トポロジー火曜セミナー
過去の記録 ~10/04|次回の予定|今後の予定 10/05~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也 |
セミナーURL | http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
過去の記録
2023年07月04日(火)
17:00-18:30 数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
野坂 武史 氏 (東京工業大学)
3次元多様体のChern-Simons不変量の相互律 (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
野坂 武史 氏 (東京工業大学)
3次元多様体のChern-Simons不変量の相互律 (JAPANESE)
[ 講演概要 ]
$M$を閉3次元多様体とする。$M$の基本群から$SL_2(\mathbb{C})$への群準同型(ないし平坦$G$束)に対してChern-Simons不変量や随伴トーションが定まる。多くの既存の研究では、一つの準同型に固定するかCSの臨界点がよく扱われてきた。近年、数理物理で随伴トーションに関し全ての群準同型に対する和を考え、相互律が予想されている。その類似として講演者はCS不変量に関しても同様の和を考察し、その和の24倍が消える予想を提起した。ある特定の多様体に対し代数$K_3$群の議論を用いる事で予想が正しい事を示せた。本講演では背景や結果の証明の概略を説明する。
[ 参考URL ]$M$を閉3次元多様体とする。$M$の基本群から$SL_2(\mathbb{C})$への群準同型(ないし平坦$G$束)に対してChern-Simons不変量や随伴トーションが定まる。多くの既存の研究では、一つの準同型に固定するかCSの臨界点がよく扱われてきた。近年、数理物理で随伴トーションに関し全ての群準同型に対する和を考え、相互律が予想されている。その類似として講演者はCS不変量に関しても同様の和を考察し、その和の24倍が消える予想を提起した。ある特定の多様体に対し代数$K_3$群の議論を用いる事で予想が正しい事を示せた。本講演では背景や結果の証明の概略を説明する。
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2023年06月20日(火)
17:00-18:30 数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Arnaud Maret 氏 (Sorbonne Université)
Moduli spaces of triangle chains (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Arnaud Maret 氏 (Sorbonne Université)
Moduli spaces of triangle chains (ENGLISH)
[ 講演概要 ]
In this talk, I will describe a moduli space of triangle chains in the hyperbolic plane with prescribed angles. We will relate this moduli space to a specific character variety of representations of surface groups into PSL(2,R). This identification provides action-angle coordinates for the Goldman symplectic form on the character variety. If time permits, I will explain why the mapping class group action on that particular character variety is ergodic.
[ 参考URL ]In this talk, I will describe a moduli space of triangle chains in the hyperbolic plane with prescribed angles. We will relate this moduli space to a specific character variety of representations of surface groups into PSL(2,R). This identification provides action-angle coordinates for the Goldman symplectic form on the character variety. If time permits, I will explain why the mapping class group action on that particular character variety is ergodic.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2023年06月13日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
臼杵 峻亮 氏 (京都大学)
On a lower bound of the number of integers in Littlewood's conjecture (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
臼杵 峻亮 氏 (京都大学)
On a lower bound of the number of integers in Littlewood's conjecture (JAPANESE)
[ 講演概要 ]
Littlewood's conjecture is a famous and long-standing open problem on simultaneous Diophantine approximation. It is closely related to the action of diagonal matrices on ${\rm SL}(3,\mathbb{R})/{\rm SL}(3,\mathbb{Z})$, and M. Einsiedler, A. Katok and E. Lindenstrauss showed in 2000's that the exceptional set for Littlewood's conjecture has Hausdorff dimension zero by using some rigidity for invariant measures under the diagonal action. In this talk, I explain that we can obtain some quantitative result on the result of Einsiedler, Katok and Lindenstrauss by studying the empirical measures with respect to the diagonal action.
[ 参考URL ]Littlewood's conjecture is a famous and long-standing open problem on simultaneous Diophantine approximation. It is closely related to the action of diagonal matrices on ${\rm SL}(3,\mathbb{R})/{\rm SL}(3,\mathbb{Z})$, and M. Einsiedler, A. Katok and E. Lindenstrauss showed in 2000's that the exceptional set for Littlewood's conjecture has Hausdorff dimension zero by using some rigidity for invariant measures under the diagonal action. In this talk, I explain that we can obtain some quantitative result on the result of Einsiedler, Katok and Lindenstrauss by studying the empirical measures with respect to the diagonal action.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2023年06月06日(火)
17:30-18:30 数理科学研究科棟(駒場) ハイブリッド開催/056号室
Lie 群論・表現論セミナーと合同。 参加を希望される場合は、セミナーのウェブページをご覧下さい。
笹木 集夢 氏 (東海大学)
簡約型球等質空間における可視的作用と不変測度 (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
Lie 群論・表現論セミナーと合同。 参加を希望される場合は、セミナーのウェブページをご覧下さい。
笹木 集夢 氏 (東海大学)
簡約型球等質空間における可視的作用と不変測度 (JAPANESE)
[ 講演概要 ]
小林俊行氏によって創始された無重複性の伝播定理により,これまで発見されていた無重複表現において表現の無重複性に対する統一的な説明を与えられ,一方で無重複表現の新しい例が系統的に発見された.この定理における本質的な条件として,小林氏は複素多様体における可視的作用の理論を提唱した.可視的作用の概念は,無重複性の伝播定理において重要な役割を果たすだけでなく,群や等質空間に関する新しい分解定理を生み出している.
