複素解析幾何セミナー

過去の記録 ~05/26次回の予定今後の予定 05/27~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴

今後の予定

2024年05月27日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
丸亀 泰二 氏 (電気通信大学)
Hyperkähler ambient metrics associated with twistor CR manifolds
(Japanese)
[ 講演概要 ]
アンビエント計量は,CR多様体に付随する(漸近的)Ricci平坦不定値Kähler計量である.Feffermanは,複素多様体の非退化実超曲面に対し,複素Monge-Ampère方程式の近似解となる局所定義関数を用いてアンビエント計量を構成したが,(対数項を導入することなく)厳密にRicci平坦方程式を満たす計量が構成できるCR多様体の例はあまり知られていない.この講演では,3次元実解析的共形多様体上の球面束として定義されるツイスターCR多様体に対して,アンビエント計量がスピノル束上のhyperkähler計量として具体的に構成できることを説明する.
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2024年06月10日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
鍋島 克輔 氏 (東京理科大学)
Computing Noetherian operators of polynomial ideals
--How to characterize a polynomial ideal by partial differential operators -- (Japanese)
[ 講演概要 ]
Describing ideals in polynomial rings by using systems of differential operators in one of the major approaches to study them. In 1916, F.S. Macaulay brought the notion of an inverse system, a system of differential conditions that describes an ideal. In 1937, W. Groebner mentioned the importance of the Macaulay's inverse system in the study of linear differential equations with constant coefficient, and in 1938, he introduced differential operators to characterize ideals that are primary to a rational maximal ideal. After that the important results and the terminology came from L. Ehrenpreise and V. P. Palamodov in 1961 and 1970, that is the characterization of primary ideals by the differential operators. The differential operators allow one to characterize the primary ideal by differential conditions on the associated characteristic variety. The differential operators are called Noetherian operators.
In this talk, we consider Noetherian operators in the context of symbolic computation. Upon utilizing the theory of holonomic D-modules, we present a new computational method of Noetherian operators associated to a polynomial ideal. The computational method that consists mainly of linear algebra techniques is given for computing them. Moreover, as applications, new computational methods of polynomial ideals are discussed by utilizing the Noetherian operators.
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2024年06月17日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
日下部 佑太 氏 (九州大学)
TBA (Japanese)
[ 講演概要 ]
TBA
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2024年06月24日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
成田 知将 氏 (名古屋大学)
TBA (Japanese)
[ 講演概要 ]
TBA
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2024年07月08日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
久本 智之 氏 (東京都立大学)
TBA (Japanese)
[ 講演概要 ]
TBA
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8