トポロジー火曜セミナー
過去の記録 ~12/05|次回の予定|今後の予定 12/06~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也 |
セミナーURL | http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
過去の記録
2015年11月17日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : Common Room 16:30 -- 17:00
片長 敦子 氏 (信州大学)
Topology of some three-dimensional singularities related to algebraic geometry (ENGLISH)
Tea : Common Room 16:30 -- 17:00
片長 敦子 氏 (信州大学)
Topology of some three-dimensional singularities related to algebraic geometry (ENGLISH)
[ 講演概要 ]
In this talk, we deal with hypersurface isolated singularities. First, we will recall
some topological results of singularities. Next, we will sketch the classification of
singularities in algebraic geometry. Finally, we will focus on the three-dimensional
case and discuss some results obtained so far.
In this talk, we deal with hypersurface isolated singularities. First, we will recall
some topological results of singularities. Next, we will sketch the classification of
singularities in algebraic geometry. Finally, we will focus on the three-dimensional
case and discuss some results obtained so far.
2015年11月10日(火)
17:30-18:30 数理科学研究科棟(駒場) 056号室
Tea : Common Room 17:00 -- 17:30
五味 清紀 氏 (信州大学理学部)
Topological T-duality for "Real" circle bundle (JAPANESE)
Tea : Common Room 17:00 -- 17:30
五味 清紀 氏 (信州大学理学部)
Topological T-duality for "Real" circle bundle (JAPANESE)
[ 講演概要 ]
Topological T-duality originates from T-duality in superstring theory,
and is first studied by Bouwkneght, Evslin and Mathai. The duality
basically consists of two parts: The first part is that, for any pair
of a principal circle bundle with `H-flux', there is another `T-dual'
pair on the same base space. The second part states that the twisted
K-groups of the total spaces of principal circle bundles in duality
are isomorphic under degree shift. This is the most simple topological
T-duality following Bunke and Schick, and there are a number of
generalizations. The generalization I will talk about is a topological
T-duality for "Real" circle bundles, motivated by T-duality in type II
orbifold string theory. In this duality, a variant of Z_2-equivariant
K-theory appears.
Topological T-duality originates from T-duality in superstring theory,
and is first studied by Bouwkneght, Evslin and Mathai. The duality
basically consists of two parts: The first part is that, for any pair
of a principal circle bundle with `H-flux', there is another `T-dual'
pair on the same base space. The second part states that the twisted
K-groups of the total spaces of principal circle bundles in duality
are isomorphic under degree shift. This is the most simple topological
T-duality following Bunke and Schick, and there are a number of
generalizations. The generalization I will talk about is a topological
T-duality for "Real" circle bundles, motivated by T-duality in type II
orbifold string theory. In this duality, a variant of Z_2-equivariant
K-theory appears.
2015年10月27日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : Common Room 16:30 -- 17:00
Yuanyuan Bao 氏 (東京大学大学院数理科学研究科)
Heegaard Floer homology for graphs (JAPANESE)
Tea : Common Room 16:30 -- 17:00
Yuanyuan Bao 氏 (東京大学大学院数理科学研究科)
Heegaard Floer homology for graphs (JAPANESE)
[ 講演概要 ]
Ozsváth and Szabó defined the Heegaard Floer homology (HF) for a closed oriented 3-manifold. The definition was then generalized to links embedded in a 3-manifold and the manifolds with boundary (sutured and bordered manifolds). In the case of links, there is a beautiful combinatorial way to rewrite the original definition of HF, which was defined on a Heegaard diagram of the given link, by using grid diagram. For a balanced bipartite graph, we defined its Heegaard diagram and the HF for it. Around the same time, Harvey and O’Donnol defined the combinatorial HF for transverse graphs (see the definition in [arXiv:1506.04785v1]). In this talk, we compare these two methods.
Ozsváth and Szabó defined the Heegaard Floer homology (HF) for a closed oriented 3-manifold. The definition was then generalized to links embedded in a 3-manifold and the manifolds with boundary (sutured and bordered manifolds). In the case of links, there is a beautiful combinatorial way to rewrite the original definition of HF, which was defined on a Heegaard diagram of the given link, by using grid diagram. For a balanced bipartite graph, we defined its Heegaard diagram and the HF for it. Around the same time, Harvey and O’Donnol defined the combinatorial HF for transverse graphs (see the definition in [arXiv:1506.04785v1]). In this talk, we compare these two methods.
2015年10月27日(火)
15:00-16:30 数理科学研究科棟(駒場) 056号室
Jianfeng Lin 氏 (UCLA)
The unfolded Seiberg-Witten-Floer spectrum and its applications
(ENGLISH)
Jianfeng Lin 氏 (UCLA)
The unfolded Seiberg-Witten-Floer spectrum and its applications
(ENGLISH)
[ 講演概要 ]
Following Furuta's idea of finite dimensional approximation in
the Seiberg-Witten theory, Manolescu defined the Seiberg-Witten-Floer
stable homotopy type for rational homology three-spheres in 2003. In
this talk, I will explain how to construct similar invariants for a
general three-manifold and discuss some applications of these new
invariants. This is a joint work with Tirasan Khandhawit and Hirofumi
Sasahira.
