トポロジー火曜セミナー

過去の記録 ~10/31次回の予定今後の予定 11/01~

開催情報 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室
担当者 河澄 響矢, 北山 貴裕, 逆井卓也, 葉廣和夫
セミナーURL https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html

過去の記録

2017年05月16日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
合田 洋 氏 (東京農工大学)
Twisted Alexander invariants and Hyperbolic volume of knots (JAPANESE)
[ 講演概要 ]
In [1], Müller investigated the asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds, and then Menal-Ferrer and Porti [2] have obtained a formula on the volume of a hyperbolic 3-manifold using the Higher-dimensional Reidemeister torsion.

On the other hand, Yoshikazu Yamaguchi has shown that a relationship between the twisted Alexander polynomial and the Reidemeister torsion associated with the adjoint representation of the holonomy representation of a hyperbolic 3-manifold in his thesis [3].

In this talk, we observe that Yamaguchi's idea is applicable to the Higher-dimensional Reidemeister torsion, then we give a volume formula of a hyperbolic knot using the twisted Alexander polynomial.

References

[1] Müller, W., The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds, Metric and differential geometry, 317--352, Progr. Math., 297, Birkhäuser/Springer, Basel, 2012.

[2] Menal-Ferrer, P. and Porti, J., Higher-dimensional Reidemeister torsion invariants for cusped hyperbolic 3-manifolds. J. Topol., 7 (2014), no. 1, 69--119.

[3] Yamaguchi, Y., On the non-acyclic Reidemeister torsion for knots, Dissertation at the University of Tokyo, 2007.

2017年05月09日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
諏訪 立雄 氏 (北海道大学)
Local and global coincidence homology classes (JAPANESE)
[ 講演概要 ]
We consider two differentiable maps between two oriented manifolds. In the case the manifolds are compact with the same dimension and the coincidence points are isolated, there is the Lefschetz coincidence point formula, which generalizes his fixed point formula. In this talk we discuss the case where the dimensions of the manifolds may possible be different so that the coincidence points are not isolated in general. In fact it seems that Lefschetz himself already considered this case (cf. [4]).

We introduce the local and global coincidence homology classes and state a general coincidence point theorem.
We then give some explicit expressions for the local class. We also take up the case of several maps as considered in [1] and perform similar tasks. These all together lead to a generalization of the aforementioned Lefschetz formula. The key ingredients are the Alexander duality in combinatorial topology, intersection theory with maps and the Thom class in Čech-de Rham cohomology. The contents of the talk are in [2] and [3].

References
[1] C. Biasi, A.K.M. Libardi and T.F.M. Monis, The Lefschetz coincidence class of p maps, Forum Math. 27 (2015), 1717-1728.
[2] C. Bisi, F. Bracci, T. Izawa and T. Suwa, Localized intersection of currents and the Lefschetz coincidence point theorem, Annali di Mat. Pura ed Applicata 195 (2016), 601-621.
[3] J.-P. Brasselet and T. Suwa, Local and global coincidence homology classes, arXiv:1612.02105.
[4] N.E. Steenrod, The work and influence of Professor Lefschetz in algebraic topology, Algebraic Geometry and Topology: A Symposium in Honor of Solomon Lefschetz, Princeton Univ. Press 1957, 24-43.

2017年04月25日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
久野 雄介 氏 (津田塾大学)
Formality of the Goldman-Turaev Lie bialgebra and the Kashiwara-Vergne problem in positive genus (JAPANESE)
[ 講演概要 ]
This talk is based on a joint work with A. Alekseev, N. Kawazumi and F. Naef. Given a compact oriented surface with non-empty boundary and a framing of the surface, one can define the Lie bracket (Goldman bracket) and the Lie cobracket (Turaev bracket) on the vector space spanned by free homotopy classes of loops on the surface. These maps are of degree minus two with respect to a certain filtration. Then one can ask the formality of this Lie bialgebra: is the Goldman-Turaev Lie bialgebra isomorphic to its associated graded?

For surfaces of genus zero, we showed that this question is closely related to the Kashiwara-Vergne (KV) problem in Lie theory (arXiv:1703.05813). A similar result was obtained by G. Massuyeau by using the Kontsevich integral.

