Seminar on Geometric Complex Analysis

Seminar information archive ~05/11Next seminarFuture seminars 05/12~

Date, time & place Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Kengo Hirachi, Shigeharu Takayama, Ryosuke Nomura

Future seminars

2021/05/24

10:30-12:00   Online
Atsushi Hayashimoto (Nagano National College of Technology)
Cartan-Hartogs領域の固有正則写像 (Japanese)
[ Abstract ]
2つの球の間の固有正則写像は自己同型写像である。球を別の領域にしたらどうなるかを調べたい。球の一般化として複素擬楕円体や有界対称領域が考えられる。これら2つの領域を合わせた領域としてHua領域がある。これは有界対称領域の上に複素擬楕円体が乗っているような領域である。Hua領域の一番簡単な場合としてCartan-Hartogs領域があり、これらの間の固有正則写像の分類問題を考える。分類すると本質的には1種類の写像しかないことが分かる。ここでは2つの多項式写像が自己同型写像の差を省いて一致すれば、Isotoropy写像の差を省いて一致することを使う。
[ Reference URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021/05/31

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Yuya Takeuchi (Tsukuba University)
Nonnegativity of the CR Paneitz operator for embeddable CR manifolds (Japanese)
[ Abstract ]
The CR Paneitz operator, which is a fourth-order CR invariant differential operator, plays a crucial role in three-dimensional CR geometry; it is deeply connected to global embeddability and the CR positive mass theorem. In this talk, I will show that the CR Paneitz operator is nonnegative for embeddable CR manifolds. I will also apply this result to some problems in CR geometry. In particular, I will give an affirmative solution to the CR Yamabe problem for embeddable CR manifolds.

2021/06/07

10:30-12:00   Online
Kurando Baba (Tokyo University of Science)
TBA (Japanese)
[ Abstract ]
TBA
[ Reference URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021/07/05

10:30-12:00   Online
Nitta Yasufumi (Tokyo University of Science)
TBA (Japanese)
[ Abstract ]
TBA
[ Reference URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB