トポロジー火曜セミナー

過去の記録 ~09/18次回の予定今後の予定 09/19~

開催情報 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室
担当者 河澄 響矢, 北山 貴裕, 逆井卓也
セミナーURL http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html

過去の記録

2022年10月11日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
浅尾 泰彦 氏 (福岡大学)
Magnitude homology of graphs (JAPANESE)
[ 講演概要 ]
Magnitude is introduced by Leinster in 00’s as an ``Euler characteristic of metric spaces”. It is defined for the metric structure itself rather than the topology induced from the metric. Magnitude homology is a categorification of magnitude in a sense that ordinary homology categorifies the Euler characteristic. The speaker’s interest is in geometric meaning of this theory. In this talk, after an introduction to basic ideas, I will explain that magnitude truly extends the Euler characteristic. From this perspective, magnitude homology can be seen as one of the categorification of the Euler characteristic, and the path homology (Grigor’yan—Muranov—Lin—S-T. Yau et.al) appears as a part of another one. These structures are aggregated in a spectral sequence obtained from the classifying space of "filtered set enriched categories" which includes ordinary small categories and metric spaces.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年10月04日(火)

17:00-18:30   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
原子 秀一 氏 (東京大学大学院数理科学研究科)
Orientable rho-Q-manifolds and their modular classes (JAPANESE)
[ 講演概要 ]
A rho-commutative algebra, or an almost commutative algebra, is a graded algebra whose commutativity is given by a function called a commutation factor. It is one generalization of a commutative algebra or a superalgebra. We obtain a rho-Lie algebra, or an epsilon-Lie algebra, by a similar generalization of a Lie algebra. On the other hand, we have the modular class of an orientable Q-manifold. Here, a Q-manifold is a supermanifold with an odd vector field whose Lie bracket with itself vanishes, and its orientability is described in terms of the Berezinian bundle. In this talk, we introduce the concept of a rho-manifold, which is a graded manifold whose functional algebra is a rho-commutative algebra, then we show that we can define Q-structures, Berezinian bundle, volume forms, and modular classes of a rho-manifold with some examples.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年07月12日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Sungkyung Kang 氏 (Center for Geometry and Physics, Institute of Basic Science)
Cable knots and involutive Heegaard Floer homology (ENGLISH)
[ 講演概要 ]
Heegaard Floer homology (and its variants) carries an intrinsic symmetry, which conjecturally corresponds to the Pin(2)-equivariance in Seiberg-Witten Floer homology. By exploiting the symmetry, we prove that (odd,1)-cables of the figure-eight knots are linearly independent in the concordance group of rationally slice knots, and present a first example of rationally slice knots of complexity 1 which are not slice. Furthermore, we establish an explicit connection between involutive knot Floer theory and involutive bordered Floer theory of knot complements, and use it to prove a similar result for iterated cables of figure-eight knots. A part of this talk is based on a joint work with J. Hom, M. Stoffregen, and J. Park.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年07月05日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
中野 雄史 氏 (東海大学)
曲面上の微分同相写像のホモクリニック分岐によるLyapunov指数の非存在 (JAPANESE)
[ 講演概要 ]
Lyapunov指数は,カオス性の検出や非一様双曲力学系理論の基礎付けのように,数学を含む自然科学で広く用いられている.一方で,その(不変確率測度の台の外での)存在についてはほとんど議論がなされていない.本講演では,Lyapunov非正則集合,つまりLyapunov指数が存在しないような点全体の集合が,Lebesgue測度正となるかという問題を考える.Colli-Vargasによって導入された頑強なホモクリニック接触を持つ曲面上の微分同相写像を含む,様々な既知の非双曲力学系が,Lebesgue測度正のLyapunov非正則集合を持つことを報告する予定である.この結果は桐木紳,李曉龍,相馬輝彦各氏との共同研究に基づく.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年06月21日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
市原 一裕 氏 (日本大学)
Cosmetic surgeries on knots in the 3-sphere (JAPANESE)
[ 講演概要 ]
A pair of Dehn surgeries on a knot is called purely (resp. chirally) cosmetic if the obtained manifolds are orientation-preservingly (resp. -reversingly) homeomorphic. It is conjectured that if a knot in the 3-sphere admits purely (resp. chirally) cosmetic surgeries, then the knot is a trivial knot (resp. a torus knot or an amphicheiral knot). In this talk, after giving a brief survey on the studies on these conjectures, I will explain recent progresses on the conjectures. This is based on joint works with Tetsuya Ito (Kyoto University), In Dae Jong (Kindai University), and Toshio Saito (Joetsu University of Education).
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年06月14日(火)