Our new topological interpretation of the classical KV problem leads us to introduce a generalization of the KV problem in connection with the formality of the Goldman-Turaev Lie bialgebra for surfaces of positive genus. We will discuss the existence and uniqueness of solutions to the generalized KV problem.

2017年04月18日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
野坂 武史 氏 (東京工業大学)
冪単マグナス展開によるミルナー不変量 (JAPANESE)
[ 講演概要 ]
われわれは、ミルナー不変量を、群の中心拡大と冪単マグナス展開をもちいて再構成した。それにより当不変量の図式計算方法を確立した。本講演ではその再構成と計算法を説明し、いくつか例示をする。また冪零的マグナス展開の性質も紹介したい。本研究は九大の小谷久寿氏との共同研究である。

2017年04月11日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
Alexander Voronov 氏 (University of Minnesota)
Homotopy Lie algebroids (ENGLISH)
[ 講演概要 ]
A well-known result of A. Vaintrob [Vai97] characterizes Lie algebroids and their morphisms in terms of homological vector fields on supermanifolds. We give an interpretation of Lie bialgebroids and their morphisms in terms of odd symplectic dg-manifolds, building on the approach of D. Roytenberg [Roy99]. This extends naturally to the homotopy Lie case and leads to the notion of L-bialgebroids and L-morphisms between them.

2017年03月10日(金)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00, Lie群論・表現論セミナーと合同
Lizhen Ji 氏 (University of Michigan)
Satake compactifications and metric Schottky problems (ENGLISH)
[ 講演概要 ]
The quotient of the Poincare upper half plane by the modular group SL(2, Z) is a basic locally symmetric space and also the moduli space of compact Riemann surfaces of genus 1, and it admits two important classes of generalization:

(1) Moduli spaces M_g of compact Riemann surfaces of genus g>1,

(2) Arithmetic locally symmetric spaces Γ \ G/K such as the Siegel modular variety A_g, which is also the moduli of principally polarized abelian varieties of dimension g.

There have been a lot of fruitful work to explore the similarity between these two classes of spaces, and there is also a direct interaction between them through the Jacobian (or period) map J: M_g --> A_g. In this talk, I will discuss some results along these lines related to the Stake compactifications and the Schottky problems on understanding the image J(M_g) in A_g from the metric perspective.

2017年03月08日(水)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
Arthur Soulié 氏 (Université de Strasbourg)
Action of the Long-Moody Construction on Polynomial Functors (ENGLISH)
[ 講演概要 ]
In 2016, Randal-Williams and Wahl proved homological stability with certain twisted coefficients for different families of groups, in particular the one of braid groups. In fact, they obtain the stability for coefficients given by functors satisfying polynomial conditions. We only know few examples of such functors. Among them, we have the functor given by the unreduced Burau representations. In 1994, Long and Moody gave a construction on representations of braid groups which associates a representation of Bn with a representation of Bn+1. This construction complexifies in a sense the initial representation: for instance, starting from a dimension one representation, one obtains the unreduced Burau representation. In this talk, I will present this construction from a functorial point of view. I will explain that the construction of Long and Moody defines an endofunctor, called the Long-Moody functor, between a suitable category of functors. Then, after defining strong polynomial functors in this context, I will prove that the Long-Moody functor increases by one the degree of strong polynomiality of a strong polynomial functor. Thus, the Long-Moody construction will provide new examples of twisted coefficients entering in the framework of Randal-Williams and Wahl.

2017年02月20日(月)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
Jørgen Ellegaard Andersen 氏 (Aarhus University)
The Verlinde formula for Higgs bundles (ENGLISH)
[ 講演概要 ]
In this talk we will present a Verlinde formula for the quantization of the Higgs bundle moduli spaces and stacks for any simple and simply-connected group. We further present a Verlinde formula for the quantization of parabolic Higgs bundle moduli spaces and stacks. We will explain how all these dimensions fit into a one parameter family of 2D TQFT's, encoded in a one parameter family of Frobenius algebras, which we will construct.

