トポロジー火曜セミナー

過去の記録 ~04/15次回の予定今後の予定 04/16~

開催情報 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室
担当者 河澄 響矢, 北山 貴裕, 逆井卓也
セミナーURL http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html

過去の記録

2023年04月18日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
丸山 修平 氏 (中央大学)
A crossed homomorphism on a big mapping class group (JAPANESE)
[ 講演概要 ]
Big mapping class groups are mapping class groups of surfaces of infinite type. Calegari and Chen determined the second (co)homology group of the mapping class group of the sphere minus a Cantor set. They also raised related questions: one of the questions asks an explicit form of certain crossed homomorphisms on the big mapping class group. In this talk, we provide a construction of crossed homomorphisms via group actions on the circle, which answers the question of Calegari and Chen.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2023年04月11日(火)

17:00-18:30   数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
葉廣 和夫 氏 (東京大学大学院数理科学研究科)
On the stable cohomology of the (IA-)automorphism groups of free groups (JAPANESE)
[ 講演概要 ]
By combining Borel's stability and vanishing theorem for the stable cohomology of GL(n,Z) with coefficients in algebraic GL(n,Z)-representations and the Hochschild-Serre spectral sequence, we compute the twisted first cohomology of the automorphism group Aut(F_n) of the free group F_n of rank n. This method is used also in the study of the stable rational cohomology of the IA-automorphism group IA_n of F_n. We propose a conjectural algebraic structure of the stable rational cohomology of IA_n, and consider some relations to known results and conjectures. We also consider a conjectural structure of the stable rational cohomology of the Torelli groups of surfaces. This is a joint work with Mai Katada.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2023年01月17日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Chenghan Zha 氏 (東京大学大学院数理科学研究科)
Integral structures in the local algebra of a singularity (ENGLISH)
[ 講演概要 ]
We compute the image of the Milnor lattice of an ADE singularity under a period map. We also prove that the Milnor lattice can be identified with an appropriate relative K-group defined through the Berglund-Huebsch dual of the corresponding singularity. Furthermore, we figure out the image of the Milnor lattice of the singularity of an invertible polynomial of chain type using the basis of middle homology constructed by Otani-Takahashi. We calculated the Seifert form of the basis as well.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2023年01月10日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
浅香 猛 氏 (東京大学大学院数理科学研究科)
Some calculations of an earthquake map in the cross ratio coordinates and the earthquake theorem of cluster algebras of finite type (JAPANESE)
[ 講演概要 ]
Thurston defined an earthquake, which cuts the Poincaré half-plane model and shifts it. Though it is a discontinuous bijective map, it can be extended to a homeomorphism of a circumference. Also, if an earthquake is equivalent relative to a Fuchsian group, the homeomorphism is equivalent, too. Moreover, Thurston proved the earthquake theorem saying that there uniquely exists an earthquake for any orient-preserving homeomorphism of a circumference, and Bonsante-Krasnov-Schlenker extended it to the case of marked surfaces. We calculate some earthquake maps by the cross ratio coordinates. The cross ratio coordinates are deeply related by the cluster algebra (Fock-Goncharov). We prove the earthquake theorem of cluster algebras of finite type. It is a joint work with Tsukasa Ishibashi and Shunsuke Kano.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年12月13日(火)

