複素解析幾何セミナー

過去の記録 ~03/28次回の予定今後の予定 03/29~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴

過去の記録

2012年05月21日(月)

10:30-12:00   数理科学研究科棟(駒場) 126号室
田島 慎一 氏 (筑波大学)
Local cohomology and hypersurface isolated singularities I (JAPANESE)
[ 講演概要 ]
多変数留数に関するGrothendieck local duality と局所コホモロジーに基づくことで, 孤立特異点を持つ超曲面の複素解析的性質を解析することが出来る。本講演では, まず, 局所コホモロジー類の計算法を紹介する。次に, これら局所コホモロジーの応用として, イデアルメンバーシップ判定, スタンダード基底計算, イデアル商計算等が平易にできることを紹介する。数式処理システムRisa/Asirへの実装結果についても報告する。

2012年05月14日(月)

10:30-12:00   数理科学研究科棟(駒場) 126号室
金子 宏 氏 (東京理科大)
単位円周とp進整数環の双対的関係とvan der Corput 列 (JAPANESE)

2012年05月07日(月)

10:30-12:00   数理科学研究科棟(駒場) 126号室
松本佳彦 氏 (東大数理)
The second metric variation of the total $Q$-curvature in conformal geometry (JAPANESE)
[ 講演概要 ]
Branson's $Q$-curvature of even-dimensional compact conformal manifolds integrates to a global conformal invariant called the total $Q$-curvature. While it is topological in two dimensions and is essentially the Weyl action in four dimensions, in the higher dimensional cases its geometric meaning remains mysterious. Graham and Hirachi have shown that the first metric variation of the total $Q$-curvature coincides with the Fefferman-Graham obstruction tensor. In this talk, the second variational formula will be presented, and it will be made explicit especially for conformally Einstein manifolds. The positivity of the second variation will be discussed in connection with the smallest eigenvalue of the Lichnerowicz Laplacian.

2012年04月16日(月)

10:30-12:00   数理科学研究科棟(駒場) 126号室
奥山裕介 氏 (京都工芸繊維大学)
Fekete configuration, quantitative equidistribution and wanderting critical orbits in non-archimedean dynamics
(JAPANESE)

2012年04月09日(月)

10:30-12:00   数理科学研究科棟(駒場) 126号室
高山茂晴 氏 (東大数理)
Effective estimate on the number of deformation types of families of canonically polarized manifolds over curves
(JAPANESE)

2012年01月30日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
Damian Brotbek 氏 (University of Tokyo)
Differential equations as embedding obstructions and vanishing theorems (ENGLISH)
[ 講演概要 ]
Given a smooth projective variety $X$ it is natural to wonder what is the smallest integer $N$ such that one can embed $X$ into $\mathbf{P}^N$. In this talk I will first recall what can be said for any smooth projective variety, then I will explain how the existence of some particular differential equations on $X$ yields obstructions to the existence of some projective embeddings.

2012年01月23日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
中田文憲 氏 (東京理科大)
Twistor correspondence for R-invariant indefinite self-dual metric on R^4 (JAPANESE)

2012年01月16日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
川上 裕 氏 (山口大学)
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic 3-space (JAPANESE)
[ 講演概要 ]
We provide an effective ramification theorem for the ratio of canonical forms of weakly complete flat fronts in the hyperbolic 3-space. As an application, we give a simple proof of the classification of complete nonsingular flat surfaces in the hyperbolic 3-space.

2011年12月12日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
松尾信一郎 氏 (京都大学)
Brody曲線と平均次元 (JAPANESE)
[ 講演概要 ]
We study the mean dimensions of the spaces of Brody curves. In particular we give the formula of the mean dimension of the space of Brody curves in the Riemann sphere.

2011年11月28日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
松村慎一 氏 (東大数理)
An ampleness criterion with the extendability of singular positive metrics (JAPANESE)
[ 講演概要 ]
Coman, Guedj and Zeriahi proved that, for an ample line bundle $L$ on a projective manifold $X$, any singular positive metric on the line bundle $L|_{V}$ along a subvariety $V \subset X$ can be extended to a global singular positive metric of $L$. In this talk, we prove that the extendability of singular positive metrics on a line bundle along a subvariety implies the ampleness of the line bundle.