17:30-18:30   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
栗林 勝彦 氏 (信州大学)
Cartan calculi on the free loop spaces (JAPANESE)
[ 講演概要 ]
A typical example of a Cartan calculus is the Lie algebra representation of vector fields of a manifold on the derivation ring of the de Rham complex. In this talk, a `second stage' of the Cartan calculus is investigated. In a more general setting, the stage is formulated with a Lie algebra representation of the Andre-Quillen cohomology of a commutative differential graded algebra A on the endomorphism ring of the Hochschild homology of A in terms of the homotopy Cartan calculi in the sense of Fiorenza and Kowalzig. Moreover, the Lie algebra representation in the Cartan calculus is interpreted geometrically as a map from the rational homotopy group of the monoid of self-homotopy equivalences on a simply-connected space M to the derivation ring on the loop cohomology of M. An extension of the representation to the string cohomology and its geometric counterpart are also discussed together with the BV exactness which is a new rational homotopy invariant introduced in our work. This talk is based on joint work in progress with T. Naito, S. Wakatsuki and T. Yamaguchi.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年06月07日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
山口 祥司 氏 (Yoshikazu Yamaguchi)
Dynamical zeta functions for geodesic flows and the higher-dimensional Reidemeister torsion for Fuchsian groups (JAPANESE)
[ 講演概要 ]
本講演では2次元双曲オービフォールド上の測地線流が定める力学系のゼータ関数の値とオービフォールドの単位接束におけるライデマイスタートーションの漸近挙動の関係を紹介する. 双曲オービフォールドの単位接束はPSL(2, R)の普遍被覆空間が幾何構造を定めるザイフェルト多様体とみなせる. また幾何構造が定める基本群のSL(2,R)表現が存在する.ここでライデマイスタートーションの漸近挙動とは, 基本群のSL(2,R)表現から誘導される基本群のSL(n, R)表現の系列を利用して定めるライデマイスタートーションの系列における主要係数の極限を意味する. 双曲3次元多様体においては, ライデマイスタートーションの漸近挙動から双曲体積を導出できることが力学系のゼータ関数を用いた考察で明らかにされてきた. 2次元双曲オービフォールドの単位接束は双曲3次元多様体ではないが, オービフォールド上の測地線流から定まる力学系のゼータ関数を用いてライデマイスタートーションの漸近挙動が考察でき, 主要係数の極限からオービフォールドのオービフォールド・オイラー標数が導出できることを紹介したい.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年05月31日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
植田 一石 氏 (東京大学大学院数理科学研究科)
Stable Fukaya categories of Milnor fibers (JAPANESE)
[ 講演概要 ]
We define the stable Fukaya category of a Liouville domain as the quotient of the wrapped Fukaya category by the full subcategory consisting of compact Lagrangians, and discuss the relation between the stable Fukaya categories of affine Fermat hypersurfaces and the Fukaya categories of projective hypersurfaces. We also discuss homological mirror symmetry for Milnor fibers of Brieskorn-Pham singularities along the way. This is a joint work in progress with Yanki Lekili.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年05月24日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
Christine Vespa 氏 (IRMA, Université de Strasbourg / JSPS)
Polynomial functors associated with beaded open Jacobi diagrams (ENGLISH)
[ 講演概要 ]
The Kontsevich integral is a very powerful invariant of knots, taking values is the space of Jacobi diagrams. Using an extension of the Kontsevich integral to tangles in handlebodies, Habiro and Massuyeau construct a functor from the category of bottom tangles in handlebodies to the linear category A of Jacobi diagrams in handlebodies. The category A has a subcategory equivalent to the linearization of the opposite of the category of finitely generated free groups, denoted by $\textbf{gr}^{op}$. By restriction to this subcategory, morphisms in the linear category $\textbf{A}$ give rise to interesting contravariant functors on the category $\textbf{gr}$, encoding part of the composition structure of the category A.
