複素解析幾何セミナー

過去の記録 ~07/24次回の予定今後の予定 07/25~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴

過去の記録

2024年07月08日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
久本 智之 氏 (東京都立大学)
ネフ反標準束に対する宮岡-Yau型不等式について (Japanese)
[ 講演概要 ]
今回の講演では、まずKähler-Einstein計量に対する変分法的アプローチの近年における発展について概観し、その系としてネフ反標準束に対する宮岡-Yau型の不等式が導かれることを紹介する。
次いで、等号成立条件や、接束のスロープ安定性、定スカラー曲率Kähler計量の漸近的存在について議論する。
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2024年06月24日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
成田 知将 氏 (名古屋大学)
コンパクトケーラー多様体のラプラシアン固有値の最大化問題 (Japanese)
[ 講演概要 ]
与えられたコンパクト多様体$M$において,体積が1となるようなリーマン計量全体を考える.このとき,計量から定まるラプラシアンの最小正固有値は,そのような計量全体の上の汎関数とみなせる.Nadirashvili(1996)とEl Soufi-Ilias(2000)は,計量$g$がそのような固有値汎関数の臨界点であるとき,ラプラシアンの固有関数たちが$(M, g)$の球面への等長極小はめ込みを与えることを示した.Apostolov-Jakobson-Kokarev(2015)は,リーマン計量全体ではなく,コンパクトケーラー多様体においてケーラー類を固定して固有値汎関数の臨界点を調べた.本講演では,コンパクト複素多様体において,体積が1となるようなケーラー計量全体を考え,固有値汎関数の臨界点について考察する.Apostolov et al.の結果との比較を行い,また例として平坦な複素トーラスについて述べる.本講演はプレプリント arXiv:2304.06261の内容に基づく.
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2024年06月17日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
日下部 佑太 氏 (九州大学)
Oka tubes in holomorphic line bundles (Japanese)
[ 講演概要 ]
自身を値域とする正則写像の拡張・近似問題に関して、岡の原理が成り立つような複素多様体を岡多様体と呼ぶ。岡多様体は、複素Euclid空間から多くの支配的正則写像を持つという楕円性によって特徴付けられ、小林双曲性に代表される複素幾何学的双曲性とは真逆の性質を持つことが知られている。本講演では、コンパクト複素多様体上の負直線束の零切断が擬小林双曲近傍基を持つという事実を一つの背景として、どのような場合に直線束の零切断が岡近傍基を持つかという問題を考える。本講演の内容は、Franc Forstnerič氏との共同研究に基づく。
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2024年06月10日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
鍋島 克輔 氏 (東京理科大学)
Computing Noetherian operators of polynomial ideals
--How to characterize a polynomial ideal by partial differential operators -- (Japanese)
[ 講演概要 ]
Describing ideals in polynomial rings by using systems of differential operators in one of the major approaches to study them. In 1916, F.S. Macaulay brought the notion of an inverse system, a system of differential conditions that describes an ideal. In 1937, W. Groebner mentioned the importance of the Macaulay's inverse system in the study of linear differential equations with constant coefficient, and in 1938, he introduced differential operators to characterize ideals that are primary to a rational maximal ideal. After that the important results and the terminology came from L. Ehrenpreise and V. P. Palamodov in 1961 and 1970, that is the characterization of primary ideals by the differential operators. The differential operators allow one to characterize the primary ideal by differential conditions on the associated characteristic variety. The differential operators are called Noetherian operators.
In this talk, we consider Noetherian operators in the context of symbolic computation. Upon utilizing the theory of holonomic D-modules, we present a new computational method of Noetherian operators associated to a polynomial ideal. The computational method that consists mainly of linear algebra techniques is given for computing them. Moreover, as applications, new computational methods of polynomial ideals are discussed by utilizing the Noetherian operators.
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2024年05月27日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
丸亀 泰二 氏 (電気通信大学)
Hyperkähler ambient metrics associated with twistor CR manifolds
(Japanese)
[ 講演概要 ]
アンビエント計量は,CR多様体に付随する(漸近的)Ricci平坦不定値Kähler計量である.Feffermanは,複素多様体の非退化実超曲面に対し,複素Monge-Ampère方程式の近似解となる局所定義関数を用いてアンビエント計量を構成したが,(対数項を導入することなく)厳密にRicci平坦方程式を満たす計量が構成できるCR多様体の例はあまり知られていない.この講演では,3次元実解析的共形多様体上の球面束として定義されるツイスターCR多様体に対して,アンビエント計量がスピノル束上のhyperkähler計量として具体的に構成できることを説明する.
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2024年05月20日(月)