本講演では,簡約型球等質空間における可視的作用について解説する.特に,可視的に作用するときに各軌道と交叉する部分多様体(スライス)を簡約型球等質空間に対するカルタン分解により構成されることについてお話する.また,この研究の応用として簡約型球等質空間の不変測度に関してカルタン分解に即した積分公式を明示的に与えることにより行う.
[ 参考URL ]小林俊行氏によって創始された無重複性の伝播定理により,これまで発見されていた無重複表現において表現の無重複性に対する統一的な説明を与えられ,一方で無重複表現の新しい例が系統的に発見された.この定理における本質的な条件として,小林氏は複素多様体における可視的作用の理論を提唱した.可視的作用の概念は,無重複性の伝播定理において重要な役割を果たすだけでなく,群や等質空間に関する新しい分解定理を生み出している.
本講演では,簡約型球等質空間における可視的作用について解説する.特に,可視的に作用するときに各軌道と交叉する部分多様体(スライス)を簡約型球等質空間に対するカルタン分解により構成されることについてお話する.また,この研究の応用として簡約型球等質空間の不変測度に関してカルタン分解に即した積分公式を明示的に与えることにより行う.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2023年05月30日(火)
17:00-18:30 数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
児玉 悠弥 氏 (東京都立大学)
p-colorable subgroup of Thompson's group F (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
児玉 悠弥 氏 (東京都立大学)
p-colorable subgroup of Thompson's group F (JAPANESE)
[ 講演概要 ]
Thompson's group F is a subgroup of Homeo([0, 1]). In 2017, Jones found a way to construct knots and links from elements in F. Moreover, any knot (or link) can be obtained in this way. So the next question is, which elements in F give the same knot (or link)? In this talk, I define a subgroup of F and show that every element (except the identity) gives a p-colorable knot (or link). When p=3, this gives a negative answer to a question by Aiello. This is a joint work with Akihiro Takano.
[ 参考URL ]Thompson's group F is a subgroup of Homeo([0, 1]). In 2017, Jones found a way to construct knots and links from elements in F. Moreover, any knot (or link) can be obtained in this way. So the next question is, which elements in F give the same knot (or link)? In this talk, I define a subgroup of F and show that every element (except the identity) gives a p-colorable knot (or link). When p=3, this gives a negative answer to a question by Aiello. This is a joint work with Akihiro Takano.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2023年05月16日(火)
17:00-18:30 数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
山下 真由子 氏 (京都大学)
Anderson self-duality of topological modular forms and heretoric string theory (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
山下 真由子 氏 (京都大学)
Anderson self-duality of topological modular forms and heretoric string theory (JAPANESE)
[ 講演概要 ]
Topological Modular Forms (TMF) is an E-infinity ring spectrum which is conjectured by Stolz-Teichner to classify two-dimensional supersymmetric quantum field theories in physics. In the previous work with Y. Tachikawa, we proved the vanishing of anomalies in heterotic string theory mathematically by using TMF. In this talk, I explain our recent update on the previous work. Because of the vanishing result, we can consider a secondary transformation of spectra, which is shown to coincide with the Anderson self-duality morphism of TMF. This allows us to detect subtle torsion phenomena in TMF by differential-geometric ways.