17:30-18:30   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
服部 広大 氏 (慶應義塾大学)
Spectral convergence in geometric quantization on K3 surfaces (JAPANESE)
[ 講演概要 ]
In this talk I will explain the geometric quantization on K3 surfaces from the viewpoint of the spectral convergence. We take a special Lagrangian fibrations on the K3 surfaces and a family of hyper-Kähler structures tending to large complex structure limit and show a spectral convergence of the d-bar-Laplacians on the prequantum line bundle to the spectral structure related to the set of Bohr-Sommerfeld fibers.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年12月06日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Quentin Faes 氏 (東京大学大学院数理科学研究科)
Torsion in the abelianization of the Johnson kernel (ENGLISH)
[ 講演概要 ]
The Johnson kernel is the subgroup of the mapping class group of a closed oriented surface that is generated by Dehn twists along separating simple closed curves, and is also the second term of the so-called Johnson filtration of the mapping class group. The rational abelianization of this group is known, but it was recently proved by Nozaki, Sato and Suzuki, that the abelianization has torsion. They used the LMO homomorphism. In this talk, I will explain a purely two-dimensional proof of this result, which provides a lower bound for the cardinality of the torsion part of the abelianization. These results are also valid for the case of an open surface. This is joint work with Gwénaël Massuyeau.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年11月29日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
黒木 慎太郎 氏 (岡山理科大学)
GKM graph with legs and graph equivariant cohomology (JAPANESE)
[ 講演概要 ]
A GKM (Goresky-Kottiwicz-MacPherson) graph is a regular graph labeled on edges with some conditions. This notion has been introduced by Guillemin-Zara in 2001 to study the geometry of a nice class of manifolds with torus actions, called a GKM manifold, by a combinatorial way. In particular, we can define a ring on a GKM graph called a graph equivariant cohomology, and it is often isomorphic to the equivariant cohomology of a GKM manifold. In this talk, we introduce the GKM graph with legs (i.e., non-compact edges) related to non-compact manifolds with torus actions that may not satisfy the usual GKM conditions, and study the graph equivariant cohomology which is related to the GKM graph with legs. The talk is mainly based on the joint work with Grigory Solomadin (arXiv:2207.11380) and partially on the joint work with Vikraman Uma (arXiv:2106.11598).
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年11月22日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
北野 晃朗 氏 (創価大学)
Epimorphism between knot groups and isomorphisms on character varieties (JAPANESE)
[ 講演概要 ]
A partial order on the set of prime knots is given by the existence of an epimorphism between the fundamental groups of the knot complements. In this talk we will survey some basic properties of this order, and discuss some results and questions in connection with the SL(2,C)-character variety. In particular we study to what extend the SL(2,C)-character variety to determine the knot. This talk will be based on joint works with Michel Boileau(Univ. Aix-Marseille), Steven Sivek(Imperial College London), and Raphael Zentner(Univ. Regensburg).
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年11月15日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Arthur Soulié 氏 (IBS Center for Geometry and Physics, POSTECH)
Stable cohomology of mapping class groups with some particular twisted contravariant coefficients (ENGLISH)
[ 講演概要 ]
The twisted cohomology of mapping class groups of compact orientable surfaces (with one boundary) is very difficult to compute generally speaking. In this talk, I will describe the computation of the stable cohomology algebra of these mapping class groups with twisted coefficients given by the first homology of the unit tangent bundle of the surface. This type of computation is out of the scope of the traditional framework for homological stability. Indeed, these twisted coefficients define a contravariant functor over the classical category associated to mapping class groups to study homological stability, rather than a covariant one. I will also present the computation of the stable cohomology algebras with with twisted coefficients given by the exterior powers and tensor powers of the first homology of the unit tangent bundle of the surface. All this represents a joint work with Nariya Kawazumi.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年11月08日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