10:50-12:20   数理科学研究科棟(駒場) 128号室
いつもより20分遅れて開始します。
孫 立杰 氏 (山口大学)
Kähler metrics in the Siegel domain (Japanese)
[ 講演概要 ]
The Siegel domain is endowed with an intrinsic Kähler structure, making it an exemplary model for the complex hyperbolic plane. Its boundary, characterized as the one-point compactification of the Heisenberg group, plays an important role in studying the geometry of the Siegel domain. In this talk, using the CR structure of the Heisenberg group we introduce a variety of Kähler structures within the Siegel domain. We conclude by demonstrating that all these metrics are PCR-Kähler equivalent, that is, essentially the same when confined to the CR structure. This talk is based on a joint work with Ioannis Platis and Joonhyung Kim.
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2024年05月13日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
川上 裕 氏 (金沢大学)
Bloch-Ros principleとその曲面論への応用 (Japanese)
[ 講演概要 ]
有理型関数の値分布論と正規族の理論との間には,Bloch principleと呼ばれるある種の双対性が存在する.講演者は笠尾俊輔氏との共同研究で,ZalcmanとRosの研究をもとに,この双対性を曲面のGauss写像の値分布にまで拡張した"Bloch-Ros principle"と呼ぶ理論的枠組みを発見した.本講演では,笠尾氏との共著論文(arXiv:2402.12909)で記した"Bloch-Ros principle"の詳細を解説する.
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2024年04月22日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
小池 貴之 氏 (大阪公立大学)
Neighborhood of a compact curve whose intersection matrix has a positive eigenvalue (Japanese)
[ 講演概要 ]
Let $C$ be a connected compact complex curve of a non-singular complex surface. We will show that, if the intersection matrix of the curve $C$ has a positive eigenvalue, then there is a neighborhood $V$ of $C$ and a strictly plurisubharmonic function on $V\setminus C$ which increases logarithmically near $C$.
As an application, we show that the complement of $C$ is a proper modification of an affine variety under the additional assumption that the surface is connected and compact.
This talk is based on a joint work with Tetsuo Ueda.
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2024年04月15日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
竹内 有哉 氏 (筑波大学)
Kohn-Rossi cohomology of spherical CR manifolds (Japanese)
[ 講演概要 ]
The Kohn-Rossi cohomology is a CR analog of the Dolbeault cohomology and is one of fundamental invariants in CR geometry. In this talk, we prove some vanishing theorems for the Kohn-Rossi cohomology of some spherical CR manifolds. To this end, we use a canonical contact form defined via the Patterson-Sullivan measure and Weitzenböck-type formulae.
[ 参考URL ]
https://forms.gle/gTP8qNZwPyQyxjTj8

2023年12月11日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
松田 凌 氏 (京都大学)
On Partial deformations and Bers embedding (Japanese)
[ 講演概要 ]
The Teichmüller space of the Riemann surface S is the space of deformations of the complex structure of S. For complex analysis on Teich(S), it is biholomorphic embedded into a bounded set of the space of complex Banach spaces, denoted as B(S). This embedding is known as the Bers embedding. Additionally, when S is of infinite type, considering partial deformations can reveal properties of Teich(S). Earle-Gardiner-Lakic prove that asymptotically conformal deformations correspond to subspaces where the norm of the embedding decays at infinity. In this talk, we generalize this result, showing that deformations that become asymptotically conformal at some end correspond to spaces where the norm decays at that end. Finally, using this result and the David map, a generalization of quasiconformal maps, I’ll give that in the Bers boundary of infinite-type Riemann surface satisfying the Shiga condition, Maximal cusps are not dense.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年11月27日(月)

