複素解析幾何セミナー

過去の記録 ~12/02次回の予定今後の予定 12/03~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴, 野村 亮介

過去の記録

2022年11月21日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
対面・オンラインのハイブリッド形式で行います。オンライン参加される場合は参考URLからご登録ください。
神本 丈 氏 (九州大学)
Resolution of singularities for $C^{\infty}$ functions and meromorphy of local zeta functions (Japanese)
[ 講演概要 ]
In this talk, we attempt to resolve the singularities of the zero variety of a $C^{\infty}$ function of two variables as much as possible by using ordinary blowings up. As a result, we formulate an algorithm to locally express the zero variety in the “almost” normal crossings form, which is close to the normal crossings form but may include flat functions. As an application, we investigate analytic continuation of local zeta functions associated with  $C^{\infty}$ functions of two variables.
[ 参考URL ]
https://forms.gle/hYT2hVhDE3q1wDSh6

2022年11月14日(月)

15:00-16:30   オンライン開催
オンラインのみで、開始時間が15:00からとなっておりますのでご注意ください。参加の際は参考URLからご登録ください。
宮地 秀樹 氏 (金沢大学)
The double holomorphic tangent space of the Teichmueller spaces (Japanese)
[ 講演概要 ]
The double holomorphic tangent space of a complex manifold is the holomorphic tangent space of the holomorphic tangent bundle of the complex manifold. In this talk, we will give an intrinsic description of the double tangent spaces of the Teichmueller spaces of closed Riemann surfaces of genus at least 2.
[ 参考URL ]
https://forms.gle/hYT2hVhDE3q1wDSh6

2022年10月31日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
対面・オンラインのハイブリッド形式で行います。オンライン参加される場合は参考URLからご登録ください。
井上 瑛二 氏 (理化学研究所)
The non-archimedean μ-entropy in toric case (Japanese)
[ 講演概要 ]
The non-archimedean μ-entropy is a functional on the space of test configurations of a polarized variety. It plays a key role in μK-stability and can be interpreted as a dual functional to Perelman’s μ-entropy for Kahler metrics. The fundamental question on the non-archimedean μ-entropy is the existence and uniqueness of maximizers. To find its maximizers, it is natural to extend the functional to a suitable completion of the space of test configurations. For general polarized variety, we can realize such completion and extension based on the non-archimedean pluripotential theory.
In the toric case, the torus invariant subspace of the completion is identified with a suitable space of convex functions on the moment polytope and then the non-archimedean μ-entropy is simply expressed by integrations of convex functions on the polytope. I will show a compactness result in the toric case, by which we conclude the existence of maximizers for the toric non-archimedean μ-entropy.
[ 参考URL ]
https://forms.gle/hYT2hVhDE3q1wDSh6

2022年10月24日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
対面・オンラインのハイブリッド形式で行います。オンライン参加される場合は参考URLからご登録ください。
藤澤 太郎 氏 (東京電機大学)
A new approach to the nilpotent orbit theorem via the $L^2$ extension theorem of Ohsawa-Takegoshi type (Japanese)
[ 講演概要 ]
I will talk about a new proof of (a part of) the nilpotent orbit theorem for unipotent variations of Hodge structure. This approach is largely inspired by the recent works of Deng and of Sabbah-Schnell. In my proof, the $L^2$ extension theorem of Ohsawa-Takegoshi type plays essential roles.
[ 参考URL ]
https://forms.gle/hYT2hVhDE3q1wDSh6

2022年07月11日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
対面・オンラインのハイブリッド形式で行います。オンライン参加される場合は参考URLからご登録ください。
松本 佳彦 氏 (大阪大学)
The CR Killing operator and Bernstein-Gelfand-Gelfand construction in CR geometry (Japanese)
[ 講演概要 ]
In this talk, I introduce the CR Killing operator associated with compatible almost CR structures on contact manifolds, which describes trivial infinitesimal deformations generated by contact Hamiltonian vector fields, and discuss how it can also be reconstructed by the Bernstein-Gelfand-Gelfand construction in the general theory of parabolic geometries. The “modified” adjoint tractor connection defined by Cap (2008) plays a crucial role. If time permits, I’d also like to discuss what this observation might mean in relation to asymptotically complex hyperbolic Einstein metrics, which are bulk geometric structures for compatible almost CR structures at infinity.
[ 参考URL ]
https://forms.gle/hYT2hVhDE3q1wDSh6