2017年01月24日(火)

17:00-18:00   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
折田 龍馬 氏 (東京大学大学院数理科学研究科)
閉シンプレクティック多様体上のハミルトン力学系における無限個の非可縮周期軌道の存在について (JAPANESE)
[ 講演概要 ]
We show that the presence of a non-contractible Hamiltonian one-periodic trajectory in a closed symplectic manifold yields the existence of infinitely many non-contractible periodic trajectories, provided that the symplectic form is aspherical and the fundamental group is virtually abelian. Moreover, we also show that a similar statement holds for closed monotone or negative monotone symplectic manifolds having virtually abelian fundamental groups. These results are certain generalizations of works by Ginzburg and Gurel who proved a similar statement holds for atoroidal or toroidally monotone closed symplectic manifolds. The proof is based on the machinery of filtered Floer--Novikov homology for non-contractible periodic trajectories.

2017年01月24日(火)

18:00-19:00   数理科学研究科棟(駒場) 056号室
川口 徳昭 氏 (東京大学大学院数理科学研究科)
Quantitative shadowing property, shadowable points, and local properties of topological dynamical systems (JAPANESE)
[ 講演概要 ]
Shadowing property has been one of the key notions in topological hyperbolic dynamics, which is also common since C^0-generic homeomorphisms on a smooth closed manifold satisfy the property for instance. In this talk, the shadowing property in relation to other chaotic or non-chaotic properties of dynamical systems (entropy, sensitivity, equicontinuity, etc.) is discussed. Also, we introduce an idea of localizing and quantifying the shadowing property following the recent work of Morales, and present some of its consequences. The idea is shown to be effective for the description of local properties of dynamical systems.

2017年01月17日(火)

17:30-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 17:00-17:30
杉山 聡 氏 (東京大学大学院数理科学研究科)
On an application of the Fukaya categories to the Koszul duality (JAPANESE)
[ 講演概要 ]
In this talk, we compute an A-Koszul dual of path algebras with relations over the directed An-type quivers via the Fukaya categories of exact Riemann surfaces.

The Koszul duality is originally a duality between certain quadratic algebras called Koszul algebras. In this talk, we are interested in the case when A is not a quadratic algebra, i.e. the case when A is defined as a quotient algebra of tensor algebra devided by higher degree relations.

The definition of Koszul duals for such algebras, A-Koszul duals, are given by some people, for example, D. M. Lu, J. H. Palmieri, Q. S. Wu, J. J. Zhang. However, the computation for a concrete examples is hard. In this talk, we use the Fukaya categories of exact Riemann surfaces to compute A-Koszul duals. Then, we understand the Koszul duality as a duality between higher products and relations.

2017年01月10日(火)

17:00-18:00   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
斎藤 俊輔 氏 (東京大学大学院数理科学研究科)
Stability of anti-canonically balanced metrics (JAPANESE)
[ 講演概要 ]
Donaldson introduced "anti-canonically balanced metrics" on Fano manifolds, which is a finite dimensional analogue of Kähler-Einstein metrics. It is proved that anti-canonically balanced metrics are critical points of the quantized Ding functional.

We first study the slope at infinity of the quantized Ding functional along Bergman geodesic rays. Then, we introduce a new algebro-geometric stability of Fano manifolds based on the slope formula, and show that the existence of anti-canonically balanced metrics implies our stability. The relationship between the stability and others is also discussed.

This talk is based on a joint work with R. Takahashi (Tohoku Univ).

2017年01月10日(火)

18:00-19:00   数理科学研究科棟(駒場) 056号室
林 晋 氏 (東京大学大学院数理科学研究科)
Topological Invariants and Corner States for Hamiltonians on a Three Dimensional Lattice (JAPANESE)
[ 講演概要 ]
In condensed matter physics, a correspondence between two topological invariants defined for a gapped Hamiltonian is well-known. One is defined for such a Hamiltonian on a lattice (bulk invariant), and the other is defined for its restriction onto a subsemigroup (edge invariant). The edge invariant is related to the wave functions localized near the edge. This correspondence is known as the bulk-edge correspondence. In this talk, we consider a variant of this correspondence. We consider a periodic Hamiltonian on a three dimensional lattice (bulk) and its restrictions onto two subsemigroups (edges) and their intersection (corner). We will show that, if our Hamiltonian is "gapped" in some sense, we can define a topological invariant for the bulk and edges. We will also define another topological invariant related to the wave functions localized near the corner. We will explain that there is a correspondence between these two topological invariants by using the six-term exact sequence associated to the quarter-plane Toeplitz extension obtained by E. Park.