吉永 正彦 氏 (大阪大学)
Milnor fibers of hyperplane arrangements (JAPANESE)
[ 講演概要 ]
A (central) hyperplane arrangement is a union of finitely many hyperplanes in a linear space. There are many relationships between the intersection lattice of the arrangement and geometry of related spaces. In this talk, we focus on the Milnor fiber of a hyperplane arrangement. The first Betti number of the Milnor fiber is expected to be determined by the combinatorial structure of the intersection lattice, however, it is still open. We discuss two results on the problem. The first (discouraging) one is concerning the dimension of (-1)-eigenspace of the monodromy action on the first cohomology group. We show that it is related to 2-torsions in the first homology of double covering of the (projectivized) complement (j.w. Ishibashi and Sugawara). The second (encouraging) one is related to the Aomoto complex, which is defined in purely combinatorial way. We show that a q-analogue of Aomoto complex determines all nontrivial monodromy eigenspaces of the Milnor fiber.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年11月01日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
キム ミンギュ 氏 (東京大学大学院数理科学研究科)
An obstruction problem associated with finite path-integral (JAPANESE)
[ 講演概要 ]
Finite path-integral introduced by Dijkgraaf and Witten in 1990 is a mathematical methodology to construct an Atiyah-Segal type TQFT from finite gauge theory. In three dimensions, it is generalized to Hopf algebra gauge theory of Meusburger, and the corresponding TQFT is known as Turaev-Viro model. On the one hand, the bicommutative Hopf algebra gauge theory is covered by homological algebra. In this talk, we will explain an obstruction problem associated with a refined finite path-integral construction of TQFT's from homological algebra. This talk is based on our study of a folklore claim in condensed matter physics that gapped lattice quantum system, e.g. toric code, is approximated by topological field theories in low temperature.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年10月25日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
小川 竜 氏 (東海大学)
Stabilized convex symplectic manifolds are Weinstein (JAPANESE)
[ 講演概要 ]
There are two important classes of convexity in symplectic geometry: Liouville and Weinstein structures. Basic objects such as cotangent bundles and Stein manifolds have these structures. In 90s, Eliashberg and Gromov formulated them as symplectic counterparts of Stein manifolds, since then, they have played a significant role in the study of symplectic topology. By definition, a Weinstein structure is a Liouville structure, but the converse is not true in general; McDuff gave the first example which is a Liouville manifold without any Weinstein structures. The purpose of this talk is to present the recent advances on the difference of both structures, up to homotopy. In particular, I will show that the stabilization of the McDuff’s example admits a flexible Weinstein structure. The main part is based on a joint work with Yakov Eliashberg (Stanford University) and Toru Yoshiyasu (Kyoto University of Education). If time permits, I would like to discuss some open questions and progress.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年10月11日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
浅尾 泰彦 氏 (福岡大学)
Magnitude homology of graphs (JAPANESE)
[ 講演概要 ]
Magnitude is introduced by Leinster in 00’s as an ``Euler characteristic of metric spaces”. It is defined for the metric structure itself rather than the topology induced from the metric. Magnitude homology is a categorification of magnitude in a sense that ordinary homology categorifies the Euler characteristic. The speaker’s interest is in geometric meaning of this theory. In this talk, after an introduction to basic ideas, I will explain that magnitude truly extends the Euler characteristic. From this perspective, magnitude homology can be seen as one of the categorification of the Euler characteristic, and the path homology (Grigor’yan—Muranov—Lin—S-T. Yau et.al) appears as a part of another one. These structures are aggregated in a spectral sequence obtained from the classifying space of "filtered set enriched categories" which includes ordinary small categories and metric spaces.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年10月04日(火)