In recent papers, Katada studies the functor given by the morphisms in the category A from 0. In particular, she obtains a family of polynomial functors on $\textbf{gr}^{op}$ which are outer functors, in the sense that inner automorphisms act trivially.
In this talk, I will explain these results and give extensions of Katada’s results concerning the functors given by the morphisms in the category A from any integer k. These functors give rise to families of polynomial functors on $\textbf{gr}^{op}$ which are no more outer functors. Our approach is based on an equivalence of categories given by Powell. Through this equivalence the previous polynomial functors correspond to functors given by beaded open Jacobi diagrams.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年05月17日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
清水 達郎 氏 (東京電機大学)
Contribution of simple loops to the configuration space integral (JAPANESE)
[ 講演概要 ]
有向閉多様体とその基本群の表現を用意する.ただし表現は対応する局所系が非輪状なものとする.Feynman diagramと呼ばれるグラフを一つ持ってくると,その頂点と辺の情報をもとにして配置空間積分(configuration space integral)が実行され,数が計算される.これらの数の適当な線形和は多様体と表現の組の不変量を与える.グラフの辺の中で,その両端点が同じ頂点につながっているものをsimple loopと呼ぶ.配置空間積分の,このsimple loopからの寄与について考察する.Hutchings, Lee, KitayamaらによるReidemeister torsionをcircle valued Morse functionのtrajectoryを用いて記述した仕事と,Morseホモトピー論が与える配置空間積分のMorse関数を用いた解釈を組み合わせることで,いくつかの多様体と表現の組に対して,simple loopからの寄与がReidemeister torsionから計算できることが証明される.この講演では,simple loopとReidemeister torsionをめぐるこれらの関係を整理し,その対象となる多様体と表現を少し拡張する.また,figure eight knotでDehn手術して得られる3次元多様体と1次元ホモロジー群の表現の組について,simple loopを含むグラフに関する配置空間積分の,Morse関数を補助的に用いた具体的な計算を例示する.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年05月10日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
今野 北斗 氏 (東京大学大学院数理科学研究科)
Nielsen realization, knots, and Seiberg-Witten (Floer) homotopy theory (JAPANESE)
[ 講演概要 ]
I will discuss two different kinds of applications of Seiberg-Witten (Floer) homotopy theory involving involutions. The first application is about the Nielsen realization problem, which asks whether a given finite subgroup of the mapping class group of a manifold lifts to a subgroup of the diffeomorphism group. Although every finite subgroup is known to lift in dimension 2, there are manifolds of dimension greater than 2 for which the Nielsen realization fails. However, only few examples have been known in dimension 4. I will show that "4-dimensional Dehn twists" yield a large class of new examples. The second application is about 4-dimensional invariants of knots. I will introduce a version of "Floer K-theory for knots", and will explain that this framework gives the first comparison result for the smooth and topological versions of a certain knot invariant, called stabilizing number. Although the above two topics (Nielsen realization and knots) may seem to have different flavors, they are derived from a common idea. The first one is proved using a constraint on smooth involutions on a closed 4-manifold from Seiberg-Witten homotopy theory by Yuya Kato, and the second one is derived from a generalization of Kato's result to 4-manifolds with boundary using Seiberg-Witten Floer homotopy theory. This talk is partially based on joint work with Jin Miyazawa and Masaki Taniguchi.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年04月26日(火)