Following Furuta's idea of finite dimensional approximation in
the Seiberg-Witten theory, Manolescu defined the Seiberg-Witten-Floer
stable homotopy type for rational homology three-spheres in 2003. In
this talk, I will explain how to construct similar invariants for a
general three-manifold and discuss some applications of these new
invariants. This is a joint work with Tirasan Khandhawit and Hirofumi
Sasahira.
2015年10月20日(火)
17:30-18:30 数理科学研究科棟(駒場) 056号室
Tea : Common Room 17:00 -- 17:30
Bruno Scardua 氏 (Universidade Federal do Rio de Janeiro)
On the existence of stable compact leaves for
transversely holomorphic foliations (ENGLISH)
Tea : Common Room 17:00 -- 17:30
Bruno Scardua 氏 (Universidade Federal do Rio de Janeiro)
On the existence of stable compact leaves for
transversely holomorphic foliations (ENGLISH)
[ 講演概要 ]
One of the most important results in the theory of foliations is
the celebrated Local stability theorem of Reeb :
A compact leaf of a foliation having finite holonomy group is
stable, indeed, it admits a fundamental system of invariant
neighborhoods where each leaf is compact with finite holonomy
group. This result, together with the Global stability theorem of Reeb
(for codimension one real foliations), has many important consequences
and motivates several questions in the theory of foliations. In this talk
we show how to prove:
A transversely holomorphic foliation on a compact complex manifold, exhibits a compact stable
leaf if and only if the set of compact leaves is not a zero measure subset of the manifold.
This is a joint work with Cesar Camacho.
One of the most important results in the theory of foliations is
the celebrated Local stability theorem of Reeb :
A compact leaf of a foliation having finite holonomy group is
stable, indeed, it admits a fundamental system of invariant
neighborhoods where each leaf is compact with finite holonomy
group. This result, together with the Global stability theorem of Reeb
(for codimension one real foliations), has many important consequences
and motivates several questions in the theory of foliations. In this talk
we show how to prove:
A transversely holomorphic foliation on a compact complex manifold, exhibits a compact stable
leaf if and only if the set of compact leaves is not a zero measure subset of the manifold.
This is a joint work with Cesar Camacho.
2015年10月06日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : Common Room 16:30 -- 17:00
齋藤 翔 氏 (カブリ数物連携宇宙研究機構)
Delooping theorem in K-theory (JAPANESE)
Tea : Common Room 16:30 -- 17:00
齋藤 翔 氏 (カブリ数物連携宇宙研究機構)
Delooping theorem in K-theory (JAPANESE)
[ 講演概要 ]
There is an important special class of infinite dimensional vector spaces, formed by those called Tate vector spaces. Since their first appearance in Tate’s work on residues of differentials on curves, they have been playing important roles in several different contexts including the study of formal loop spaces and semi-infinite Hodge theory. They have more sophisticated linear algebraic invariant than finite dimensional vector spaces, for instance the dimension of a Tate vector spaces is not a single integer, but a torsor acted upon by the all integers, and the determinant of an automorphism is not a single invertible scalar, but a torsor acted upon by the all invertible scalars. In this talk I will show how a delooping theorem in K-theory provides a clarified perspective on this phenomenon, using the recently developed higher categorical framework of infinity-topoi.
There is an important special class of infinite dimensional vector spaces, formed by those called Tate vector spaces. Since their first appearance in Tate’s work on residues of differentials on curves, they have been playing important roles in several different contexts including the study of formal loop spaces and semi-infinite Hodge theory. They have more sophisticated linear algebraic invariant than finite dimensional vector spaces, for instance the dimension of a Tate vector spaces is not a single integer, but a torsor acted upon by the all integers, and the determinant of an automorphism is not a single invertible scalar, but a torsor acted upon by the all invertible scalars. In this talk I will show how a delooping theorem in K-theory provides a clarified perspective on this phenomenon, using the recently developed higher categorical framework of infinity-topoi.
2015年07月21日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
田神 慶士 氏 (東京工業大学)
Ribbon concordance and 0-surgeries along knots (JAPANESE)
Tea : 16:30-17:00 Common Room
田神 慶士 氏 (東京工業大学)
Ribbon concordance and 0-surgeries along knots (JAPANESE)
[ 講演概要 ]
Akbulut and Kirby conjectured that two knots with
the same 0-surgery are concordant. Recently, Yasui
gave a counterexample of this conjecture.
In this talk, we introduce a technique to construct
non-ribbon concordant knots with the same 0-surgery.