17:00-18:30   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
原子 秀一 氏 (東京大学大学院数理科学研究科)
Orientable rho-Q-manifolds and their modular classes (JAPANESE)
[ 講演概要 ]
A rho-commutative algebra, or an almost commutative algebra, is a graded algebra whose commutativity is given by a function called a commutation factor. It is one generalization of a commutative algebra or a superalgebra. We obtain a rho-Lie algebra, or an epsilon-Lie algebra, by a similar generalization of a Lie algebra. On the other hand, we have the modular class of an orientable Q-manifold. Here, a Q-manifold is a supermanifold with an odd vector field whose Lie bracket with itself vanishes, and its orientability is described in terms of the Berezinian bundle. In this talk, we introduce the concept of a rho-manifold, which is a graded manifold whose functional algebra is a rho-commutative algebra, then we show that we can define Q-structures, Berezinian bundle, volume forms, and modular classes of a rho-manifold with some examples.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年07月12日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Sungkyung Kang 氏 (Center for Geometry and Physics, Institute of Basic Science)
Cable knots and involutive Heegaard Floer homology (ENGLISH)
[ 講演概要 ]
Heegaard Floer homology (and its variants) carries an intrinsic symmetry, which conjecturally corresponds to the Pin(2)-equivariance in Seiberg-Witten Floer homology. By exploiting the symmetry, we prove that (odd,1)-cables of the figure-eight knots are linearly independent in the concordance group of rationally slice knots, and present a first example of rationally slice knots of complexity 1 which are not slice. Furthermore, we establish an explicit connection between involutive knot Floer theory and involutive bordered Floer theory of knot complements, and use it to prove a similar result for iterated cables of figure-eight knots. A part of this talk is based on a joint work with J. Hom, M. Stoffregen, and J. Park.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年07月05日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
中野 雄史 氏 (東海大学)
曲面上の微分同相写像のホモクリニック分岐によるLyapunov指数の非存在 (JAPANESE)
[ 講演概要 ]
Lyapunov指数は,カオス性の検出や非一様双曲力学系理論の基礎付けのように,数学を含む自然科学で広く用いられている.一方で,その(不変確率測度の台の外での)存在についてはほとんど議論がなされていない.本講演では,Lyapunov非正則集合,つまりLyapunov指数が存在しないような点全体の集合が,Lebesgue測度正となるかという問題を考える.Colli-Vargasによって導入された頑強なホモクリニック接触を持つ曲面上の微分同相写像を含む,様々な既知の非双曲力学系が,Lebesgue測度正のLyapunov非正則集合を持つことを報告する予定である.この結果は桐木紳,李曉龍,相馬輝彦各氏との共同研究に基づく.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年06月21日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
市原 一裕 氏 (日本大学)
Cosmetic surgeries on knots in the 3-sphere (JAPANESE)
[ 講演概要 ]
A pair of Dehn surgeries on a knot is called purely (resp. chirally) cosmetic if the obtained manifolds are orientation-preservingly (resp. -reversingly) homeomorphic. It is conjectured that if a knot in the 3-sphere admits purely (resp. chirally) cosmetic surgeries, then the knot is a trivial knot (resp. a torus knot or an amphicheiral knot). In this talk, after giving a brief survey on the studies on these conjectures, I will explain recent progresses on the conjectures. This is based on joint works with Tetsuya Ito (Kyoto University), In Dae Jong (Kindai University), and Toshio Saito (Joetsu University of Education).
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年06月14日(火)