[ 参考URL ]Topological Modular Forms (TMF) is an E-infinity ring spectrum which is conjectured by Stolz-Teichner to classify two-dimensional supersymmetric quantum field theories in physics. In the previous work with Y. Tachikawa, we proved the vanishing of anomalies in heterotic string theory mathematically by using TMF. In this talk, I explain our recent update on the previous work. Because of the vanishing result, we can consider a secondary transformation of spectra, which is shown to coincide with the Anderson self-duality morphism of TMF. This allows us to detect subtle torsion phenomena in TMF by differential-geometric ways.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2023年05月09日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
和久井 道久 氏 (関西大学)
結び目とフリーズパターン (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
和久井 道久 氏 (関西大学)
結び目とフリーズパターン (JAPANESE)
[ 講演概要 ]
小木曽岳義氏(城西大学)との共同研究)ConwayとCoxeterは1970年代初頭に、ユニモジュラー規則 ad-bc=1 に基づいて自然数を配置することで生成される数の繰り返し模様(フリーズパターン)を考察し、それが凸多角形の三角形分割により分類されることを示した。現在、フリーズパターンは2000年初頭にFominとZelevinskyにより発見されたクラスター代数との結びつきから再び注目を集めている。
講演者は城西大学の小木曽岳義氏と共同で、京都産業大学の山田修司氏により導入された有理数の祖先三角形の観点から有理絡み目とConway-Coxeterフリーズとの関係を研究し、有理絡み目がConway-Coxeterフリーズにより特徴づけられることを示した。ほぼ同時期に、Morier-GenoudとOvsienkoらも有理数の連分数展開に基づいたq変形を導入し、関連する結果を導いている。本講演ではこれらの結果を概説する。
[ 参考URL ]小木曽岳義氏(城西大学)との共同研究)ConwayとCoxeterは1970年代初頭に、ユニモジュラー規則 ad-bc=1 に基づいて自然数を配置することで生成される数の繰り返し模様(フリーズパターン)を考察し、それが凸多角形の三角形分割により分類されることを示した。現在、フリーズパターンは2000年初頭にFominとZelevinskyにより発見されたクラスター代数との結びつきから再び注目を集めている。
講演者は城西大学の小木曽岳義氏と共同で、京都産業大学の山田修司氏により導入された有理数の祖先三角形の観点から有理絡み目とConway-Coxeterフリーズとの関係を研究し、有理絡み目がConway-Coxeterフリーズにより特徴づけられることを示した。ほぼ同時期に、Morier-GenoudとOvsienkoらも有理数の連分数展開に基づいたq変形を導入し、関連する結果を導いている。本講演ではこれらの結果を概説する。
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2023年04月25日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
野澤 啓 氏 (立命館大学)
Harmonic measures and rigidity of surface group actions on the circle (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
野澤 啓 氏 (立命館大学)
Harmonic measures and rigidity of surface group actions on the circle (JAPANESE)
[ 講演概要 ]
We study rigidity properties of surface group actions on the circle via harmonic measures on the suspension bundles, which are measures invariant under the heat diffusion along leaves. We will explain a curvature estimate and a Gauss-Bonnet formula for an S^1-connection obtained by taking the average of the flat connection on the suspension bundle with respect to a harmonic measure. As consequences, we give a precise description of the harmonic measure on suspension foliations with maximal Euler number and an alternative proof of semiconjugacy rigidity theorems of Matsumoto and Burger-Iozzi-Wienhard for actions with maximal Euler number. This is joint work with Masanori Adachi and Yoshifumi Matsuda.
[ 参考URL ]We study rigidity properties of surface group actions on the circle via harmonic measures on the suspension bundles, which are measures invariant under the heat diffusion along leaves. We will explain a curvature estimate and a Gauss-Bonnet formula for an S^1-connection obtained by taking the average of the flat connection on the suspension bundle with respect to a harmonic measure. As consequences, we give a precise description of the harmonic measure on suspension foliations with maximal Euler number and an alternative proof of semiconjugacy rigidity theorems of Matsumoto and Burger-Iozzi-Wienhard for actions with maximal Euler number. This is joint work with Masanori Adachi and Yoshifumi Matsuda.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2023年04月18日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
丸山 修平 氏 (中央大学)
A crossed homomorphism on a big mapping class group (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
丸山 修平 氏 (中央大学)
A crossed homomorphism on a big mapping class group (JAPANESE)
[ 講演概要 ]
Big mapping class groups are mapping class groups of surfaces of infinite type. Calegari and Chen determined the second (co)homology group of the mapping class group of the sphere minus a Cantor set. They also raised related questions: one of the questions asks an explicit form of certain crossed homomorphisms on the big mapping class group. In this talk, we provide a construction of crossed homomorphisms via group actions on the circle, which answers the question of Calegari and Chen.
[ 参考URL ]Big mapping class groups are mapping class groups of surfaces of infinite type. Calegari and Chen determined the second (co)homology group of the mapping class group of the sphere minus a Cantor set. They also raised related questions: one of the questions asks an explicit form of certain crossed homomorphisms on the big mapping class group. In this talk, we provide a construction of crossed homomorphisms via group actions on the circle, which answers the question of Calegari and Chen.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2023年04月11日(火)
17:00-18:30 数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
葉廣 和夫 氏 (東京大学大学院数理科学研究科)
On the stable cohomology of the (IA-)automorphism groups of free groups (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
葉廣 和夫 氏 (東京大学大学院数理科学研究科)
On the stable cohomology of the (IA-)automorphism groups of free groups (JAPANESE)
[ 講演概要 ]
By combining Borel's stability and vanishing theorem for the stable cohomology of GL(n,Z) with coefficients in algebraic GL(n,Z)-representations and the Hochschild-Serre spectral sequence, we compute the twisted first cohomology of the automorphism group Aut(F_n) of the free group F_n of rank n. This method is used also in the study of the stable rational cohomology of the IA-automorphism group IA_n of F_n. We propose a conjectural algebraic structure of the stable rational cohomology of IA_n, and consider some relations to known results and conjectures. We also consider a conjectural structure of the stable rational cohomology of the Torelli groups of surfaces. This is a joint work with Mai Katada.
