トポロジー火曜セミナー
過去の記録 ~12/11|次回の予定|今後の予定 12/12~
| 開催情報 | 火曜日 17:00~18:30 数理科学研究科棟(駒場) 056号室 |
|---|---|
| 担当者 | 河澄 響矢, 北山 貴裕, 逆井卓也, 葉廣和夫 |
| セミナーURL | https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index.html |
今後の予定
2025年12月16日(火)
17:00-18:00 オンライン開催
セミナーのホームページから参加登録を行って下さい。
雪田 友成 氏 (足利大学)
Continuity and minimality of growth rates of Coxeter systems (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
セミナーのホームページから参加登録を行って下さい。
雪田 友成 氏 (足利大学)
Continuity and minimality of growth rates of Coxeter systems (JAPANESE)
[ 講演概要 ]
A pair (G, S) consisting of a group G and an ordered finite generating set S is called a marked group. On the set of all marked groups, one can define a distance that measures how similar the neighborhoods of the identity element in their Cayley graphs are. This space is called the space of marked groups. For a marked group, the function that counts the number of elements whose word length with respect to S is k is called the growth function, and the quantity describing its rate of divergence is called the growth rate. In this talk, we will discuss the continuity of the growth rate for marked Coxeter systems, and the problem of determining the minimal growth rate among Coxeter systems that are lattices in the isometry group of hyperbolic space.
[ 参考URL ]A pair (G, S) consisting of a group G and an ordered finite generating set S is called a marked group. On the set of all marked groups, one can define a distance that measures how similar the neighborhoods of the identity element in their Cayley graphs are. This space is called the space of marked groups. For a marked group, the function that counts the number of elements whose word length with respect to S is k is called the growth function, and the quantity describing its rate of divergence is called the growth rate. In this talk, we will discuss the continuity of the growth rate for marked Coxeter systems, and the problem of determining the minimal growth rate among Coxeter systems that are lattices in the isometry group of hyperbolic space.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
2025年12月23日(火)
17:30-18:30 数理科学研究科棟(駒場) hybrid/056号室
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
山下 真由子 氏 (ペリメータ理論物理学研究所・理化学研究所)
Geometric engineering in Topological Modular Forms (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
対面参加、オンライン参加のいずれの場合もセミナーのホームページから参加登録を行って下さい。
山下 真由子 氏 (ペリメータ理論物理学研究所・理化学研究所)
Geometric engineering in Topological Modular Forms (JAPANESE)
[ 講演概要 ]
I will explain my ongoing project to construct a functor from the category of conformal field theories to the TMF-module category, and realizing the symmetry of CFTs in genuine equivariance in TMF. I will explain the progress on the cases related to the K3 sigma model, with the motivation coming from the Mathieu moonshine.
[ 参考URL ]I will explain my ongoing project to construct a functor from the category of conformal field theories to the TMF-module category, and realizing the symmetry of CFTs in genuine equivariance in TMF. I will explain the progress on the cases related to the K3 sigma model, with the motivation coming from the Mathieu moonshine.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html


本文印刷
全画面プリント