17:30-18:30   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
栗林 勝彦 氏 (信州大学)
Cartan calculi on the free loop spaces (JAPANESE)
[ 講演概要 ]
A typical example of a Cartan calculus is the Lie algebra representation of vector fields of a manifold on the derivation ring of the de Rham complex. In this talk, a `second stage' of the Cartan calculus is investigated. In a more general setting, the stage is formulated with a Lie algebra representation of the Andre-Quillen cohomology of a commutative differential graded algebra A on the endomorphism ring of the Hochschild homology of A in terms of the homotopy Cartan calculi in the sense of Fiorenza and Kowalzig. Moreover, the Lie algebra representation in the Cartan calculus is interpreted geometrically as a map from the rational homotopy group of the monoid of self-homotopy equivalences on a simply-connected space M to the derivation ring on the loop cohomology of M. An extension of the representation to the string cohomology and its geometric counterpart are also discussed together with the BV exactness which is a new rational homotopy invariant introduced in our work. This talk is based on joint work in progress with T. Naito, S. Wakatsuki and T. Yamaguchi.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年06月07日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
山口 祥司 氏 (Yoshikazu Yamaguchi)
Dynamical zeta functions for geodesic flows and the higher-dimensional Reidemeister torsion for Fuchsian groups (JAPANESE)
[ 講演概要 ]
本講演では2次元双曲オービフォールド上の測地線流が定める力学系のゼータ関数の値とオービフォールドの単位接束におけるライデマイスタートーションの漸近挙動の関係を紹介する. 双曲オービフォールドの単位接束はPSL(2, R)の普遍被覆空間が幾何構造を定めるザイフェルト多様体とみなせる. また幾何構造が定める基本群のSL(2,R)表現が存在する.ここでライデマイスタートーションの漸近挙動とは, 基本群のSL(2,R)表現から誘導される基本群のSL(n, R)表現の系列を利用して定めるライデマイスタートーションの系列における主要係数の極限を意味する. 双曲3次元多様体においては, ライデマイスタートーションの漸近挙動から双曲体積を導出できることが力学系のゼータ関数を用いた考察で明らかにされてきた. 2次元双曲オービフォールドの単位接束は双曲3次元多様体ではないが, オービフォールド上の測地線流から定まる力学系のゼータ関数を用いてライデマイスタートーションの漸近挙動が考察でき, 主要係数の極限からオービフォールドのオービフォールド・オイラー標数が導出できることを紹介したい.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年05月31日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
植田 一石 氏 (東京大学大学院数理科学研究科)
Stable Fukaya categories of Milnor fibers (JAPANESE)
[ 講演概要 ]
We define the stable Fukaya category of a Liouville domain as the quotient of the wrapped Fukaya category by the full subcategory consisting of compact Lagrangians, and discuss the relation between the stable Fukaya categories of affine Fermat hypersurfaces and the Fukaya categories of projective hypersurfaces. We also discuss homological mirror symmetry for Milnor fibers of Brieskorn-Pham singularities along the way. This is a joint work in progress with Yanki Lekili.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年05月24日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Christine Vespa 氏 (IRMA, Université de Strasbourg / JSPS)
Polynomial functors associated with beaded open Jacobi diagrams (ENGLISH)
[ 講演概要 ]
The Kontsevich integral is a very powerful invariant of knots, taking values is the space of Jacobi diagrams. Using an extension of the Kontsevich integral to tangles in handlebodies, Habiro and Massuyeau construct a functor from the category of bottom tangles in handlebodies to the linear category A of Jacobi diagrams in handlebodies. The category A has a subcategory equivalent to the linearization of the opposite of the category of finitely generated free groups, denoted by $\textbf{gr}^{op}$. By restriction to this subcategory, morphisms in the linear category $\textbf{A}$ give rise to interesting contravariant functors on the category $\textbf{gr}$, encoding part of the composition structure of the category A.
In recent papers, Katada studies the functor given by the morphisms in the category A from 0. In particular, she obtains a family of polynomial functors on $\textbf{gr}^{op}$ which are outer functors, in the sense that inner automorphisms act trivially.
In this talk, I will explain these results and give extensions of Katada’s results concerning the functors given by the morphisms in the category A from any integer k. These functors give rise to families of polynomial functors on $\textbf{gr}^{op}$ which are no more outer functors. Our approach is based on an equivalence of categories given by Powell. Through this equivalence the previous polynomial functors correspond to functors given by beaded open Jacobi diagrams.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年05月17日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
清水 達郎 氏 (東京電機大学)
Contribution of simple loops to the configuration space integral (JAPANESE)
[ 講演概要 ]
有向閉多様体とその基本群の表現を用意する.ただし表現は対応する局所系が非輪状なものとする.Feynman diagramと呼ばれるグラフを一つ持ってくると,その頂点と辺の情報をもとにして配置空間積分(configuration space integral)が実行され,数が計算される.これらの数の適当な線形和は多様体と表現の組の不変量を与える.グラフの辺の中で,その両端点が同じ頂点につながっているものをsimple loopと呼ぶ.配置空間積分の,このsimple loopからの寄与について考察する.Hutchings, Lee, KitayamaらによるReidemeister torsionをcircle valued Morse functionのtrajectoryを用いて記述した仕事と,Morseホモトピー論が与える配置空間積分のMorse関数を用いた解釈を組み合わせることで,いくつかの多様体と表現の組に対して,simple loopからの寄与がReidemeister torsionから計算できることが証明される.この講演では,simple loopとReidemeister torsionをめぐるこれらの関係を整理し,その対象となる多様体と表現を少し拡張する.また,figure eight knotでDehn手術して得られる3次元多様体と1次元ホモロジー群の表現の組について,simple loopを含むグラフに関する配置空間積分の,Morse関数を補助的に用いた具体的な計算を例示する.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年05月10日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
今野 北斗 氏 (東京大学大学院数理科学研究科)
Nielsen realization, knots, and Seiberg-Witten (Floer) homotopy theory (JAPANESE)
[ 講演概要 ]
I will discuss two different kinds of applications of Seiberg-Witten (Floer) homotopy theory involving involutions. The first application is about the Nielsen realization problem, which asks whether a given finite subgroup of the mapping class group of a manifold lifts to a subgroup of the diffeomorphism group. Although every finite subgroup is known to lift in dimension 2, there are manifolds of dimension greater than 2 for which the Nielsen realization fails. However, only few examples have been known in dimension 4. I will show that "4-dimensional Dehn twists" yield a large class of new examples. The second application is about 4-dimensional invariants of knots. I will introduce a version of "Floer K-theory for knots", and will explain that this framework gives the first comparison result for the smooth and topological versions of a certain knot invariant, called stabilizing number. Although the above two topics (Nielsen realization and knots) may seem to have different flavors, they are derived from a common idea. The first one is proved using a constraint on smooth involutions on a closed 4-manifold from Seiberg-Witten homotopy theory by Yuya Kato, and the second one is derived from a generalization of Kato's result to 4-manifolds with boundary using Seiberg-Witten Floer homotopy theory. This talk is partially based on joint work with Jin Miyazawa and Masaki Taniguchi.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年04月26日(火)