[ 参考URL ]By combining Borel's stability and vanishing theorem for the stable cohomology of GL(n,Z) with coefficients in algebraic GL(n,Z)-representations and the Hochschild-Serre spectral sequence, we compute the twisted first cohomology of the automorphism group Aut(F_n) of the free group F_n of rank n. This method is used also in the study of the stable rational cohomology of the IA-automorphism group IA_n of F_n. We propose a conjectural algebraic structure of the stable rational cohomology of IA_n, and consider some relations to known results and conjectures. We also consider a conjectural structure of the stable rational cohomology of the Torelli groups of surfaces. This is a joint work with Mai Katada.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2023年01月17日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Chenghan Zha 氏 (東京大学大学院数理科学研究科)
Integral structures in the local algebra of a singularity (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Chenghan Zha 氏 (東京大学大学院数理科学研究科)
Integral structures in the local algebra of a singularity (ENGLISH)
[ 講演概要 ]
We compute the image of the Milnor lattice of an ADE singularity under a period map. We also prove that the Milnor lattice can be identified with an appropriate relative K-group defined through the Berglund-Huebsch dual of the corresponding singularity. Furthermore, we figure out the image of the Milnor lattice of the singularity of an invertible polynomial of chain type using the basis of middle homology constructed by Otani-Takahashi. We calculated the Seifert form of the basis as well.
[ 参考URL ]We compute the image of the Milnor lattice of an ADE singularity under a period map. We also prove that the Milnor lattice can be identified with an appropriate relative K-group defined through the Berglund-Huebsch dual of the corresponding singularity. Furthermore, we figure out the image of the Milnor lattice of the singularity of an invertible polynomial of chain type using the basis of middle homology constructed by Otani-Takahashi. We calculated the Seifert form of the basis as well.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2023年01月10日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
浅香 猛 氏 (東京大学大学院数理科学研究科)
Some calculations of an earthquake map in the cross ratio coordinates and the earthquake theorem of cluster algebras of finite type (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
浅香 猛 氏 (東京大学大学院数理科学研究科)
Some calculations of an earthquake map in the cross ratio coordinates and the earthquake theorem of cluster algebras of finite type (JAPANESE)
[ 講演概要 ]
Thurston defined an earthquake, which cuts the Poincaré half-plane model and shifts it. Though it is a discontinuous bijective map, it can be extended to a homeomorphism of a circumference. Also, if an earthquake is equivalent relative to a Fuchsian group, the homeomorphism is equivalent, too. Moreover, Thurston proved the earthquake theorem saying that there uniquely exists an earthquake for any orient-preserving homeomorphism of a circumference, and Bonsante-Krasnov-Schlenker extended it to the case of marked surfaces. We calculate some earthquake maps by the cross ratio coordinates. The cross ratio coordinates are deeply related by the cluster algebra (Fock-Goncharov). We prove the earthquake theorem of cluster algebras of finite type. It is a joint work with Tsukasa Ishibashi and Shunsuke Kano.
[ 参考URL ]Thurston defined an earthquake, which cuts the Poincaré half-plane model and shifts it. Though it is a discontinuous bijective map, it can be extended to a homeomorphism of a circumference. Also, if an earthquake is equivalent relative to a Fuchsian group, the homeomorphism is equivalent, too. Moreover, Thurston proved the earthquake theorem saying that there uniquely exists an earthquake for any orient-preserving homeomorphism of a circumference, and Bonsante-Krasnov-Schlenker extended it to the case of marked surfaces. We calculate some earthquake maps by the cross ratio coordinates. The cross ratio coordinates are deeply related by the cluster algebra (Fock-Goncharov). We prove the earthquake theorem of cluster algebras of finite type. It is a joint work with Tsukasa Ishibashi and Shunsuke Kano.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2022年12月13日(火)
17:30-18:30 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
服部 広大 氏 (慶應義塾大学)
Spectral convergence in geometric quantization on K3 surfaces (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
服部 広大 氏 (慶應義塾大学)
Spectral convergence in geometric quantization on K3 surfaces (JAPANESE)
[ 講演概要 ]
In this talk I will explain the geometric quantization on K3 surfaces from the viewpoint of the spectral convergence. We take a special Lagrangian fibrations on the K3 surfaces and a family of hyper-Kähler structures tending to large complex structure limit and show a spectral convergence of the d-bar-Laplacians on the prequantum line bundle to the spectral structure related to the set of Bohr-Sommerfeld fibers.
[ 参考URL ]In this talk I will explain the geometric quantization on K3 surfaces from the viewpoint of the spectral convergence. We take a special Lagrangian fibrations on the K3 surfaces and a family of hyper-Kähler structures tending to large complex structure limit and show a spectral convergence of the d-bar-Laplacians on the prequantum line bundle to the spectral structure related to the set of Bohr-Sommerfeld fibers.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2022年12月06日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Quentin Faes 氏 (東京大学大学院数理科学研究科)
Torsion in the abelianization of the Johnson kernel (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Quentin Faes 氏 (東京大学大学院数理科学研究科)
Torsion in the abelianization of the Johnson kernel (ENGLISH)
[ 講演概要 ]
The Johnson kernel is the subgroup of the mapping class group of a closed oriented surface that is generated by Dehn twists along separating simple closed curves, and is also the second term of the so-called Johnson filtration of the mapping class group. The rational abelianization of this group is known, but it was recently proved by Nozaki, Sato and Suzuki, that the abelianization has torsion. They used the LMO homomorphism. In this talk, I will explain a purely two-dimensional proof of this result, which provides a lower bound for the cardinality of the torsion part of the abelianization. These results are also valid for the case of an open surface. This is joint work with Gwénaël Massuyeau.