11:00-12:30   数理科学研究科棟(駒場) 128号室
小川 智史 氏 (大阪公立大学)
On a holomorphic tubular neighborhood of a compact complex curve and Brjuno condition (Japanese)
[ 講演概要 ]
Let $C$ be a compact complex curve holomorphically embedded in a non-singular complex surface $M$ with a unitary flat normal bundle $N_{C/M}$ and let $\mathcal{U}$ be a finite open cover of $C$. Gong--Stolovitch posed a sufficient condition for the existence of a holomorphic tubular neighborhood of $C$ in $M$ expressed with operator norms of Čech coboundary maps $\delta$ on $\check{C}^0(\mathcal{U}, \mathcal{O}_C(N_{C/M}^\nu))$ and $\check{C}^0(\mathcal{U}, \mathcal{O}_C(T_C \otimes N_{C/M}^\nu))$.
In this talk, we introduce some estimates of the operator norms of $\delta$. As a result, we see the Brjuno condition appears as a sufficient condition for the existence of a holomorphic tubular neighborhood.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年10月30日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
松村慎一 氏 (東北大学)
The Nonvanishing problem for varieties with nef anticanonical bundle
[ 講演概要 ]
一般化された極小モデル理論(generalized MMP)の枠組みではアバンダンス予想は成立しない. しかし, 一般化された非消滅予想(generalized nonvanishing conjecture)の成立は期待されている. この予想は適切な標準因子の数値的同値類が有効因子で代表できるかを問う予想である. 本講演では3次元の一般化されたLC対に対する非消滅予想について議論し, ネフ反標準因子に対して予想が正しいことを証明する.
この講演はV. Lazic, Th. Peternell, N. Tsakanikas, Z. Xieとの共同研究に基づく.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年10月16日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
辻 元 氏 (上智大学)
The limit of Kähler-Ricci flows
[ 講演概要 ]
In this talk, I would like to present the (normalized) limit of Kähler-Ricci flows for compact Kähler manifolds with intermediate Kodaira dimesion under the condition that the canonical bundle is abundant.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年07月10日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
吉川謙一 氏 (京都大学)
リーマン面の退化とラプラシアンの小さい固有値 (日本語)
[ 講演概要 ]
この講演では、非特異射影曲面からコンパクトなリーマン面への正則写像を考える。特異ファイバーの近くでは、これをコンパクトなリーマン面の一変数退化とみなすのとができる。この族の全空間である非特異射影曲面にケーラー計量を一つ固定し、各ファイバーにそれから誘導されるケーラー計量が与えられているとする。この設定で、各ファイバーに対して、各ファイバー上の関数に作用するラプラシアンを考えることができる。各kに対して、ラプラシアンの第k固有値は底空間上の連続関数に拡張することが知られている。特に、特異ファイバーが既約でない場合、通常ファイバーが特異ファイバーに近づくとき、通常フィバーのラプラシアンの固有値のいくつかは0に収束する。このような固有値を小さい固有値と呼ぶ。この講演では、特異ファイバーが被約な場合に、ラプラシアンの小さい固有値すべての積の漸近挙動について説明する。
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年07月03日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
山ノ井 克俊 氏 (大阪大学)
準射影多様体の擬双曲性と基本群の非可換性について
[ 講演概要 ]
この講演ではB. Cadorel, Y. Deng両氏との共同研究で、最近得られた結果についてお話しします。論文についてはarXiv:2212.12225をご覧ください。
準射影多様体Xの基本群が、半単純代数群の中へザリスキー稠密かつbigな表現をもつとき、Xは幾つかの擬双曲性を持つことをお話しします。また、時間が許せば、準射影多様体Xがspecialであるとき、Xの基本群の線形表現の像は(指数有限で)ベキ零であることをお話しします。
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年06月26日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
岩井雅崇 氏 (大阪大学)
Miyaoka type inequality for terminal weak Fano varieties
[ 講演概要 ]
In this talk, we show that $c_2(X)c_1(X)^{n-2}$ is positive for any $n$-dimensional terminal weak Fano varieties $X$. As a corollary, we obtain some inequalities (Miyaoka type inequalities) with respect to $c_2(X)c_1(X)^{n-2}$ and $c_1(X)^{n}$. This is joint work with Chen Jiang and Haidong Liu (arXiv:2303.00268).
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年06月19日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
本多 宣博 氏 (東京工業大学)
3次元不定値Zoll多様体の新しい構成方法
[ 講演概要 ]