Moreover, we give a potential counterexample of the
slice-ribbon conjecture. This is a joint work with
Tetsuya Abe (Osaka City University, OCAMI).
Akbulut and Kirby conjectured that two knots with
the same 0-surgery are concordant. Recently, Yasui
gave a counterexample of this conjecture.
In this talk, we introduce a technique to construct
non-ribbon concordant knots with the same 0-surgery.
Moreover, we give a potential counterexample of the
slice-ribbon conjecture. This is a joint work with
Tetsuya Abe (Osaka City University, OCAMI).
2015年07月14日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
Carlos Moraga Ferrandiz 氏 (東京大学大学院数理科学研究科, 日本学術振興会)
How homoclinic orbits explain some algebraic relations holding in Novikov rings. (ENGLISH)
Tea : 16:30-17:00 Common Room
Carlos Moraga Ferrandiz 氏 (東京大学大学院数理科学研究科, 日本学術振興会)
How homoclinic orbits explain some algebraic relations holding in Novikov rings. (ENGLISH)
[ 講演概要 ]
Given u, a de-Rham cohomology class of degree 1 of a closed manifold M, we consider the space F_u of (closed) Morse 1-forms in this class. In Morse theory, it is important to equip each α in F_u with a descending pseudo-gradient X. The case u=0 yields usual Morse theory, while u ≠ 0 yields Morse-Novikov theory, which is devoted to the understanding of the space of equipped 1-forms (α,X) with α in F_u.
Here, X is a descending pseudo-gradient, which is said to be adapted to α.
The morphism π1(M) → R induced by u (given by the integral of any α in F_u over a loop of M) determines a set of u-negative loops.
We show that for every u-negative g in π1(M), there exists a co-dimension 1 C∞-stratum Sg of F_u which is naturally co-oriented. The stratum Sg is made of elements (α, X) such that X has exactly one homoclinic orbit L whose homotopy class is g.
The goal of this talk is to show that there exists a co-dimension 1 C∞-stratum Sg (0) of Sg which lies in the closure of Sg^2. This result explains geometrically an easy algebraic relation holding in the Novikov ring associated with u.
We will mention how this study generalizes to produce some non-evident symmetric formulas holding in the Novikov ring.
Given u, a de-Rham cohomology class of degree 1 of a closed manifold M, we consider the space F_u of (closed) Morse 1-forms in this class. In Morse theory, it is important to equip each α in F_u with a descending pseudo-gradient X. The case u=0 yields usual Morse theory, while u ≠ 0 yields Morse-Novikov theory, which is devoted to the understanding of the space of equipped 1-forms (α,X) with α in F_u.
Here, X is a descending pseudo-gradient, which is said to be adapted to α.
The morphism π1(M) → R induced by u (given by the integral of any α in F_u over a loop of M) determines a set of u-negative loops.
We show that for every u-negative g in π1(M), there exists a co-dimension 1 C∞-stratum Sg of F_u which is naturally co-oriented. The stratum Sg is made of elements (α, X) such that X has exactly one homoclinic orbit L whose homotopy class is g.
The goal of this talk is to show that there exists a co-dimension 1 C∞-stratum Sg (0) of Sg which lies in the closure of Sg^2. This result explains geometrically an easy algebraic relation holding in the Novikov ring associated with u.
We will mention how this study generalizes to produce some non-evident symmetric formulas holding in the Novikov ring.
2015年07月07日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
北山 貴裕 氏 (東京工業大学)
Representation varieties detect essential surfaces (JAPANESE)
Tea : 16:30-17:00 Common Room
北山 貴裕 氏 (東京工業大学)
Representation varieties detect essential surfaces (JAPANESE)
[ 講演概要 ]
Extending Culler-Shalen theory, Hara and I presented a way to construct
certain kinds of branched surfaces (possibly without any branch) in a 3-
manifold from an ideal point of a curve in the SL_n-character variety.
There exists an essential surface in some 3-manifold known to be not
detected in the classical SL_2-theory. We show that every essential
surface in a 3-manifold is given by the ideal point of a line in the SL_
n-character variety for some n. The talk is partially based on joint
works with Stefan Friedl and Matthias Nagel, and also with Takashi Hara.
Extending Culler-Shalen theory, Hara and I presented a way to construct
certain kinds of branched surfaces (possibly without any branch) in a 3-
manifold from an ideal point of a curve in the SL_n-character variety.
There exists an essential surface in some 3-manifold known to be not
detected in the classical SL_2-theory. We show that every essential
surface in a 3-manifold is given by the ideal point of a line in the SL_
n-character variety for some n. The talk is partially based on joint
works with Stefan Friedl and Matthias Nagel, and also with Takashi Hara.