[ 参考URL ]The Johnson kernel is the subgroup of the mapping class group of a closed oriented surface that is generated by Dehn twists along separating simple closed curves, and is also the second term of the so-called Johnson filtration of the mapping class group. The rational abelianization of this group is known, but it was recently proved by Nozaki, Sato and Suzuki, that the abelianization has torsion. They used the LMO homomorphism. In this talk, I will explain a purely two-dimensional proof of this result, which provides a lower bound for the cardinality of the torsion part of the abelianization. These results are also valid for the case of an open surface. This is joint work with Gwénaël Massuyeau.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2022年11月29日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
黒木 慎太郎 氏 (岡山理科大学)
GKM graph with legs and graph equivariant cohomology (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
黒木 慎太郎 氏 (岡山理科大学)
GKM graph with legs and graph equivariant cohomology (JAPANESE)
[ 講演概要 ]
A GKM (Goresky-Kottiwicz-MacPherson) graph is a regular graph labeled on edges with some conditions. This notion has been introduced by Guillemin-Zara in 2001 to study the geometry of a nice class of manifolds with torus actions, called a GKM manifold, by a combinatorial way. In particular, we can define a ring on a GKM graph called a graph equivariant cohomology, and it is often isomorphic to the equivariant cohomology of a GKM manifold. In this talk, we introduce the GKM graph with legs (i.e., non-compact edges) related to non-compact manifolds with torus actions that may not satisfy the usual GKM conditions, and study the graph equivariant cohomology which is related to the GKM graph with legs. The talk is mainly based on the joint work with Grigory Solomadin (arXiv:2207.11380) and partially on the joint work with Vikraman Uma (arXiv:2106.11598).
[ 参考URL ]A GKM (Goresky-Kottiwicz-MacPherson) graph is a regular graph labeled on edges with some conditions. This notion has been introduced by Guillemin-Zara in 2001 to study the geometry of a nice class of manifolds with torus actions, called a GKM manifold, by a combinatorial way. In particular, we can define a ring on a GKM graph called a graph equivariant cohomology, and it is often isomorphic to the equivariant cohomology of a GKM manifold. In this talk, we introduce the GKM graph with legs (i.e., non-compact edges) related to non-compact manifolds with torus actions that may not satisfy the usual GKM conditions, and study the graph equivariant cohomology which is related to the GKM graph with legs. The talk is mainly based on the joint work with Grigory Solomadin (arXiv:2207.11380) and partially on the joint work with Vikraman Uma (arXiv:2106.11598).
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2022年11月22日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
北野 晃朗 氏 (創価大学)
Epimorphism between knot groups and isomorphisms on character varieties (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
北野 晃朗 氏 (創価大学)
Epimorphism between knot groups and isomorphisms on character varieties (JAPANESE)
[ 講演概要 ]
A partial order on the set of prime knots is given by the existence of an epimorphism between the fundamental groups of the knot complements. In this talk we will survey some basic properties of this order, and discuss some results and questions in connection with the SL(2,C)-character variety. In particular we study to what extend the SL(2,C)-character variety to determine the knot. This talk will be based on joint works with Michel Boileau(Univ. Aix-Marseille), Steven Sivek(Imperial College London), and Raphael Zentner(Univ. Regensburg).
[ 参考URL ]A partial order on the set of prime knots is given by the existence of an epimorphism between the fundamental groups of the knot complements. In this talk we will survey some basic properties of this order, and discuss some results and questions in connection with the SL(2,C)-character variety. In particular we study to what extend the SL(2,C)-character variety to determine the knot. This talk will be based on joint works with Michel Boileau(Univ. Aix-Marseille), Steven Sivek(Imperial College London), and Raphael Zentner(Univ. Regensburg).
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2022年11月15日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Arthur Soulié 氏 (IBS Center for Geometry and Physics, POSTECH)
Stable cohomology of mapping class groups with some particular twisted contravariant coefficients (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Arthur Soulié 氏 (IBS Center for Geometry and Physics, POSTECH)
Stable cohomology of mapping class groups with some particular twisted contravariant coefficients (ENGLISH)
[ 講演概要 ]
The twisted cohomology of mapping class groups of compact orientable surfaces (with one boundary) is very difficult to compute generally speaking. In this talk, I will describe the computation of the stable cohomology algebra of these mapping class groups with twisted coefficients given by the first homology of the unit tangent bundle of the surface. This type of computation is out of the scope of the traditional framework for homological stability. Indeed, these twisted coefficients define a contravariant functor over the classical category associated to mapping class groups to study homological stability, rather than a covariant one. I will also present the computation of the stable cohomology algebras with with twisted coefficients given by the exterior powers and tensor powers of the first homology of the unit tangent bundle of the surface. All this represents a joint work with Nariya Kawazumi.
