複素解析幾何セミナー
過去の記録 ~12/30|次回の予定|今後の予定 12/31~
| 開催情報 | 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室 |
|---|---|
| 担当者 | 平地 健吾, 高山 茂晴 |
今後の予定
2026年01月05日(月)
10:30-12:00 数理科学研究科棟(駒場) 128号室
新田 泰文 氏 (東京理科大学)
Fano許容多様体の満渕定数 (Japanese)
https://forms.gle/gTP8qNZwPyQyxjTj8
新田 泰文 氏 (東京理科大学)
Fano許容多様体の満渕定数 (Japanese)
[ 講演概要 ]
満渕ソリトンとは満渕氏が導入したFano多様体上の標準Kähler計量であり,Kähler-Einstein計量の一般化として知られるものである.Kähler-Einstein計量は満渕ソリトンでもあるが逆は一般には成り立たない. また, 満渕ソリトンを持つがKähler-Einstein計量を持たないFano多様体も存在する. 満渕ソリトンの存在に対しては満渕定数と呼ばれるFano多様体の正則不変量が知られており, 満渕ソリトンを許容するには満渕定数が1未満である必要がある.本講演ではFano許容多様体と呼ばれるFano多様体のクラスを取り上げ, その満渕定数の明示公式を紹介する. さらに, それを用いて具体的なFano許容多様体に対する満渕定数の計算及び満渕ソリトンの存在/非存在について説明したい.
本講演の内容は村山庄太郎氏(東京理科大学)との共同研究に基づく.
[ 参考URL ]満渕ソリトンとは満渕氏が導入したFano多様体上の標準Kähler計量であり,Kähler-Einstein計量の一般化として知られるものである.Kähler-Einstein計量は満渕ソリトンでもあるが逆は一般には成り立たない. また, 満渕ソリトンを持つがKähler-Einstein計量を持たないFano多様体も存在する. 満渕ソリトンの存在に対しては満渕定数と呼ばれるFano多様体の正則不変量が知られており, 満渕ソリトンを許容するには満渕定数が1未満である必要がある.本講演ではFano許容多様体と呼ばれるFano多様体のクラスを取り上げ, その満渕定数の明示公式を紹介する. さらに, それを用いて具体的なFano許容多様体に対する満渕定数の計算及び満渕ソリトンの存在/非存在について説明したい.
本講演の内容は村山庄太郎氏(東京理科大学)との共同研究に基づく.
https://forms.gle/gTP8qNZwPyQyxjTj8
2026年01月19日(月)
10:30-12:00 数理科学研究科棟(駒場) 号室
オンラインでのみ実施します. 対面での実施はありません.
Peiqiang Lin 氏 ( )
Lemma on logarithmic derivative over directed manifolds (English)
https://forms.gle/gTP8qNZwPyQyxjTj8
オンラインでのみ実施します. 対面での実施はありません.
Peiqiang Lin 氏 ( )
Lemma on logarithmic derivative over directed manifolds (English)
[ 講演概要 ]
The lemma on logarithmic derivative is the key lemma of Nevanlinna theory in one variable. In several variables case, there is also a crucial lemma in Ahlfors’ proof, which we refer to as Ahlfors’ lemma on logarithmic derivative.
In this talk, we will give a generalization of Ahlfors’ lemma on logarithmic derivative to directed projective manifolds in the language of Demailly-Simple jet towers. We also give Algebraic-Geometric Version of Ahlfors’ lemma on logarithmic derivative and its transform. Finally, we show that these help us to obtain a better result in the specific case.
[ 参考URL ]The lemma on logarithmic derivative is the key lemma of Nevanlinna theory in one variable. In several variables case, there is also a crucial lemma in Ahlfors’ proof, which we refer to as Ahlfors’ lemma on logarithmic derivative.
In this talk, we will give a generalization of Ahlfors’ lemma on logarithmic derivative to directed projective manifolds in the language of Demailly-Simple jet towers. We also give Algebraic-Geometric Version of Ahlfors’ lemma on logarithmic derivative and its transform. Finally, we show that these help us to obtain a better result in the specific case.
https://forms.gle/gTP8qNZwPyQyxjTj8


本文印刷
全画面プリント