2022年07月04日(月)

10:30-12:00   オンライン開催
オンライン「のみ」となっております。参加される場合は参考URLからご登録ください。
山ノ井 克俊 氏 (大阪大学)
Bloch's principle for holomorphic maps into subvarieties of semi-abelian varieties (Japanese)
[ 講演概要 ]
We discuss a generalization of the logarithmic Bloch-Ochiai theorem about entire curves in subvarieties of semi-abelian varieties, in terms of sequences of holomorphic maps from the unit disc.

This generalization implies, among other things, that subvarieties of log general type in semi-abelian varieties are pseudo-Kobayashi hyperbolic.

As another application, we discuss an improvement of a classical theorem due to Cartan in 1920's about the system of nowhere vanishing holomorphic functions on the unit disc satisfying Borel's identity.
[ 参考URL ]
https://forms.gle/hYT2hVhDE3q1wDSh6

2022年06月20日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
対面・オンラインのハイブリッド形式で行います。オンライン参加される場合は参考URLからご登録ください。
丸亀 泰二 氏 (電気通信大学)
Constructions of CR GJMS operators in dimension three (Japanese)
[ 講演概要 ]
CR GJMS operators are invariant differential operators on CR manifolds whose leading parts are powers of the sublaplacian. Such operators can be constructed by Fefferman's ambient metric or the Cheng-Yau metric, but the construction is obstructed at a finite order due to the ambiguity of these metrics. Gover-Graham constructed some higher order CR GJMS operators by using tractor calculus and BGG constructions.  In particular, they showed that three dimensional CR manifolds admit CR GJMS operators of all orders. In this talk, we give proofs to this fact in two different ways. One is by the use of self-dual Einstein ACH metric and the other is by the Graham-Hirachi inhomogeneous ambient metric adapted to the Fefferman conformal structure. We also state a conjecture on the relationship between these two metrics.
[ 参考URL ]
https://forms.gle/hYT2hVhDE3q1wDSh6

2022年05月30日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
対面・オンラインのハイブリッド形式で行います。オンライン参加される場合は参考URLからご登録ください。
千葉 優作 氏 (お茶の水女子大学)
Asymptotic estimates of holomorphic sections on Bohr-Sommerfeld Lagrangian submanifolds (Japanese)
[ 講演概要 ]
In this talk, we study an asymptotic estimate of holomorphic sections of a positive line bundle. Let $M$ be a complex manifold and $L$ be a positive line bundle over $M$ with a Hermitian metric $h$ whose Chern form is a Kähler form $\omega$. Let $X \subset M$ be a Lagrangian submanifold of $(M, \omega)$. When $X$ satisfies the Bohr-Sommerfeld condition, we prove a submean value theorem for holomorphic sections and we give an asymptotic estimate of $\inf_{x \in X}|f(x)|_{h^k}$ for $f \in H^0(M, L^k)$. This estimate provides an analog result about the leading term of the asymptotic series expansion formula of the Bergman kernel function.
[ 参考URL ]
https://forms.gle/hYT2hVhDE3q1wDSh6

2022年04月18日(月)

10:30-12:00   オンライン開催
大沢 健夫 氏 (名古屋大学)
Approximation and bundle convexity on complex manifolds of pseudo convex type (Japanese)
[ 講演概要 ]
An approximation theorem will be proved for the space of holomorphic sections of vector bundles on certain Zariski open sets of weakly 1-complete manifolds. As an existence result on such manifolds, a solution of the bundle-valued version of the Levi problem will be given by a variant of a method of Hoermander.
[ 参考URL ]
https://forms.gle/hYT2hVhDE3q1wDSh6