2015年06月30日(火)
17:30-18:30 数理科学研究科棟(駒場) 056号室
Tea : 17:00-17:30 Common Room
作間 誠 氏 (広島大学)
The Cannon-Thurston maps and the canonical decompositions of punctured surface bundles over the circle (JAPANESE)
Tea : 17:00-17:30 Common Room
作間 誠 氏 (広島大学)
The Cannon-Thurston maps and the canonical decompositions of punctured surface bundles over the circle (JAPANESE)
[ 講演概要 ]
To each once-punctured-torus bundle over the circle with pseudo-Anosov monodromy,
there are associated two tessellations of the complex plane:
one is the triangulation of a horosphere induced by the canonical decomposition into ideal tetrahedra,
and the other is a fractal tessellation given by the Cannon-Thurston map of the fiber group.
In a joint work with Warren Dicks, I had described the relation between these two tessellations.
This result was recently generalized by Francois Gueritaud to punctured surface bundles
with pseudo-Anosov monodromy where all singuraities of the invariant foliations are at punctures.
In this talk, I will explain Gueritaud's work and related work by Naoki Sakata.
To each once-punctured-torus bundle over the circle with pseudo-Anosov monodromy,
there are associated two tessellations of the complex plane:
one is the triangulation of a horosphere induced by the canonical decomposition into ideal tetrahedra,
and the other is a fractal tessellation given by the Cannon-Thurston map of the fiber group.
In a joint work with Warren Dicks, I had described the relation between these two tessellations.
This result was recently generalized by Francois Gueritaud to punctured surface bundles
with pseudo-Anosov monodromy where all singuraities of the invariant foliations are at punctures.
In this talk, I will explain Gueritaud's work and related work by Naoki Sakata.
2015年06月23日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
松下 尚弘 氏 (東京大学大学院数理科学研究科)
Box complexes and model structures on the category of graphs (JAPANESE)
Tea : 16:30-17:00 Common Room
松下 尚弘 氏 (東京大学大学院数理科学研究科)
Box complexes and model structures on the category of graphs (JAPANESE)
[ 講演概要 ]
To determine the chromatic numbers of graphs, so-called the graph
coloring problem, is one of the most classical problems in graph theory.
Box complex is a Z_2-space associated to a graph, and it is known that
its equivariant homotopy invariant is related to the chromatic number.
Csorba showed that for each finite Z_2-CW-complex X, there is a graph
whose box complex is Z_2-homotopy equivalent to X. From this result, I
expect that the usual model category of Z_2-topological spaces is
Quillen equivalent to a certain model structure on the category of
graphs, whose weak equivalences are graph homomorphisms inducing Z_2-
homotopy equivalences between their box complexes.
In this talk, we introduce model structures on the category of graphs
whose weak equivalences are described as above. We also compare our
model categories of graphs with the category of Z_2-topological spaces.
To determine the chromatic numbers of graphs, so-called the graph
coloring problem, is one of the most classical problems in graph theory.
Box complex is a Z_2-space associated to a graph, and it is known that
its equivariant homotopy invariant is related to the chromatic number.
Csorba showed that for each finite Z_2-CW-complex X, there is a graph
whose box complex is Z_2-homotopy equivalent to X. From this result, I
expect that the usual model category of Z_2-topological spaces is
Quillen equivalent to a certain model structure on the category of
graphs, whose weak equivalences are graph homomorphisms inducing Z_2-
homotopy equivalences between their box complexes.
In this talk, we introduce model structures on the category of graphs
whose weak equivalences are described as above. We also compare our
model categories of graphs with the category of Z_2-topological spaces.
2015年06月16日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
石川 昌治 氏 (東北大学)
Stable maps and branched shadows of 3-manifolds (JAPANESE)
Tea : 16:30-17:00 Common Room
石川 昌治 氏 (東北大学)
Stable maps and branched shadows of 3-manifolds (JAPANESE)
[ 講演概要 ]
We study what kind of stable map to the real plane a 3-manifold has. It
is known by O. Saeki that there exists a stable map without certain
singular fibers if and only if the 3-manifold is a graph manifold. According to
F. Costantino and D. Thurston, we identify the Stein factorization of a
stable map with a shadow of the 3-manifold under some modification,
where the above singular fibers correspond to the vertices of the shadow. We
define the notion of stable map complexity by counting the number of
such singular fibers and prove that this equals the branched shadow
complexity. With this equality, we give an estimation of the Gromov norm of the
3-manifold by the stable map complexity. This is a joint work with Yuya Koda.
We study what kind of stable map to the real plane a 3-manifold has. It
is known by O. Saeki that there exists a stable map without certain
singular fibers if and only if the 3-manifold is a graph manifold. According to
F. Costantino and D. Thurston, we identify the Stein factorization of a
stable map with a shadow of the 3-manifold under some modification,
where the above singular fibers correspond to the vertices of the shadow. We
define the notion of stable map complexity by counting the number of
such singular fibers and prove that this equals the branched shadow
complexity. With this equality, we give an estimation of the Gromov norm of the
3-manifold by the stable map complexity. This is a joint work with Yuya Koda.