2011年11月21日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
糟谷久矢 氏 (東大数理)
Techniques of computations of Dolbeault cohomology of solvmanifolds (JAPANESE)

2011年11月16日(水)

16:30-18:00   数理科学研究科棟(駒場) 128号室
Franc Forstneric 氏 (University of Ljubljana)
Disc functionals and Siciak-Zaharyuta extremal functions on singular varieties (ENGLISH)
[ 講演概要 ]
A disc functional on a complex space, $X$, is a function P that assign a real number $P(f)$ (possibly minus infinity) to every analytic disc $f$ in $X$. An examples is the Poisson functional $P_u$ of an upper semicontinuous function $u$ on $X$: in that case $P_u(f)$ is the average of u over the boundary curve of the disc $f$. Other natural examples include the Lelong and the Riesz functionals. The envelope of a disc functional $P$ is a function on $X$ associating to every point $x$ of $X$ the infimum of the values $P(f)$ over all analytic discs $f$ in $X$ satisfying $f(0)=x$. The main point of interest is that the envelopes of many natural disc functionals are plurisubharmonic functions solving certain extremal problems. In the classical case when $X=\mathbf{C}^n$ this was first discovered by E. Poletsky in the early 1990's. In this talk I will discuss recent results on plurisubharmonicity of envelopes of all the classical disc functional mentioned above on locally irreducible complex spaces. In the second part of the talk I will give formulas expressing the classical Siciak-Zaharyuta maximal function of an open set in an affine algebraic variety as the envelope of certain disc functionals. We establish plurisubharmonicity of envelopes of certain classical disc functionals on locally irreducible complex spaces, thereby generalizing the corresponding results for complex manifolds. We also find new formulae expressing the Siciak-Zaharyuta extremal function of an open set in a locally irreducible affine algebraic variety as the envelope of certain disc functionals, similarly to what has been done for open sets in $\mathbf{C}^n$ by Lempert and by Larusson and Sigurdsson.

2011年11月07日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
野口潤次郎 氏 (東大数理)
岡の余零問題と関連する話題について (JAPANESE)
[ 講演概要 ]
The main part of this talk is a joint work with my colleagues, M. Abe and S. Hamano. After the solution of Cousin II problem by K. Oka III in 1939, he thought an extra-zero problem in 1945 (his posthumous paper) asking if it is possible to solve an arbitrarily given Cousin II problem adding some extra-zeros whose support is disjoint from the given one. Some special case was affirmatively confirmed in dimension two and a counter-example in dimension three or more was obtained. We will give a complete solution of this problem with examples and to discuss some new questions. An example on a toric variety of which idea is based on K. Stein's paper in 1941 has some special interest and will be discussed. I would like also to discuss some analytic intersections form the viewpoint of Nevanlinna theory.

2011年10月31日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
本多宣博 氏 (東北大学)
Classification of Moishezon twistor spaces on 4CP^2 (JAPANESE)

2011年10月17日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
神島 芳宣 氏 (首都大学東京)
Compact locally homogeneous Kähler manifolds $\Gamma\backslash G/K$ (JAPANESE)

2011年07月11日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
千葉 優作 氏 (東大数理)
トーリック多様体への小林双曲的埋め込み (JAPANESE)

2011年07月04日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
Raphael Ponge 氏 (University of Tokyo)
Toward a Hirzebruch-Riemann-Roch formula in CR geometry (ENGLISH)

2011年06月27日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
斎藤恭司 氏 (東京大学 IPMU)
Vanishing cycles for the entire functions of type $A_{1/2\infty}$ and $D_{1/2\infty}$ (JAPANESE)
[ 講演概要 ]
We introduce two elementary transcendental functions $f_{A_{1/2\infty}}$ and $f_{D_{1/2\infty}}$ of two variables. They have countably infinitely many critical points. Then, the vanishing cycles associated with the critical points form Dynkin diagrams of type $A_{1/2\infty}$ and $D_{1/2\infty}$. We calculate the spectral decomposition of the monodromy transformation by embedding the lattice of vanishing cycles into a Hilbert space. All these stories are connected with a new understanding of KP and KdV integral hierarchy. But the relationship is not yet clear.

2011年06月20日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
阿部 誠 氏 (広島大学)
シュタイン空間内の岡・グラウエルトの原理をみたす領域 (JAPANESE)

2011年06月13日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
大沢 健夫 氏 (名古屋大学)
On the complement of effective divisors with semipositive normal bundle (JAPANESE)

2011年06月06日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
篠原知子 氏 (都立産業技術高専)
An invariant surface of a fixed indeterminate point for rational mappings (JAPANESE)

2011年05月30日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
山盛厚伺 氏 (明治大学)
On the Forelli-Rudin construction and explicit formulas of the Bergman kernels (JAPANESE)

2011年05月16日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
甲斐千舟 氏 (金沢大学)
正則凸錐の順序同型写像の線型性 (JAPANESE)

2011年05月09日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
野口潤次郎 氏 (東大数理)
Order of meromorphic maps and rationality of the image space (JAPANESE)

2011年04月25日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
林本厚志 氏 (長野工業高等専門学校)
擬楕円体のCR写像の分類についての一考察 (JAPANESE)

< 前へ 1234567891011121314151617 次へ >