[ 参考URL ]The twisted cohomology of mapping class groups of compact orientable surfaces (with one boundary) is very difficult to compute generally speaking. In this talk, I will describe the computation of the stable cohomology algebra of these mapping class groups with twisted coefficients given by the first homology of the unit tangent bundle of the surface. This type of computation is out of the scope of the traditional framework for homological stability. Indeed, these twisted coefficients define a contravariant functor over the classical category associated to mapping class groups to study homological stability, rather than a covariant one. I will also present the computation of the stable cohomology algebras with with twisted coefficients given by the exterior powers and tensor powers of the first homology of the unit tangent bundle of the surface. All this represents a joint work with Nariya Kawazumi.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2022年11月08日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
吉永 正彦 氏 (大阪大学)
Milnor fibers of hyperplane arrangements (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
吉永 正彦 氏 (大阪大学)
Milnor fibers of hyperplane arrangements (JAPANESE)
[ 講演概要 ]
A (central) hyperplane arrangement is a union of finitely many hyperplanes in a linear space. There are many relationships between the intersection lattice of the arrangement and geometry of related spaces. In this talk, we focus on the Milnor fiber of a hyperplane arrangement. The first Betti number of the Milnor fiber is expected to be determined by the combinatorial structure of the intersection lattice, however, it is still open. We discuss two results on the problem. The first (discouraging) one is concerning the dimension of (-1)-eigenspace of the monodromy action on the first cohomology group. We show that it is related to 2-torsions in the first homology of double covering of the (projectivized) complement (j.w. Ishibashi and Sugawara). The second (encouraging) one is related to the Aomoto complex, which is defined in purely combinatorial way. We show that a q-analogue of Aomoto complex determines all nontrivial monodromy eigenspaces of the Milnor fiber.
[ 参考URL ]A (central) hyperplane arrangement is a union of finitely many hyperplanes in a linear space. There are many relationships between the intersection lattice of the arrangement and geometry of related spaces. In this talk, we focus on the Milnor fiber of a hyperplane arrangement. The first Betti number of the Milnor fiber is expected to be determined by the combinatorial structure of the intersection lattice, however, it is still open. We discuss two results on the problem. The first (discouraging) one is concerning the dimension of (-1)-eigenspace of the monodromy action on the first cohomology group. We show that it is related to 2-torsions in the first homology of double covering of the (projectivized) complement (j.w. Ishibashi and Sugawara). The second (encouraging) one is related to the Aomoto complex, which is defined in purely combinatorial way. We show that a q-analogue of Aomoto complex determines all nontrivial monodromy eigenspaces of the Milnor fiber.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2022年11月01日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
キム ミンギュ 氏 (東京大学大学院数理科学研究科)
An obstruction problem associated with finite path-integral (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
キム ミンギュ 氏 (東京大学大学院数理科学研究科)
An obstruction problem associated with finite path-integral (JAPANESE)
[ 講演概要 ]
Finite path-integral introduced by Dijkgraaf and Witten in 1990 is a mathematical methodology to construct an Atiyah-Segal type TQFT from finite gauge theory. In three dimensions, it is generalized to Hopf algebra gauge theory of Meusburger, and the corresponding TQFT is known as Turaev-Viro model. On the one hand, the bicommutative Hopf algebra gauge theory is covered by homological algebra. In this talk, we will explain an obstruction problem associated with a refined finite path-integral construction of TQFT's from homological algebra. This talk is based on our study of a folklore claim in condensed matter physics that gapped lattice quantum system, e.g. toric code, is approximated by topological field theories in low temperature.
[ 参考URL ]Finite path-integral introduced by Dijkgraaf and Witten in 1990 is a mathematical methodology to construct an Atiyah-Segal type TQFT from finite gauge theory. In three dimensions, it is generalized to Hopf algebra gauge theory of Meusburger, and the corresponding TQFT is known as Turaev-Viro model. On the one hand, the bicommutative Hopf algebra gauge theory is covered by homological algebra. In this talk, we will explain an obstruction problem associated with a refined finite path-integral construction of TQFT's from homological algebra. This talk is based on our study of a folklore claim in condensed matter physics that gapped lattice quantum system, e.g. toric code, is approximated by topological field theories in low temperature.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2022年10月25日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
小川 竜 氏 (東海大学)
Stabilized convex symplectic manifolds are Weinstein (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
小川 竜 氏 (東海大学)
Stabilized convex symplectic manifolds are Weinstein (JAPANESE)
[ 講演概要 ]
There are two important classes of convexity in symplectic geometry: Liouville and Weinstein structures. Basic objects such as cotangent bundles and Stein manifolds have these structures. In 90s, Eliashberg and Gromov formulated them as symplectic counterparts of Stein manifolds, since then, they have played a significant role in the study of symplectic topology. By definition, a Weinstein structure is a Liouville structure, but the converse is not true in general; McDuff gave the first example which is a Liouville manifold without any Weinstein structures. The purpose of this talk is to present the recent advances on the difference of both structures, up to homotopy. In particular, I will show that the stabilization of the McDuff’s example admits a flexible Weinstein structure. The main part is based on a joint work with Yakov Eliashberg (Stanford University) and Toru Yoshiyasu (Kyoto University of Education). If time permits, I would like to discuss some open questions and progress.