2016年12月20日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
Irene Pasquinelli 氏 (Durham University)
Deligne-Mostow lattices and cone metrics on the sphere (ENGLISH)
[ 講演概要 ]
Finding lattices in PU(n,1) has been one of the major challenges of the last decades. One way of constructing lattices is to give a fundamental domain for its action on the complex hyperbolic space.

One approach, successful for some lattices, consists of seeing the complex hyperbolic space as the configuration space of cone metrics on the sphere and of studying the action of some maps exchanging the cone points with same cone angle.

In this talk we will see how this construction of fundamental polyhedra can be extended to almost all Deligne-Mostow lattices with three folding symmetry.

2016年12月13日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
三松 佳彦 氏 (中央大学)
3 次元多様体上の平面場とそれに接する非圧縮流の漸近的絡み目 (JAPANESE)
[ 講演概要 ]
This is a report on a project in (a very slow) progress which aims to prove the tightness of contact structures associated with algebraic Anosov flows without using Bennequin's nor Gromov's results.

After introducing an interpretation of asymptotic linking pairing in terms of differential forms, we attach a subspaces of exact 2-forms to each plane field. We analyze this space in the case where the plane field is an algebraic Anosov foliation and explain what can be done
using results from foliated cohomology and frameworks for secondary characteristic classes. We also show some explicit computations.

To close the talk, a quantization phenomenon which happens when a foliation is deformed into a contact structure is explained and we state some perspectives on applying the results on foliations to the tightness.

2016年12月06日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
吉田 建一 氏 (東京大学大学院数理科学研究科)
Union of 3-punctured spheres in a hyperbolic 3-manifold (JAPANESE)
[ 講演概要 ]
An essential 3-punctured sphere in a hyperbolic 3-manifold is isotopic to a totally geodesic one. We will classify the topological types for components of union of the totally geodesic 3-punctured spheres in an orientable hyperbolic 3-manifold. There are special types each of which appears in precisely one manifold.

2016年11月29日(火)

17:30-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 17:00-17:30
千葉 逸人 氏 (九州大学)
一般化スペクトル理論とその結合振動子系のダイナミクスへの応用 (JAPANESE)
[ 講演概要 ]
一般のグラフの上で定義された大自由度結合振動子系のダイナミクスを考える。特に、結合強度を大きくしていくと非同期状態から同期状態への相転移が起こることを、一般化スペクトル理論を用いて示す。

2016年11月22日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
内藤 貴仁 氏 (東京大学大学院数理科学研究科)
Sullivan's coproduct on the reduced loop homology (JAPANESE)
[ 講演概要 ]
In string topology, Sullivan introduced a coproduct on the reduced loop homology and showed that the homology has an infinitesimal bialgebra structure with respect to the coproduct and Chas-Sullivan loop product. In this talk, I will give a homotopy theoretic description of Sullivan's coproduct. By using the description, we obtain some computational examples of the structure over the rational number field. Moreover, I will also discuss a based loop space version of the coproduct.

2016年11月15日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
逆井 卓也 氏 (東京大学大学院数理科学研究科)
Cohomology of the moduli space of graphs and groups of homology cobordisms of surfaces (JAPANESE)
[ 講演概要 ]
We construct an abelian quotient of the symplectic derivation Lie algebra of the free Lie algebra generated by the fundamental representation of the symplectic group. It gives an alternative proof of the fact first shown by Bartholdi that the top rational homology group of the moduli space of metric graphs of rank 7 is one dimensional. As an application, we construct a non-trivial abelian quotient of the homology cobordism group of a surface of positive genus. This talk is based on joint works with Shigeyuki Morita, Masaaki Suzuki and Gwénaël Massuyeau.