2022年01月24日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
野口 潤次郎 氏 (東京大学)
Analytic Ax-Schanuel Theorem for semi-abelian varieties and Nevanlinna theory (Japanese)
[ 講演概要 ]
The present study is motivated by $\textit{Schanuel Conjecture}$, which in particular implies the algebraic independence of $e$ and $\pi$. Our aim is to explore, as a transcendental functional analogue of Schanuel Conjecture, the value distribution theory (Nevanlinna theory) of the entire curve $\widehat{\mathrm{ex}}_A f:=(\exp_Af,f):\mathbf{C} \to A \times \mathrm{Lie}(A)$ associated with an entire curve $f: \mathbf{C} \to \mathrm{Lie}(A)$, where $\exp_A:\mathrm{Lie}(A)\to A$ is an exponential map of a semi-abelian variety $A$.

We firstly give a Nevanlinna theoretic proof to the $\textit{analytic Ax-Schanuel Theorem}$ for semi-abelian varieties, which was proved by J. Ax 1972 in the case of formal power series $\mathbf{C}[[t]]$ (Ax-Schanuel Theorem). We assume some non-degeneracy condition for $f$ such that in the case of $A=(\mathbf{C}^*)^n$ and $\mathrm{Lie}((\mathbf{C}^*)^n)=\mathbf{C}^n$, the elements of the vector-valued function $f(z)-f(0)$ are $\mathbf{Q}$-linearly independent. Then by the method of Nevanlinna theory (the Log Bloch-Ochiai Theorem), we prove that $\mathrm{tr.deg}_\mathbf{C}\, \widehat{\mathrm{ex}}_A f \geq n+ 1.$

Secondly, we prove a $\textit{Second Main Theorem}$ for $\widehat{\mathrm{ex}}_A f$ and an algebraic divisor $D$ on $A \times \mathrm{Lie}(A)$ with compactifications $\bar D \subset \bar A \times \overline{\mathrm{Lie}(A)}$ such that
\[
T_{\widehat{\mathrm{ex}}_Af}(r, L({\bar D})) \leq N_1 (r,
(\widehat{\mathrm{ex}}_A f)^* D)+
\varepsilon T_{\exp_Af}(r)+O(\log r) ~~ ||_\varepsilon.
\]
We will also deal with the intersections of $\widehat{\mathrm{ex}}_Af$ with higher codimensional algebraic cycles of $A \times \mathrm{Lie}(A)$ as well as the case of higher jets.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年12月13日(月)

10:30-12:00   オンライン開催
川村 昌也 氏 (香川高等専門学校)
A generalized Hermitian curvature flow on almost Hermitian manifolds (Japanese)
[ 講演概要 ]
It is well-known that the Uniformization theorem (any Riemannian metric on a closed 2-manifold is conformal to one of constant curvature) can be proven by using the Ricci flow. J. Streets and G. Tian questioned whether or not a geometric flow can be used to classify non-Kähler complex surfaces as in the case of the Ricci flow. Also they asked if it is possible to prove classification results in higher dimensions by using geometric flows in non-Kähler Hermitian geometry. Streets and Tian considered that these flows should be close to the Kähler-Ricci flow as much as possible. From this point of view, they introduced a geometric flow called the Hermitian curvature flow (HCF) which evolves an initial Hermitian metric in the direction of a Ricci-type tensor of the Chern connection modified with some lower order torsion terms. Streets and Tian also introduced another geometric flow, which is called the pluriclosed flow (PCF), by choosing torsion terms to preserve the pluriclosed condition on Hermitian metrics. Y. Ustinovskiy studied a particular version of the HCF over a compact Hermitian manifold. Ustinovskiy proved that if the initial metric has Griffiths positive (non-negative) Chern curvature, then this property is preserved along the flow.

In recent years, some results concerning geometric flows on complex manifolds have been extended to the almost complex setting. For instance, L. Vezzoni defined a new Hermitian curvature flow on almost Hermitian manifolds for generalizing some studies on the HCF and the Hermitian Hilbert functional. And J. Chu, V. Tosatti and B. Weinkove considered parabolic Monge-Ampère equation on almost Hermitian manifolds, which is equivalent to the almost complex Chern-Ricci flow. T. Zheng characterized the maximal existence time for a solution to the almost complex Chern-Ricci flow.