17:00-18:00   オンライン開催
Lie 群論・表現論セミナーと合同。 参加を希望される場合は、セミナーのウェブページをご覧下さい。
大島 芳樹 氏 (東京大学大学院数理科学研究科)
等質空間の離散系列表現の存在条件について (JAPANESE)
[ 講演概要 ]
Lie群$G$が多様体$X$に推移的に作用するとき,$L^2(X)$の既約部分表現は$X$の離散系列表現とよばれる.等質空間$X$がいつ離散系列表現をもつかという問題を考える.簡約対称空間については,Flensted-Jensen氏,松木敏彦氏,大島利雄氏の結果より,離散系列表現が存在する必要十分条件はランクに関する条件で与えられる.一般の簡約等質空間に対する離散系列表現の存在問題は小林俊行氏により考えられ,表現の離散分解の理論を用いて十分条件が得られている.この講演では,一般の等質空間やその上の直線束の場合に,余随伴軌道の方法を用いて得られる離散系列表現の存在の十分条件についてお話しする.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年04月19日(火)

17:30-18:30   オンライン開催
Lie 群論・表現論セミナーと合同。 参加を希望される場合は、セミナーのウェブページをご覧下さい。
久保 利久 氏 (龍谷大学)
反ド・ジッター空間の共形微分対称性破れ作用素の分類および構成について (JAPANESE)
[ 講演概要 ]
$X$を$C^\infty$級多様体とし, $Y$を$X$の$C^\infty$級部分多様体とする. $G' \subset G$をそれぞれ$Y \subset X$に作用するLie群の組とし, $X$上の$G$-同変ベクトル束の滑らかな切断のなす空間から$Y$上の$G'$-同変ベクトル束の滑らかな切断のなす空間への$G'$-絡微分作用素$\mathcal{D}$を考える. 小林俊行氏はこのような微分作用素$\mathcal{D}$を「微分対称性破れ作用素」と呼んだ. ([T.Kobayashi, Differential Geom. Appl. (2014)])

[Kobayashi--K--Pevzner, Lecture Notes in Math. 2170 (2016)]において, 我々はリーマン球面$S^{n}$上の微分$i$形式のなす空間$\mathcal{E}^i(S^n)$から全測地的超球面$S^{n-1}$上の微分$j$形式のなす空間$\mathcal{E}^i(S^{n-1})$への微分対称性破れ作用素を完全に分類し, またその明示式を与えた. 本講演では小林俊行氏, Michael Pevzner氏との共同研究に基づき, 上記のリーマン多様体の設定における結果を拡張させる形で, 反ド・ジッター空間, 双曲空間のような擬リーマン多様体の設定での微分対称性破れ作用素の分類ならびに構成についてお話する.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年01月25日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
盛 小冰 氏 (東京大学大学院数理科学研究科)
Some obstructions on subgroups of the Brin-Thompson group $2V$ (ENGLISH)
[ 講演概要 ]
Motivated by Burillo, Cleary and Röver's summary of the obstruction for subgroups of Thompson's group $V$, we investigate the higher dimensional version, the group $2V$ and found out that they have similar obstructions on torsion subgroups and certain Baumslag-Solitar groups.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2022年01月11日(火)

17:00-18:00   オンライン開催
Lie 群論・表現論セミナーと合同。 参加を希望される場合は、セミナーのウェブページをご覧下さい。
前多 啓一 氏 (東京大学大学院数理科学研究科)
符号(n,2)の分解不可能な擬リーマン対称空間に関するコンパクトClifford-Klein形の存在問題について (JAPANESE)
[ 講演概要 ]
等質空間 $G/H$ とその不連続群 $\Gamma\subset G$ に対し, 商多様体 $\Gamma\backslash G/H$ は $G/H$ の Clifford-Klein 形と呼ばれる. Clifford—Klein 形の研究において, コンパクト Clifford-Klein 形を持つ等質空間の分類問題は1980年代に小林俊行氏によって提起された重要な未解決問題である. この問題を, 符号 (n,2) の分解不可能かつ可約な擬リーマン対称空間に対して考察する. いくつかの系列の対称空間に対し, コンパクト Clifford-Klein 形の非存在を示し, また, 可算無限個の5次元 (符号(3,2)) の対称空間に対し, 新たに見つかったコンパクト Clifford-Klein 形を実際に構成する.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2021年12月21日(火)

17:30-18:30   オンライン開催
Lie 群論・表現論セミナーと合同。 参加を希望される場合は、セミナーのウェブページをご覧下さい。
島倉 裕樹 氏 (東北大学)
Classification of holomorphic vertex operator algebras of central charge 24 (JAPANESE)
[ 講演概要 ]
Holomorphic vertex operator algebras are imporant in vertex operator algebra theory. For example, the famous moonshine vertex operator algebra is holomorphic. One of the fundamental problems is to classify holomorphic vertex operator algebras. It is known that holomorphic vertex operator algebras of central charge 8 and 16 are lattice vertex operator algebras. I will talk about recent progress on the classification of holomorphic vertex operator algebras of central charge 24.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2021年12月07日(火)