ペンローズ対応は多様体上の特殊な幾何構造と複素多様体の間の対応関係を与えるものであるが、その一つとして、3次元多様体上のEinstein-Weyl構造と複素曲面の間の対応がある。後者の複素曲面をミニツイスター空間という。本講演では、任意種数の超楕円曲線から自然な方法でコンパクトミニツイスター空間が構成できることと、それから得られる3次元実Einstein-Weyl多様体がZoll性とよばれる顕著な幾何的性質をもつことを示す。Zoll性とはすべての測地線が閉じているというものであり、その代表的な例は球面である。今回得られた3次元Einstein-Weyl多様体は不定値であり、考える測地線は空間的なものである。これらのEinstein-Weyl多様体は arXiv:2208.13567 で与えられたものの一般化とみなすことができる。
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年05月29日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
ハイブリッド形式
上原 崇人 氏 (岡山大学)
On dynamical degrees of birational maps
[ 講演概要 ]
A birational map on a projective surface defines its dynamical degree, which measures the complexity of dynamical behavior of the map. The set of dynamical degrees, called the dynamical spectrum, has properties similar to that of volumes of hyperbolic 3-manifolds, shown by Thurston. In this talk, we will explain the properties of the dynamical spectrum.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年05月22日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
ハイブリッド形式
足立真訓 氏 (静岡大学)
A residue formula for meromorphic connections and applications to stable sets of foliations
[ 講演概要 ]
We discuss a proof for Brunella’s conjecture: a codimension one holomorphic foliation on a compact complex manifold of dimension > 2 has no exceptional minimal set if its normal bundle is ample. The main idea is the localization of the first Chern class of the normal bundle of the foliation via a holomorphic connection. Although this localization was done via that of the first Atiyah class in our previous proof, we shall explain that this can be shown more directly by a residue formula. If time permits, we also discuss a nonexistence result of Levi flat hypersurfaces with transversely affine Levi foliation. This talk is based on joint works
with S. Biard and J. Brinkschulte.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年05月15日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
ハイブリッド形式
竹内有哉 氏 (筑波大学)
$\mathcal{I}'$-curvatures and the Hirachi conjecture (Japanese)
[ 講演概要 ]
Hirachi conjecture deals with a relation between the integrals of local pseudo-Hermitian invariants and global CR invariants. This is a CR analogue of the Deser-Schwimmer conjceture, which was proved by Alexakis. In this talk, I would like to explain some results on the Hirachi conjecture. In particular, I'll introduce the $\mathcal{I}'$-curvatures and prove that these produce counterexamples to the Hirachi conjecture in higher dimensions. This talk is based on joint work with Jeffrey S. Case.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年05月08日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
ハイブリッド形式
糟谷久矢 氏 (大阪大学)
Non-Kähler Hodge theory and resolutions of cyclic orbifolds (日本語)
[ 講演概要 ]
This talk is based on the joint works with Jonas Stelzig (LMU München). We discuss the Hodge theory of non-Kähler compact complex manifolds. In this term, we think several types of compact complex manifolds and compact Kähler manifolds are considered as the "simplest”. We give a way of constructing simply connected compact complex non-Kähler manifolds of certain types by using resolutions of cyclic orbifolds.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年04月24日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
ハイブリッド形式
大沢健夫 氏 (名古屋大学)
Guan-Zhouの開性定理と$L^2$最小化積分の凹性 (日本語)
[ 講演概要 ]
Motivated by a question of approximating plurisubharmonic (=psh) functions by those with tame singularities, Demailly and Kollar asked several basic questions on the singularities of psh functions. Guan solved two of them effectively in a paper published in 2019. One of their corollaries says the following.