In this talk, we consider a generalized Hermitian curvature flow in almost Hermitian geometry and introduce that it has some properties such as the long-time existence obstruction, the uniform equivalence between its solution and an almost Hermitian metric, and the preservation result along the flow.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年11月29日(月)

10:30-12:00   オンライン開催
北岡 旦 氏 (東京大学)
レンズ空間上のRay-Singer捩率とRumin複体のラプラシアン (Japanese)
[ 講演概要 ]
Rumin複体は、接触多様体に関するBernstein-Gelfand-Gelfand複体(BGG複体)である。BGG複体は、放物型幾何やフィルター付き多様体に対して構成される複体であり、BGG複体のコホモロジーはde Rhamコホモロジーに一致するという事が挙げられる。また、Rumin複体はsub-Riemmann極限を考えた際に自然に現れるという性質を持つ。

De Rham複体を使って定義した概念をRumin複体に置き換えるとどうなるのか、ということを考える。本講演では、この考えを解析的捩率に適応した場合を話す。レンズ空間上のユニモジュラーなホロのミーから誘導される平坦ベクトル束に対して、Rumin複体の解析的捩率の値が、Betti数とRay-Singer捩率を用いて表されることを報告する。
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年11月15日(月)

10:30-12:00   オンライン開催
鍋島 克輔 氏 (東京理科大学)
Computing logarithmic vector fields along an isolated singularity and Bruce-Roberts Milnor ideals (Japanese)
[ 講演概要 ]
The concept of logarithmic vector fields along a hypersurface, introduced by K. Saito (1980), is of considerable importance in singularity theory.
Logarithmic vector fields have been extensively studied and utilized by several researchers. A. G. Aleksandrov (1986) and J. Wahl (1983) considered quasihomogeneous complete intersection cases and gave independently, among other things, a closed formula of generators of logarithmic vector fields. However, there is no closed formula for generators of logarithmic vector fields, even for semi-quasihomogeneous hypersurface isolated singularity cases. Many problems related with logarithmic vector fields remain still unsolved, especially for non-quasihomogeneous cases.
Bruce-Roberts Milnor number was introduced in 1988 by J. W. Bruce and R. M. Roberts as a generalization of the Milnor number, a multiplicity of an isolated critical point of a holomorphic function germ. This number is defined for a critical point of a holomorphic function on a singular variety in terms of logarithmic vector fields. Recently, Bruce-Robert Milnor numbers are investigated by several researchers. However, many problems related with Bruce-Roberts Milnor numbers remain unsolved.
In this talk, we consider logarithmic vector fields along a hypersurface with an isolated singularity. We present methods to study complex analytic properties of logarithmic vector fields and illustrate an algorithm for computing logarithmic vector fields. As an application of logarithmic vector fields, we consider Bruce-Roberts Milnor numbers in the context of symbolic computation.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年10月11日(月)

10:30-12:00   オンライン開催
青井 顕宏 氏 (阿武野高等学校)
cscK計量に付随する完備スカラー平坦Kähler計量について (Japanese)
[ 講演概要 ]
複素多様体上のKähler計量であって, そのスカラー曲率が定数となるもの(cscK計量)が存在するか, という問題は非自明であり,極めて重要である.ここでは正則ベクトル場などに対して適当な条件を満たす偏極多様体と, 滑らかな超曲面を考える. 本講演では,この超曲面を無限遠と見做し, それが適当な偏極類にcscK計量を持つ, という境界条件を満たせば,その補集合は漸近錐的完備なスカラー平坦Kähler計量を許容する, という結果について紹介を行い,時間が許す限り関連する問題についても紹介する.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年07月19日(月)

