口 順一 氏 (北海道大学)
3次元空間内の曲面と可積分系 (JAPANESE)
[ 講演概要 ]
次元双曲空間の平均曲率一定曲面は平均曲率の値により様相が異なる.とくに平均曲率の値が1未満の場合はユークリッド空間や球面に類似物をもたない双曲幾何特有のクラスを与える.本講演では平均曲率の値が1未満の平均曲率一定曲面の可積分系理論的構成法について解説する (Josef F. Dorfmeister氏, 小林真平氏との共同研究).
[ 参考URL ]次元双曲空間の平均曲率一定曲面は平均曲率の値により様相が異なる.とくに平均曲率の値が1未満の場合はユークリッド空間や球面に類似物をもたない双曲幾何特有のクラスを与える.本講演では平均曲率の値が1未満の平均曲率一定曲面の可積分系理論的構成法について解説する (Josef F. Dorfmeister氏, 小林真平氏との共同研究).
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html


本文印刷
全画面プリント