THEOREM. Let $\Omega$ be a pseudoconvex domain in $\mathbb{C}^n$ and let $\varphi$ be a negative psh function on $\Omega$ such that $\int_\Omega{e^{-\varphi}}<\infty$. Then, $e^{-p\varphi}\in L^1_{\text{loc}}$ around $x$ for any $x\in\Omega$ and $p>1$ satisfying the inequality $$
\frac{p}{p-1}>\frac{\int_\Omega{e^{-\varphi}}}{K_\Omega(x)},
$$ where $K_\Omega$ denotes the diagonalized Bergman kernel of $\Omega$.

This remarkable result is a consequence of a basic property of the minimal $L^2$ integrals (=MLI). The main purpose of the talk is to give an outline of the proof of Theorem by explaining the relation between several notions including the MLI which measure the singularities of psh functions. It will also be mentioned that the proof of Theorem is essentially based on the optimal Ohsawa-Takegoshi type extension theorem, which leads to a concavity property of MLI. Recent papers by Guan and his students will be reviewed, too.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A

2023年02月13日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
対面・オンラインのハイブリッド形式で行います。オンライン参加される場合は参考URLからご登録ください。
野口 潤次郎 氏 (東京大学)
多変数複素解析入門講義法 (Japanese)
[ 講演概要 ]
微積分は,主に1変数の理論を講義するが,後半で多変数の内容を入れる.同じ様に,複素解析(函数論)でも,一変数の後につなぎよく,多変数の講義を段差なく行えるようにしたい.
モデルケースとして'リーマンの写像定理'がある.現在多くの教科書に書かれているモンテルの定理による初等的な証明(1922, Fejér--Riesz)まで,もとのリーマンの学位論文(1851)から約70年の歳月がかかている.
岡理論・多変数関数論基礎についてみると,Oka IX (1953)より本年でやはり70年たつが,あまり'初等化'の方面へは進展していないように思う.こここでは,学部の複素解析のコースで'リーマンの写像定理'の後に,段差無く完全証明付きで岡理論・多変数関数論基礎を講義する展開を考える.
初等化には,岡のオリジナル法(1943未発表, IX 1953)を第1連接定理に基づき展開するのが適当であることを紹介したい.学部講義の数学内容に日本人による成果が入ることで,学生のモチベーションに好効果を与えるであろうことも期待したい.
時間が許せば,擬凸問題解決の岡のオリジナル法と別証明とされるGrauertの証明との間のFredholm定理をめぐる類似性についても述べたい.
[ 参考URL ]
https://forms.gle/hYT2hVhDE3q1wDSh6

2023年01月16日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
対面・オンラインのハイブリッド形式で行います。オンライン参加される場合は参考URLからご登録ください。
小池貴之 氏 (大阪公立大学)
Holomorphic foliation associated with a semi-positive class of numerical dimension one (Japanese)
[ 講演概要 ]
Let $X$ be a compact Kähler manifold and $\alpha$ be a Dolbeault cohomology class of bidegree $(1,1)$ on $X$.
When the numerical dimension of $\alpha$ is one and $\alpha$ admits at least two smooth semi-positive representatives, we show the existence of a family of real analytic Levi-flat hypersurfaces in $X$ and a holomorphic foliation on a suitable domain of $X$ along whose leaves any semi-positive representative of $\alpha$ is zero.

As an application, we give the affirmative answer to a conjecture on the relation between the semi-positivity of the line bundle $[Y]$ and the analytic structure of a neighborhood of $Y$ for a smooth connected hypersurface $Y$ of $X$.
[ 参考URL ]
https://forms.gle/hYT2hVhDE3q1wDSh6

2022年12月12日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
対面・オンラインのハイブリッド形式で行います。オンライン参加される場合は参考URLからご登録ください。
稲山 貴大 氏 (東京理科大学)
$L^2$-extension index and its applications (Japanese)
[ 講演概要 ]
In this talk, we introduce a new concept of $L^2$-extension indices. By using this notion, we propose a new way to study the positivity of curvature. We prove that there is an equivalence between how sharp the $L^2$-extension is and how positive the curvature is. As applications, we study Prekopa-type theorems and the positivity of a certain direct image sheaf.
[ 参考URL ]
https://forms.gle/hYT2hVhDE3q1wDSh6

1234567891011121314151617 次へ >