トポロジー火曜セミナー
過去の記録 ~12/08|次回の予定|今後の予定 12/09~
開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
---|---|
担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也 |
セミナーURL | http://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
今後の予定
2024年12月10日(火)
17:00-18:30 数理科学研究科棟(駒場) ハイブリッド開催/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
若月 駿 氏 (名古屋大学)
Computation of the magnitude homology as a derived functor (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
若月 駿 氏 (名古屋大学)
Computation of the magnitude homology as a derived functor (JAPANESE)
[ 講演概要 ]
Asao-Ivanov showed that the magnitude homology of a finite metric space is isomorphic to the derived functor Tor over some ring. In this talk, I will explain an application of the theory of minimal projective resolution to this derived functor. Especially in the case of a geodetic graph, torsion-freeness and a criterion for diagonality of the magnitude homology are established. Moreover, I will give computational examples including cyclic graphs. This is a joint work with Yasuhiko Asao.
[ 参考URL ]Asao-Ivanov showed that the magnitude homology of a finite metric space is isomorphic to the derived functor Tor over some ring. In this talk, I will explain an application of the theory of minimal projective resolution to this derived functor. Especially in the case of a geodetic graph, torsion-freeness and a criterion for diagonality of the magnitude homology are established. Moreover, I will give computational examples including cyclic graphs. This is a joint work with Yasuhiko Asao.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2024年12月17日(火)
17:00-18:30 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Emmanuel Graff 氏 (東京大学大学院数理科学研究科)
Is there torsion in the homotopy braid group? (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
Emmanuel Graff 氏 (東京大学大学院数理科学研究科)
Is there torsion in the homotopy braid group? (ENGLISH)
[ 講演概要 ]
In the 'Kourovka notebook,' V. Lin questions the existence of a non-trivial epimorphism from the braid group onto a non-abelian torsion-free group. The homotopy braid group, studied by Goldsmith in 1974, naturally appears as a potential candidate. In 2001, Humphries showed that this homotopy braid group is torsion-free for less than six strands. In this presentation, we will see a new approach based on the broader concept of welded braids, along with algebraic techniques, to determine whether the homotopy braid group provides a complete answer to Lin’s question.
[ 参考URL ]In the 'Kourovka notebook,' V. Lin questions the existence of a non-trivial epimorphism from the braid group onto a non-abelian torsion-free group. The homotopy braid group, studied by Goldsmith in 1974, naturally appears as a potential candidate. In 2001, Humphries showed that this homotopy braid group is torsion-free for less than six strands. In this presentation, we will see a new approach based on the broader concept of welded braids, along with algebraic techniques, to determine whether the homotopy braid group provides a complete answer to Lin’s question.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html