[ 参考URL ]There are two important classes of convexity in symplectic geometry: Liouville and Weinstein structures. Basic objects such as cotangent bundles and Stein manifolds have these structures. In 90s, Eliashberg and Gromov formulated them as symplectic counterparts of Stein manifolds, since then, they have played a significant role in the study of symplectic topology. By definition, a Weinstein structure is a Liouville structure, but the converse is not true in general; McDuff gave the first example which is a Liouville manifold without any Weinstein structures. The purpose of this talk is to present the recent advances on the difference of both structures, up to homotopy. In particular, I will show that the stabilization of the McDuff’s example admits a flexible Weinstein structure. The main part is based on a joint work with Yakov Eliashberg (Stanford University) and Toru Yoshiyasu (Kyoto University of Education). If time permits, I would like to discuss some open questions and progress.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2022年10月11日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
浅尾 泰彦 氏 (福岡大学)
Magnitude homology of graphs (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
浅尾 泰彦 氏 (福岡大学)
Magnitude homology of graphs (JAPANESE)
[ 講演概要 ]
Magnitude is introduced by Leinster in 00’s as an ``Euler characteristic of metric spaces”. It is defined for the metric structure itself rather than the topology induced from the metric. Magnitude homology is a categorification of magnitude in a sense that ordinary homology categorifies the Euler characteristic. The speaker’s interest is in geometric meaning of this theory. In this talk, after an introduction to basic ideas, I will explain that magnitude truly extends the Euler characteristic. From this perspective, magnitude homology can be seen as one of the categorification of the Euler characteristic, and the path homology (Grigor’yan—Muranov—Lin—S-T. Yau et.al) appears as a part of another one. These structures are aggregated in a spectral sequence obtained from the classifying space of "filtered set enriched categories" which includes ordinary small categories and metric spaces.
[ 参考URL ]Magnitude is introduced by Leinster in 00’s as an ``Euler characteristic of metric spaces”. It is defined for the metric structure itself rather than the topology induced from the metric. Magnitude homology is a categorification of magnitude in a sense that ordinary homology categorifies the Euler characteristic. The speaker’s interest is in geometric meaning of this theory. In this talk, after an introduction to basic ideas, I will explain that magnitude truly extends the Euler characteristic. From this perspective, magnitude homology can be seen as one of the categorification of the Euler characteristic, and the path homology (Grigor’yan—Muranov—Lin—S-T. Yau et.al) appears as a part of another one. These structures are aggregated in a spectral sequence obtained from the classifying space of "filtered set enriched categories" which includes ordinary small categories and metric spaces.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2022年10月04日(火)
17:00-18:30 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
原子 秀一 氏 (東京大学大学院数理科学研究科)
Orientable rho-Q-manifolds and their modular classes (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
原子 秀一 氏 (東京大学大学院数理科学研究科)
Orientable rho-Q-manifolds and their modular classes (JAPANESE)
[ 講演概要 ]
A rho-commutative algebra, or an almost commutative algebra, is a graded algebra whose commutativity is given by a function called a commutation factor. It is one generalization of a commutative algebra or a superalgebra. We obtain a rho-Lie algebra, or an epsilon-Lie algebra, by a similar generalization of a Lie algebra. On the other hand, we have the modular class of an orientable Q-manifold. Here, a Q-manifold is a supermanifold with an odd vector field whose Lie bracket with itself vanishes, and its orientability is described in terms of the Berezinian bundle. In this talk, we introduce the concept of a rho-manifold, which is a graded manifold whose functional algebra is a rho-commutative algebra, then we show that we can define Q-structures, Berezinian bundle, volume forms, and modular classes of a rho-manifold with some examples.