17:00-1800   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
佐野 岳人 氏 (東京大学大学院数理科学研究科)
Bar-Natan ホモトピー型の構成 (JAPANESE)
[ 講演概要 ]
2000年に Khovanov は Jones 多項式の圏論化として Khovanov ホモロジー $H_{Kh}$ を構成した. 2014 年に Lipshitz-Sarkar は Khovanov ホモロジーの空間的実現として Khovanov ホモトピー型 $\mathcal{X}_{Kh}$ を構成した. すなわち $\mathcal{X}_{Kh}$ は空間(有限 CW スペクトラム)で, その被約コホモロジー群が Khovanov ホモロジーを復元するものである. Khovanov ホモロジーには Lee ホモロジー, Bar-Natan ホモロジーなどの変種があり, Rasmussen による $s$-不変量など重要な不変量を取り出すこともできる. これらの変種に対してホモトピー型が構成できるかどうかは2020年まで未解決であった. 講演者は 2021年 の論文で,変種の一つである Bar-Natan ホモロジー $H_{BN}$ に対して,その空間的実現である Bar-Natan ホモトピー型 $\mathcal{X}_{BN}$ を構成し, その安定ホモトピー型を決定した. $\mathcal{X}_{BN}$ の構成は $\mathcal{X}_{Kh}$ と同様に Cohen-Jones-Segal が提案したフロー圏による構成法を用いる. 安定ホモトピー型の決定は Lobb らによる「フロー圏における Morse 変形」の手法を用いる. Bar-Natan ホモトピー型を用いた $s$-不変量の空間的精密化は今後の課題である.