10:30-12:00   オンライン開催
阿部 誠 氏 (広島大学)
$\mathbb{C}^n$上の不分岐Riemann領域に対する中間的擬凸性 (Japanese)
[ 講演概要 ]
The talk is based on a joint work with T. Shima and S. Sugiyama.
We characterize the intermediate pseudoconvexity for unramified Riemann domains over $\mathbb{C}^n$ by the continuity property which holds for a class of maps whose projections to $\mathbb{C}^n$ are families of unidirectionally parameterized intermediate dimensional analytic balls written by polynomials of degree $\le 2$.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年07月12日(月)

10:30-12:00   オンライン開催
松崎 克彦 氏 (早稲田大学)
Parametrization of Weil-Petersson curves on the plane (Japanese)
[ 講演概要 ]
A Weil-Petersson curve is the image of the real line by a quasiconformal homeomorphism of the plane whose complex dilatation is square integrable with respect to the hyperbolic metrics on the upper and the lower half-planes. We consider two parameter spaces of all such curves and show that they are biholomorphically equivalent. As a consequence, we prove that the variant of the Beurling-Ahlfors quasiconformal extension defined by using the heat kernel for the convolution yields a global real-analytic section for the Teichmueller projection to the Weil-Petersson Teichmueller space. This is a joint work with Huaying Wei.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年07月05日(月)

10:30-12:00   オンライン開催
新田 泰文 氏 (東京理科大学)
Several stronger concepts of relative K-stability for polarized toric manifolds (Japanese)
[ 講演概要 ]
We study relations between algebro-geometric stabilities for polarized toric manifolds. In this talk, we introduce several strengthenings of relative K-stability such as uniform stability and K-stability tested by more objects than test configurations, and show that these approaches are all equivalent. As a consequence, we solve a uniform version of the Yau-Tian-Donaldson conjecture for Calabi's extremal Kähler metrics in the toric setting. This talk is based on a joint work with Shunsuke Saito.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年06月28日(月)

10:30-12:00   オンライン開催
奥山 裕介 氏 (京都工芸繊維大学)
Orevkov's theorem, Bézout's theorem, and the converse of Brolin's theorem (Japanese)
[ 講演概要 ]
The converse of Brolin's theorem was a problem on characterizing polynomials among rational functions (on the complex projective line) in terms of the equilibrium measures canonically associated to rational functions. We would talk about a history on the studies of this problem, its optimal solution, and a proof outline. The proof is reduced to Bézout's theorem from algebraic geometry, thanks to Orevkov's irreducibility theorem on polynomial lemniscates. This talk is based on joint works with Małgorzata Stawiska (Mathematical Reviews).
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年06月14日(月)

10:30-12:00   オンライン開催
小池 貴之 氏 (大阪市立大学)
Projective K3 surfaces containing Levi-flat hypersurfaces (Japanese)
[ 講演概要 ]
In May 2017, I reported on the gluing construction of a K3 surface at Seminar on Geometric Complex Analysis.
Here, by the gluing construction of a K3 surface, I mean the construction of a K3 surface by holomorphically gluing two open complex surfaces which are the complements of tubular neighborhoods of elliptic curves included in the blow-ups of the projective planes by nine points.
As of 2017, it was an open problem whether a projective K3 surface can be obtained by the gluing construction. Recently, I and Takato Uehara found a very concrete way to construct a projective K3 surface by the gluing method. As a corollary, we obtained the existence of non-Kummer projective K3 surface with compact Levi-flat hypersurfaces.
In this talk, I will explain the detail of the concrete gluing construction of such a K3 surface.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年06月07日(月)

10:30-12:00   オンライン開催
馬場 蔵人 氏 (東京理科大学)
Calabi-Yau structure and Bargmann type transformation on the Cayley projective plane (Japanese)
[ 講演概要 ]
In this talk, I would like to discuss a problem of the geometric quantization for the Cayley projective plane. Our purposes are to show the existence of a Calabi-Yau structure on the punctured cotangent bundle of the Cayley projective plane, and to construct a Bargmann type transformation between a space of holomorphic functions on the bundle and the $L_2$-space on the Cayley projective space. The transformation gives a quantization of the geodesic flow in terms of one parameter group of elliptic Fourier integral operators. This talk is based on a joint work with Kenro Furutani (Osaka City University Advanced Mathematical Institute): arXiv:2101.07505.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年05月31日(月)