2016年11月08日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
秋田 利之 氏 (北海道大学)
Second mod 2 homology of Artin groups (JAPANESE)
[ 講演概要 ]
After a brief survey on the K($\pi$,1) conjecture and homology of Artin groups,I will introduce our recent result: we determined second mod 2 homology of arbitrary Artin groups without assuming the K($\pi$,1)-conjecture. The key ingredients are Hopf's formula and a result of Howlett on Schur multipliers of Coxeter groups. This is a joint work with Ye Liu.

2016年11月01日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
大場 貴裕 氏 (東京工業大学)
Higher-dimensional contact manifolds with infinitely many Stein fillings (JAPANESE)
[ 講演概要 ]
A Stein fillings of a given contact manifold is a Stein domain whose boundary is contactomorphic to the given contact manifold.
Open books, Lefschetz fibrations, and mapping class groups of their fibers in particular help us to produce various contact manifolds and their Stein fillings. However, little is known about mapping class groups of higher-dimensional manifolds. This is one of the reasons that it was unknown whether there is a contact manifold of dimension > 3 with infinitely many Stein fillings. In this talk, I will choose a certain symplectic manifold as fibers of open books and Lefschetz fibrations and by using them, construct an infinite family of higher-dimensional contact manifolds with infinitely many Stein fillings.

2016年10月18日(火)

17:30-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 17:00-17:30
橋本 義武 氏 (東京都市大学)
拡大W代数に対する共形場理論 (JAPANESE)
[ 講演概要 ]
This talk is based on a joint work with A. Tsuchiya (Kavli IPMU) and T. Matsumoto (Nagoya Univ). In 2006 Feigin-Gainutdinov-Semikhatov-Tipunin introduced vertex operator algebras M called extended W-algebras. Tsuchiya-Wood developed representation theory of M by the method of
"infinitesimal deformation of parameter" and Jack symmetric polynomials.

In this talk I will discuss the following subjects:
1. "factorization" in conformal field theory,
2. tensor structure of the category of M-modules and "module-bimodule correspondence".

2016年10月11日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
河澄 響矢 氏 (東京大学大学院数理科学研究科)
The Kashiwara-Vergne problem and the Goldman-Turaev Lie bialgebra in genus zero (JAPANESE)
[ 講演概要 ]
In view of results of Goldman and Turaev, the free vector space over the free loops on an oriented surface has a natural Lie bialgebra structure. The Goldman bracket has a formal description by using a special (or symplectic) expansion of the fundamental group of the surface. It is natural to ask for a formal description of the Turaev cobracket. We will show how to obtain a formal description of the Goldman-Turaev Lie bialgebra for genus 0 using a solution of the Kashiwara-Vergne problem. A similar description was recently obtained by Massuyeau using the Kontsevich integral. Moreover we propose a generalization of the Kashiwara-Vergne problem in the context of the Goldman-Turaev Lie bialgebra. This talk is based on a joint work with A. Alekseev, Y. Kuno and F. Naef.

2016年09月27日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
藤内 翔太 氏 (東京大学大学院数理科学研究科)
CAT(0) properties for orthoscheme complexes (JAPANESE)
[ 講演概要 ]
Gromov showed that a cubical complex is locally CAT(0) if and only if the link of every vertex is a flag complex. Brady and MacCammond introduced an orthoscheme complex as a generalization of cubical complexes. It is, however, difficult to tell whether an orthoscheme complex is (locally) CAT(0) or not. In this talk, I will discuss a translation of Gromov's characterization for orthoscheme complexes. As a generalization of Gromov's characterization, I will show that the orthoscheme complex of locally distributive semilattice is CAT(0) if and only if it is a flag semilattice.

2016年07月19日(火)

17:00-18:30   数理科学研究科棟(駒場) 056号室
Tea: Common Room 16:30-17:00
渡邊 陽介 氏 (University of Hawaii)
The geometry of the curve graphs and beyond (JAPANESE)
[ 講演概要 ]
The curve graphs are locally infinite. However, by using Masur-Minsky's tight geodesics, one could view them as locally finite graphs. Bell-Fujiwara used a special property of tight geodesics and showed that the asymptotic dimension of the curve graphs is finite. In this talk, I will introduce a new class of geodesics which also has the property. If time permits, I will explain how such geodesics can be adapted in Out(F_n) setting.

< 前へ 123456789101112131415161718192021 次へ >