2015年06月09日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
赤穂 まなぶ 氏 (首都大学東京)
完全ラグランジュはめ込みのシンプレクティックdisplacementエネルギーについて (JAPANESE)
Tea : 16:30-17:00 Common Room
赤穂 まなぶ 氏 (首都大学東京)
完全ラグランジュはめ込みのシンプレクティックdisplacementエネルギーについて (JAPANESE)
[ 講演概要 ]
この講演では完全ラグランジュはめ込みのdisplacementエネルギーと擬正則円盤
のシンプレクティック面積に関するある不等式を与える. 証明はChekanovが有理
ラグランジュ部分多様体のdisplacementエネルギーに関する不等式を示す際に用
いた技法を, ラグランジュはめ込みのFloerホモロジーに拡張して行う. また時
間が許せば, 我々の不等式とHofer--Zehnderのシンプレクティック容量に関する
考察を述べる.
この講演では完全ラグランジュはめ込みのdisplacementエネルギーと擬正則円盤
のシンプレクティック面積に関するある不等式を与える. 証明はChekanovが有理
ラグランジュ部分多様体のdisplacementエネルギーに関する不等式を示す際に用
いた技法を, ラグランジュはめ込みのFloerホモロジーに拡張して行う. また時
間が許せば, 我々の不等式とHofer--Zehnderのシンプレクティック容量に関する
考察を述べる.
2015年05月26日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
久我 健一 氏 (千葉大学)
Introduction to formalization of topology using a proof assistant. (JAPANESE)
Tea : 16:30-17:00 Common Room
久我 健一 氏 (千葉大学)
Introduction to formalization of topology using a proof assistant. (JAPANESE)
[ 講演概要 ]
Although the program of formalization goes back to David
Hilbert, it is only recently that we can actually formalize
substantial theorems in modern mathematics. It is made possible by the
development of certain type theory and a computer software called a
proof assistant. We begin this talk by showing our formalization of
some basic geometric topology using a proof assistant COQ. Then we
introduce homotopy type theory (HoTT) of Voevodsky et al., which
interprets type theory from abstract homotopy theoretic perspective.
HoTT proposes "univalent" foundation of mathematics which is
particularly suited for computer formalization.
Although the program of formalization goes back to David
Hilbert, it is only recently that we can actually formalize
substantial theorems in modern mathematics. It is made possible by the
development of certain type theory and a computer software called a
proof assistant. We begin this talk by showing our formalization of
some basic geometric topology using a proof assistant COQ. Then we
introduce homotopy type theory (HoTT) of Voevodsky et al., which
interprets type theory from abstract homotopy theoretic perspective.
HoTT proposes "univalent" foundation of mathematics which is
particularly suited for computer formalization.
2015年05月19日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
加藤 晃史 氏 (東京大学大学院数理科学研究科)
Quiver mutation loops and partition q-series (JAPANESE)
Tea : 16:30-17:00 Common Room
加藤 晃史 氏 (東京大学大学院数理科学研究科)
Quiver mutation loops and partition q-series (JAPANESE)
[ 講演概要 ]
Quivers and their mutations are ubiquitous in mathematics and
mathematical physics; they play a key role in cluster algebras,
wall-crossing phenomena, gluing of ideal tetrahedra, etc.
Recently, we introduced a partition q-series for a quiver mutation loop
(a loop in a quiver exchange graph) using the idea of state sum of statistical
mechanics. The partition q-series enjoy some nice properties such
as pentagon move invariance. We also discuss their relation with combinatorial
Donaldson-Thomas invariants, as well as fermionic character formulas of
certain conformal field theories.
This is a joint work with Yuji Terashima.
Quivers and their mutations are ubiquitous in mathematics and
mathematical physics; they play a key role in cluster algebras,
wall-crossing phenomena, gluing of ideal tetrahedra, etc.
Recently, we introduced a partition q-series for a quiver mutation loop
(a loop in a quiver exchange graph) using the idea of state sum of statistical
mechanics. The partition q-series enjoy some nice properties such
as pentagon move invariance. We also discuss their relation with combinatorial
Donaldson-Thomas invariants, as well as fermionic character formulas of
certain conformal field theories.
This is a joint work with Yuji Terashima.
2015年05月12日(火)
17:30-18:30 数理科学研究科棟(駒場) 056号室
Tea : 17:00-17:30 Common Room
浅岡 正幸 氏 (京都大学)
genericな力学系の周期点の個数の増大度 (JAPANESE)
Tea : 17:00-17:30 Common Room
浅岡 正幸 氏 (京都大学)
genericな力学系の周期点の個数の増大度 (JAPANESE)
[ 講演概要 ]
双曲力学系と呼ばれる統計的によい振る舞いをする力学系に関しては,
その周期軌道の数の増大度は常に高々指数的で,増大度は系の統計的
性質と密接に関係することが知られている.一方で1999年にKaloshin
により,homoclinic接触と呼ばれる複雑な分岐現象が稠密に起きるよ
うな領域においてはgenericな力学系はその周期軌道の数の増大度は
指数的よりも速くなることが証明されている.