https://arxiv.org/abs/2102.07529
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2021年11月30日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
佐藤 正寿 氏 (東京電機大学)
A non-commutative Reidemeister-Turaev torsion of homology cylinders (JAPANESE)
[ 講演概要 ]
The Reidemeister-Turaev torsion of homology cylinders takes values in the integral group ring of the first homology of a surface. We lift it to a torsion valued in the $K_1$-group of the completed rational group ring of the fundamental group of the surface. We show that it induces a finite type invariant of homology cylinders, and describe the induced map on the graded quotient of the Y-filtration of homology cylinders via the 1-loop part of the LMO functor and the Enomoto-Satoh trace. This talk is based on joint work with Yuta Nozaki and Masaaki Suzuki.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2021年11月16日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
湯淺 亘 氏 (京都大学数理解析研究所)
Skein and cluster algebras of marked surfaces without punctures for sl(3) (JAPANESE)
[ 講演概要 ]
We consider a skein algebra consisting of sl(3)-webs with the boundary skein relations for a marked surface without punctures. We construct a quantum cluster algebra coming from the moduli space of decorated SL(3)-local systems of the surface inside the skew-field of fractions of the skein algebra. In this talk, we introduce the sticking trick and the cutting trick for sl(3)-webs. The sticking trick expands the boundary-localized skein algebra into the cluster algebra. The cutting trick gives Laurent expressions of "elevation-preserving" webs with positive coefficients in certain clusters. We can also apply these tricks in the case of sp(4). This talk is based on joint works with Tsukasa Ishibashi.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2021年11月09日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
丸山 修平 氏 (名古屋大学)
The spaces of non-descendible quasimorphisms and bounded characteristic classes (JAPANESE)
[ 講演概要 ]
A quasimorphism is a real-valued function on a group which is a homomorphism up to bounded error. In this talk, we discuss the (non-)descendibility of quasimorphisms. In particular, we consider the space of non-descendible quasimorphisms on universal covering groups and explain its relation to the space of bounded characteristic classes of foliated bundles. This talk is based on a joint work with Morimichi Kawasaki.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2021年11月02日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
野坂 武史 氏 (東京工業大学)
Meta-nilpotent knot invariants and symplectic automorphism groups of free nilpotent groups (JAPANESE)
[ 講演概要 ]
ファイバー結び目やhomology cylinderというクラスは興味深い幾何・代数的な議論が幾つか展開されてきた。逆に本研究では、ホモロジー3-球面内の任意の結び目をそれらのクラスの様に扱えるように、結び目群のメタ冪零的$p$-局所化を考察する。そのモノドロミーは自由冪零群のシンプレクティック自己同型群の元と見れ、特にその外部自己同型群の共役類からの写像は結び目の不変量を与える。その際にジョンソン準同型の研究が扱える。本講演ではそのモノドロミーの構成と、得られた不変量の研究法を幾つか紹介する。また最近得られた、Fox-ペアリングの視点から考察と結果も紹介する。
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2021年10月26日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
粕谷 直彦 氏 (北海道大学)
On the strongly pseudoconcave boundary of a compact complex surface (JAPANESE)
[ 講演概要 ]
On the strongly pseudoconvex (resp. pseudoconcave) boundary of a complex surface, the complex
tangency defines a positive (resp. negative) contact structure. Bogomolov and De Oliveira proved
that the boundary contact structure of a strongly pseudoconvex surface is Stein fillable.
Therefore, for a closed contact 3-manifold, Stein fillability and holomorphic fillability are
equivalent. Then what about the boundary of a strongly pseudoconcave surface? We prove that any
closed negative contact 3-manifold can be realized as the boundary of a strongly pseudoconcave
surface. The proof is done by establishing holomorphic handle attaching method to the strongly
pseudoconcave boundary of a complex surface, based on Eliashberg's handlebody construction of Stein
manifolds. This is a joint work with Daniele Zuddas (University of Trieste).
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2021年10月19日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
四之宮 佳彦 氏 (静岡大学)
Period matrices of some hyperelliptic Riemann surfaces (JAPANESE)
[ 講演概要 ]
In this talk, we give new examples of period matrices of hyperelliptic Riemann surfaces. For generic genus, there were few examples of period matrices. The period matrix of a Riemann surface depends only on the choice of symplectic basis of the first homology group. It is difficult to find a symplectic basis in general. We construct hyperelliptic Riemann surfaces of generic genus from some rectangles and find their symplectic bases. Moreover, we give their algebraic equations. The algebraic equations are of the form $w^2=z(z^2-1)(z^2-a_1^2)(z^2-a_2^2) \cdots (z^2-a_{g-1}^2)$ ($1 < a_1 < a_2 < \cdots < a_{g-1}$). From them, we can calculate period matrices of our Riemann surfaces. We also show that all algebraic curves of this types of equations are obtained by our construction.
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2021年10月12日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
飯田 暢生 氏 (東京大学大学院数理科学研究科)
Seiberg-Witten Floer homotopy and contact structures (JAPANESE)
[ 講演概要 ]
Seiberg-Witten theory has been an efficient tool to study 4-dimensional symplectic and 3-dimensional contact geometry. In this talk, we introduce new homotopical invariants related to these structures using Seiberg-Witten theory and explain their properties and applications. These invariants have two main origins:
1. Kronheimer-Mrowka's invariant for 4-manifold with contact boundary, whose construction is based on Seiberg-Witten equation on 4-manifolds with conical end.
2. Bauer-Furuta and Manolescu's homotopical method called finite dimensional approximation in Seiberg-Witten theory.
This talk includes joint works with Masaki Taniguchi(RIKEN) and Anubhav Mukherjee(Georgia tech).
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

2021年10月05日(火)

17:00-18:00   オンライン開催
参加を希望される場合は、セミナーのホームページから参加登録を行って下さい。
合田 洋 氏 (東京農工大学)
Twisted Alexander polynomials, chirality, and local deformations of hyperbolic 3-cone-manifolds (JAPANESE)
[ 講演概要 ]
We discuss a relationship between the chirality of knots and higher dimensional twisted Alexander polynomials associated with holonomy representations of hyperbolic $3$-cone-manifolds. In particular, we provide a new necessary condition for a knot, that appears in a hyperbolic $3$-cone-manifold of finite volume as a singular set, to be amphicheiral. Moreover, we can detect the chirality of hyperbolic twist knots, according to our criterion, using low-dimensional irreducible representations. (This is a joint work with Takayuki Morifuji.)
[ 参考URL ]
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html

< 前へ 1234567891011121314151617181920 次へ >