[ 参考URL ]A rho-commutative algebra, or an almost commutative algebra, is a graded algebra whose commutativity is given by a function called a commutation factor. It is one generalization of a commutative algebra or a superalgebra. We obtain a rho-Lie algebra, or an epsilon-Lie algebra, by a similar generalization of a Lie algebra. On the other hand, we have the modular class of an orientable Q-manifold. Here, a Q-manifold is a supermanifold with an odd vector field whose Lie bracket with itself vanishes, and its orientability is described in terms of the Berezinian bundle. In this talk, we introduce the concept of a rho-manifold, which is a graded manifold whose functional algebra is a rho-commutative algebra, then we show that we can define Q-structures, Berezinian bundle, volume forms, and modular classes of a rho-manifold with some examples.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2022年07月12日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Sungkyung Kang 氏 (Center for Geometry and Physics, Institute of Basic Science)
Cable knots and involutive Heegaard Floer homology (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Sungkyung Kang 氏 (Center for Geometry and Physics, Institute of Basic Science)
Cable knots and involutive Heegaard Floer homology (ENGLISH)
[ 講演概要 ]
Heegaard Floer homology (and its variants) carries an intrinsic symmetry, which conjecturally corresponds to the Pin(2)-equivariance in Seiberg-Witten Floer homology. By exploiting the symmetry, we prove that (odd,1)-cables of the figure-eight knots are linearly independent in the concordance group of rationally slice knots, and present a first example of rationally slice knots of complexity 1 which are not slice. Furthermore, we establish an explicit connection between involutive knot Floer theory and involutive bordered Floer theory of knot complements, and use it to prove a similar result for iterated cables of figure-eight knots. A part of this talk is based on a joint work with J. Hom, M. Stoffregen, and J. Park.
[ 参考URL ]Heegaard Floer homology (and its variants) carries an intrinsic symmetry, which conjecturally corresponds to the Pin(2)-equivariance in Seiberg-Witten Floer homology. By exploiting the symmetry, we prove that (odd,1)-cables of the figure-eight knots are linearly independent in the concordance group of rationally slice knots, and present a first example of rationally slice knots of complexity 1 which are not slice. Furthermore, we establish an explicit connection between involutive knot Floer theory and involutive bordered Floer theory of knot complements, and use it to prove a similar result for iterated cables of figure-eight knots. A part of this talk is based on a joint work with J. Hom, M. Stoffregen, and J. Park.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2022年07月05日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
中野 雄史 氏 (東海大学)
曲面上の微分同相写像のホモクリニック分岐によるLyapunov指数の非存在 (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
中野 雄史 氏 (東海大学)
曲面上の微分同相写像のホモクリニック分岐によるLyapunov指数の非存在 (JAPANESE)
[ 講演概要 ]
Lyapunov指数は,カオス性の検出や非一様双曲力学系理論の基礎付けのように,数学を含む自然科学で広く用いられている.一方で,その(不変確率測度の台の外での)存在についてはほとんど議論がなされていない.本講演では,Lyapunov非正則集合,つまりLyapunov指数が存在しないような点全体の集合が,Lebesgue測度正となるかという問題を考える.Colli-Vargasによって導入された頑強なホモクリニック接触を持つ曲面上の微分同相写像を含む,様々な既知の非双曲力学系が,Lebesgue測度正のLyapunov非正則集合を持つことを報告する予定である.この結果は桐木紳,李曉龍,相馬輝彦各氏との共同研究に基づく.
[ 参考URL ]Lyapunov指数は,カオス性の検出や非一様双曲力学系理論の基礎付けのように,数学を含む自然科学で広く用いられている.一方で,その(不変確率測度の台の外での)存在についてはほとんど議論がなされていない.本講演では,Lyapunov非正則集合,つまりLyapunov指数が存在しないような点全体の集合が,Lebesgue測度正となるかという問題を考える.Colli-Vargasによって導入された頑強なホモクリニック接触を持つ曲面上の微分同相写像を含む,様々な既知の非双曲力学系が,Lebesgue測度正のLyapunov非正則集合を持つことを報告する予定である.この結果は桐木紳,李曉龍,相馬輝彦各氏との共同研究に基づく.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2022年06月21日(火)
17:00-18:00 オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
市原 一裕 氏 (日本大学)
Cosmetic surgeries on knots in the 3-sphere (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
市原 一裕 氏 (日本大学)
Cosmetic surgeries on knots in the 3-sphere (JAPANESE)
[ 講演概要 ]
A pair of Dehn surgeries on a knot is called purely (resp. chirally) cosmetic if the obtained manifolds are orientation-preservingly (resp. -reversingly) homeomorphic. It is conjectured that if a knot in the 3-sphere admits purely (resp. chirally) cosmetic surgeries, then the knot is a trivial knot (resp. a torus knot or an amphicheiral knot). In this talk, after giving a brief survey on the studies on these conjectures, I will explain recent progresses on the conjectures. This is based on joint works with Tetsuya Ito (Kyoto University), In Dae Jong (Kindai University), and Toshio Saito (Joetsu University of Education).
[ 参考URL ]A pair of Dehn surgeries on a knot is called purely (resp. chirally) cosmetic if the obtained manifolds are orientation-preservingly (resp. -reversingly) homeomorphic. It is conjectured that if a knot in the 3-sphere admits purely (resp. chirally) cosmetic surgeries, then the knot is a trivial knot (resp. a torus knot or an amphicheiral knot). In this talk, after giving a brief survey on the studies on these conjectures, I will explain recent progresses on the conjectures. This is based on joint works with Tetsuya Ito (Kyoto University), In Dae Jong (Kindai University), and Toshio Saito (Joetsu University of Education).
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html