では,弱い双曲性を持ち,homoclinic接触からは離れている「部分双
曲系」と呼ばれる系において周期点の数の増大度がどう振る舞うだ
ろうか.双曲力学系と同様に高々指数的になるだろうか,それとも,
homoclinic 接触とは異なるメカニズムによって,指数的よりも速く
なるだろうか?
講演者は,篠原克寿氏とDimitry Turaev氏との共同研究によって,
部分双曲系のダイナミクスのある種の単純化である「区間上の反復
函数系」において,ある自然な条件の元でその周期軌道の数がgeneric
には指数的よりも速く増大することを証明した.本講演では,力学
系の周期軌道の増大度の問題の歴史の概観した後,指数的よりも速
い増大度を引き起こすメカニズムについて,Kaloshinが見つけた
homoclinic接触によるものと講演者たちが見つけたものを対比しつ
つ解説したい.
双曲力学系と呼ばれる統計的によい振る舞いをする力学系に関しては,
その周期軌道の数の増大度は常に高々指数的で,増大度は系の統計的
性質と密接に関係することが知られている.一方で1999年にKaloshin
により,homoclinic接触と呼ばれる複雑な分岐現象が稠密に起きるよ
うな領域においてはgenericな力学系はその周期軌道の数の増大度は
指数的よりも速くなることが証明されている.
では,弱い双曲性を持ち,homoclinic接触からは離れている「部分双
曲系」と呼ばれる系において周期点の数の増大度がどう振る舞うだ
ろうか.双曲力学系と同様に高々指数的になるだろうか,それとも,
homoclinic 接触とは異なるメカニズムによって,指数的よりも速く
なるだろうか?
講演者は,篠原克寿氏とDimitry Turaev氏との共同研究によって,
部分双曲系のダイナミクスのある種の単純化である「区間上の反復
函数系」において,ある自然な条件の元でその周期軌道の数がgeneric
には指数的よりも速く増大することを証明した.本講演では,力学
系の周期軌道の増大度の問題の歴史の概観した後,指数的よりも速
い増大度を引き起こすメカニズムについて,Kaloshinが見つけた
homoclinic接触によるものと講演者たちが見つけたものを対比しつ
つ解説したい.
2015年05月07日(木)
17:00-18:30 数理科学研究科棟(駒場) 056号室
This seminar will be held on Thursdsay.
Patrick Dehornoy 氏 (Univ. de Caen)
The group of parenthesized braids (ENGLISH)
This seminar will be held on Thursdsay.
Patrick Dehornoy 氏 (Univ. de Caen)
The group of parenthesized braids (ENGLISH)
[ 講演概要 ]
We describe a group B obtained by gluing in a natural way two well-known
groups, namely Artin's braid group B_infty and Thompson's group F. The
elements of B correspond to braid diagrams in which the distances
between the strands are non uniform and some rescaling operators may
change these distances. The group B shares many properties with B_infty:
as the latter, it can be realized as a subgroup of a mapping class
group, namely that of a sphere with a Cantor set removed, and as a group
of automorphisms of a free group. Technically, the key point is the
existence of a self-distributive operation on B.
We describe a group B obtained by gluing in a natural way two well-known
groups, namely Artin's braid group B_infty and Thompson's group F. The
elements of B correspond to braid diagrams in which the distances
between the strands are non uniform and some rescaling operators may
change these distances. The group B shares many properties with B_infty:
as the latter, it can be realized as a subgroup of a mapping class
group, namely that of a sphere with a Cantor set removed, and as a group
of automorphisms of a free group. Technically, the key point is the
existence of a self-distributive operation on B.
2015年04月28日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
正井 秀俊 氏 (東京大学大学院数理科学研究科, JSPS)
Verify hyperbolicity of 3-manifolds by computer and its applications. (JAPANESE)
Tea : 16:30-17:00 Common Room
正井 秀俊 氏 (東京大学大学院数理科学研究科, JSPS)
Verify hyperbolicity of 3-manifolds by computer and its applications. (JAPANESE)
[ 講演概要 ]