17:00-18:00   オンライン開催
Lie 群論・表現論セミナーと合同。 参加を希望される場合は、セミナーのウェブページをご覧下さい。
大島 芳樹 氏 (東京大学大学院数理科学研究科)
等質空間の離散系列表現の存在条件について (JAPANESE)
[ 講演概要 ]
Lie群$G$が多様体$X$に推移的に作用するとき,$L^2(X)$の既約部分表現は$X$の離散系列表現とよばれる.等質空間$X$がいつ離散系列表現をもつかという問題を考える.簡約対称空間については,Flensted-Jensen氏,松木敏彦氏,大島利雄氏の結果より,離散系列表現が存在する必要十分条件はランクに関する条件で与えられる.一般の簡約等質空間に対する離散系列表現の存在問題は小林俊行氏により考えられ,表現の離散分解の理論を用いて十分条件が得られている.この講演では,一般の等質空間やその上の直線束の場合に,余随伴軌道の方法を用いて得られる離散系列表現の存在の十分条件についてお話しする.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年04月19日(火)

17:30-18:30   オンライン開催
Lie 群論・表現論セミナーと合同。 参加を希望される場合は、セミナーのウェブページをご覧下さい。
久保 利久 氏 (龍谷大学)
反ド・ジッター空間の共形微分対称性破れ作用素の分類および構成について (JAPANESE)
[ 講演概要 ]
$X$を$C^\infty$級多様体とし, $Y$を$X$の$C^\infty$級部分多様体とする. $G' \subset G$をそれぞれ$Y \subset X$に作用するLie群の組とし, $X$上の$G$-同変ベクトル束の滑らかな切断のなす空間から$Y$上の$G'$-同変ベクトル束の滑らかな切断のなす空間への$G'$-絡微分作用素$\mathcal{D}$を考える. 小林俊行氏はこのような微分作用素$\mathcal{D}$を「微分対称性破れ作用素」と呼んだ. ([T.Kobayashi, Differential Geom. Appl. (2014)])

[Kobayashi--K--Pevzner, Lecture Notes in Math. 2170 (2016)]において, 我々はリーマン球面$S^{n}$上の微分$i$形式のなす空間$\mathcal{E}^i(S^n)$から全測地的超球面$S^{n-1}$上の微分$j$形式のなす空間$\mathcal{E}^i(S^{n-1})$への微分対称性破れ作用素を完全に分類し, またその明示式を与えた. 本講演では小林俊行氏, Michael Pevzner氏との共同研究に基づき, 上記のリーマン多様体の設定における結果を拡張させる形で, 反ド・ジッター空間, 双曲空間のような擬リーマン多様体の設定での微分対称性破れ作用素の分類ならびに構成についてお話する.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

< 前へ 12345678910111213141516171819 次へ >