10:30-12:00   オンライン開催
竹内 有哉 氏 (筑波大学)
Nonnegativity of the CR Paneitz operator for embeddable CR manifolds (Japanese)
[ 講演概要 ]
The CR Paneitz operator, which is a fourth-order CR invariant differential operator, plays a crucial role in three-dimensional CR geometry; it is deeply connected to global embeddability and the CR positive mass theorem. In this talk, I will show that the CR Paneitz operator is nonnegative for embeddable CR manifolds. I will also apply this result to some problems in CR geometry. In particular, I will give an affirmative solution to the CR Yamabe problem for embeddable CR manifolds.
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年05月24日(月)

10:30-12:00   オンライン開催
林本 厚志 氏 (長野工業高等専門学校)
Cartan-Hartogs領域の固有正則写像 (Japanese)
[ 講演概要 ]
2つの球の間の固有正則写像は自己同型写像である。球を別の領域にしたらどうなるかを調べたい。球の一般化として複素擬楕円体や有界対称領域が考えられる。これら2つの領域を合わせた領域としてHua領域がある。これは有界対称領域の上に複素擬楕円体が乗っているような領域である。Hua領域の一番簡単な場合としてCartan-Hartogs領域があり、これらの間の固有正則写像の分類問題を考える。分類すると本質的には1種類の写像しかないことが分かる。ここでは2つの多項式写像が自己同型写像の差を省いて一致すれば、Isotoropy写像の差を省いて一致することを使う。
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年05月10日(月)

10:30-12:00   オンライン開催
粕谷 直彦 氏 (北海道大学)
強擬凹複素曲面の境界に現れる接触構造 (Japanese)
[ 講演概要 ]
強擬凸複素曲面の境界は3次元強擬凸CR多様体であり、正の接触構造を誘導する。BogomolovとDe Oliveiraは強擬凸複素曲面の境界に現れる接触構造はStein fillableであること(CR構造としては、Stein fillableなものに変形同値であること)を示した。

一方、強擬凹複素曲面の境界には負の3次元接触構造が現れる。本講演では、任意の負の3次元閉接触多様体が強擬凹複素曲面の境界として実現可能であることを示す。証明は、EliashbergによるStein manifoldの構成法を参考にして強擬凹境界への正則ハンドルの接着手法を確立することによってなされる。

尚、本講演内容はDaniele Zuddas氏(トリエステ大学)との共同研究である。
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年04月26日(月)

10:30-12:00   オンライン開催
今井 淳 氏 (千葉大学)
多様体の留数 (Japanese)
[ 講演概要 ]
$M$を多様体、$z$を複素数とし、$M$の二点間の距離の$z$乗を積空間$M\times M$上積分したものを考えると、$z$の実部が大きいところで$z$の正則関数になる。解析接続により複素平面上の有理関数で1位の極のみ持つものが得られる。この有理型関数、特にその留数の性質を紹介する。具体的には、メビウス不変性、留数と似た量(曲面のWillmoreエネルギー、4次元多様体のGraham-Wittenエネルギー、積分幾何で出てくる内在的体積、ラプラシアンのスペクトルなど)との比較、有理型関数・留数による多様体の同定問題などを扱う。
参考資料:https://sites.google.com/site/junohara/ ダウンロード 「多様体のエネルギーと留数」(少し古い), arXiv:2012.01713
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

2021年04月19日(月)

10:30-12:00   オンライン開催
馬 昭平 氏 (東京工業大学)
カスプと有理同値 (Japanese)
[ 講演概要 ]
標題の「カスプ」とはいわゆるモジュラー多様体の(ベイリー・ボレル)コンパクト化の境界成分のことである。
1970年代にマニンとドリンフェルトは合同モジュラー曲線の2つのカスプの差がピカール群において有限位数であることを発見した。
代数サイクルの観点からこの現象の高次元版をいくつか古典的な系列のモジュラー多様体の(ベイリー・ボレル、トロイダル)コンパクト化に対して調べたので、それについて報告する。
[ 参考URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB

12345678910111213141516 次へ >