In this talk I will talk about the program called HIKMOT which
rigorously proves hyperbolicity of a given triangulated 3-manifold. To
prove hyperbolicity of a given triangulated 3-manifold, it suffices to
get a solution of Thurston's gluing equation. We use the notion called
interval arithmetic to overcome two types errors; round-off errors,
and truncated errors. I will also talk about its application to
exceptional surgeries along alternating knots. This talk is based on
joint work with N. Hoffman, K. Ichihara, M. Kashiwagi, S. Oishi, and
A. Takayasu.
In this talk I will talk about the program called HIKMOT which
rigorously proves hyperbolicity of a given triangulated 3-manifold. To
prove hyperbolicity of a given triangulated 3-manifold, it suffices to
get a solution of Thurston's gluing equation. We use the notion called
interval arithmetic to overcome two types errors; round-off errors,
and truncated errors. I will also talk about its application to
exceptional surgeries along alternating knots. This talk is based on
joint work with N. Hoffman, K. Ichihara, M. Kashiwagi, S. Oishi, and
A. Takayasu.
2015年04月21日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
木田 良才 氏 (東京大学大学院数理科学研究科)
Orbit equivalence relations arising from Baumslag-Solitar groups (JAPANESE)
Tea : 16:30-17:00 Common Room
木田 良才 氏 (東京大学大学院数理科学研究科)
Orbit equivalence relations arising from Baumslag-Solitar groups (JAPANESE)
[ 講演概要 ]
This talk is about measure-preserving actions of countable groups on probability
measure spaces and their orbit structure. Two such actions are called orbit equivalent
if there exists an isomorphism between the spaces preserving orbits. In this talk, I focus
on actions of Baumslag-Solitar groups that have two generators, a and t, with the relation
ta^p=a^qt, where p and q are given integers. This group is well studied in combinatorial
and geometric group theory. Whether Baumslag-Solitar groups with different p and q can
have orbit-equivalent actions is still a big open problem. I will discuss invariants under
orbit equivalence, motivating background and some results toward this problem.
This talk is about measure-preserving actions of countable groups on probability
measure spaces and their orbit structure. Two such actions are called orbit equivalent
if there exists an isomorphism between the spaces preserving orbits. In this talk, I focus
on actions of Baumslag-Solitar groups that have two generators, a and t, with the relation
ta^p=a^qt, where p and q are given integers. This group is well studied in combinatorial
and geometric group theory. Whether Baumslag-Solitar groups with different p and q can
have orbit-equivalent actions is still a big open problem. I will discuss invariants under
orbit equivalence, motivating background and some results toward this problem.
2015年04月14日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
中村 信裕 氏 (学習院大学)
Pin(2)-monopole invariants for 4-manifolds (JAPANESE)
Tea : 16:30-17:00 Common Room
中村 信裕 氏 (学習院大学)
Pin(2)-monopole invariants for 4-manifolds (JAPANESE)
[ 講演概要 ]
The Pin(2)-monopole equations are a variant of the Seiberg-Witten equations
which can be considered as a real version of the SW equations. A Pin(2)-mono
pole version of the Seiberg-Witten invariants is defined, and a special feature of
this is that the Pin(2)-monopole invariant can be nontrivial even when all of
the Donaldson and Seiberg-Witten invariants vanish. As an application, we
construct a new series of exotic 4-manifolds.
The Pin(2)-monopole equations are a variant of the Seiberg-Witten equations
which can be considered as a real version of the SW equations. A Pin(2)-mono
pole version of the Seiberg-Witten invariants is defined, and a special feature of
this is that the Pin(2)-monopole invariant can be nontrivial even when all of
the Donaldson and Seiberg-Witten invariants vanish. As an application, we
construct a new series of exotic 4-manifolds.
2015年04月07日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Tea : 16:30-17:00 Common Room
植田 一石 氏 (東京大学大学院数理科学研究科)
Potential functions for Grassmannians (JAPANESE)
Tea : 16:30-17:00 Common Room
植田 一石 氏 (東京大学大学院数理科学研究科)
Potential functions for Grassmannians (JAPANESE)
[ 講演概要 ]
Potential functions are Floer-theoretic invariants
obtained by counting Maslov index 2 disks
with Lagrangian boundary conditions.
In the talk, we will discuss our joint work
with Yanki Lekili and Yuichi Nohara
on Lagrangian torus fibrations on the Grassmannian
of 2-planes in an n-space,
the potential functions of their Lagrangian torus fibers,
and their relation with mirror symmetry for Grassmannians.
Potential functions are Floer-theoretic invariants
obtained by counting Maslov index 2 disks
with Lagrangian boundary conditions.
In the talk, we will discuss our joint work
with Yanki Lekili and Yuichi Nohara
on Lagrangian torus fibrations on the Grassmannian
of 2-planes in an n-space,
the potential functions of their Lagrangian torus fibers,
and their relation with mirror symmetry for Grassmannians.
2015年03月24日(火)
17:00-18:30 数理科学研究科棟(駒場) 056号室
Mina Aganagic 氏 (University of California, Berkeley)
Knots and Mirror Symmetry (ENGLISH)
Mina Aganagic 氏 (University of California, Berkeley)
Knots and Mirror Symmetry (ENGLISH)
[ 講演概要 ]
I will describe two conjectures relating knot theory and mirror symmetry. One can associate, to every knot K, one a Calabi-Yau manifold Y(K), which depends on the homotopy type of the knot only. The first conjecture is that Y(K) arises by a generalization of SYZ mirror symmetry, as mirror to the conifold, O(-1)+O(-1)->P^1. The second conjecture is that topological string provides a quantization of Y(K) which leads to quantum HOMFLY invariants of the knot. The conjectures are based on joint work with C. Vafa and also with T.Ekholm, L. Ng.
I will describe two conjectures relating knot theory and mirror symmetry. One can associate, to every knot K, one a Calabi-Yau manifold Y(K), which depends on the homotopy type of the knot only. The first conjecture is that Y(K) arises by a generalization of SYZ mirror symmetry, as mirror to the conifold, O(-1)+O(-1)->P^1. The second conjecture is that topological string provides a quantization of Y(K) which leads to quantum HOMFLY invariants of the knot. The conjectures are based on joint work with C. Vafa and also with T.Ekholm, L. Ng.
2015年03月10日(火)
16:30-18:00 数理科学研究科棟(駒場) 056号室
Tea: 16:00-16:30 Common Room ; This seminar will be held as FMSP Lectures.
Andrei Pajitnov 氏 (Univ. de Nantes)
Arnold conjecture, Floer homology,
and augmentation ideals of finite groups.
(ENGLISH)
Tea: 16:00-16:30 Common Room ; This seminar will be held as FMSP Lectures.
Andrei Pajitnov 氏 (Univ. de Nantes)
Arnold conjecture, Floer homology,
and augmentation ideals of finite groups.
(ENGLISH)
[ 講演概要 ]
Let H be a generic time-dependent 1-periodic
Hamiltonian on a closed weakly monotone
symplectic manifold M. We construct a refined version
of the Floer chain complex associated to (M,H),
and use it to obtain new lower bounds for the number P(H)
of the 1-periodic orbits of the corresponding hamiltonian
vector field. We prove in particular that
if the fundamental group of M is finite
and solvable or simple, then P(H)
is not less than the minimal number
of generators of the fundamental group.
This is joint work with Kaoru Ono.
Let H be a generic time-dependent 1-periodic
Hamiltonian on a closed weakly monotone
symplectic manifold M. We construct a refined version
of the Floer chain complex associated to (M,H),
and use it to obtain new lower bounds for the number P(H)
of the 1-periodic orbits of the corresponding hamiltonian
vector field. We prove in particular that
if the fundamental group of M is finite
and solvable or simple, then P(H)
is not less than the minimal number
of generators of the fundamental group.
This is joint work with Kaoru Ono.
2015年01月20日(火)
16:30-17:30 数理科学研究科棟(駒場) 056号室
Tea : 16:00-16:30 Common Room
吉安 徹 氏 (東京大学大学院数理科学研究科)
On Lagrangian caps and their applications (JAPANESE)
Tea : 16:00-16:30 Common Room
吉安 徹 氏 (東京大学大学院数理科学研究科)
On Lagrangian caps and their applications (JAPANESE)
[ 講演概要 ]
In 2013, Y. Eliashberg and E. Murphy established the $h$-principle for
exact Lagrangian embeddings with a concave Legendrian boundary. In this
talk, I will explain a modification of their $h$-principle and show
applications to Lagrangian submanifolds in the complex projective spaces.
In 2013, Y. Eliashberg and E. Murphy established the $h$-principle for
exact Lagrangian embeddings with a concave Legendrian boundary. In this
talk, I will explain a modification of their $h$-principle and show
applications to Lagrangian submanifolds in the complex projective spaces.
2015年01月13日(火)
16:30-18:00 数理科学研究科棟(駒場) 056号室
Tea : 16:00-16:30 Common Room
吉田 建一 氏 (東京大学大学院数理科学研究科)
Stable presentation length of 3-manifold groups (JAPANESE)
Tea : 16:00-16:30 Common Room
吉田 建一 氏 (東京大学大学院数理科学研究科)
Stable presentation length of 3-manifold groups (JAPANESE)
[ 講演概要 ]
We will introduce the stable presentation length
of a finitely presented group, which is defined
by stabilizing the presentation length for the
finite index subgroups. The stable presentation
length of the fundamental group of a 3-manifold
is an analogue of the simplicial volume and the
stable complexity introduced by Francaviglia,
Frigerio and Martelli. We will explain some
similarities of stable presentation length with
simplicial volume and stable complexity.
We will introduce the stable presentation length
of a finitely presented group, which is defined
by stabilizing the presentation length for the
finite index subgroups. The stable presentation
length of the fundamental group of a 3-manifold
is an analogue of the simplicial volume and the
stable complexity introduced by Francaviglia,
Frigerio and Martelli. We will explain some
similarities of stable presentation length with
simplicial volume and stable complexity.