複素解析幾何セミナー

過去の記録 ~07/18次回の予定今後の予定 07/19~

開催情報 月曜日 10:30~12:00 数理科学研究科棟(駒場) 128号室
担当者 平地 健吾, 高山 茂晴

過去の記録

2019年07月08日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
金子 宏 氏 (東京理科大学)
荷重つき無限グラフにおけるリーマン-ロッホの定理 (Japanese)
[ 講演概要 ]
A Riemann-Roch theorem on a connected finite graph was initiated by M. Baker and S. Norine, where connected graph with finite vertices was investigated and unit weight was given on each edge and vertex of the graph. Since a counterpart of the lowest exponents of the complex variable in the Laurent series was proposed as divisor for the Riemann-Roch theorem on graph, its relationships with tropical geometry were highlighted earlier than other complex analytical observations on graphs. On the other hand, M. Baker and F. Shokrieh revealed tight relationships between chip-firing games and potential theory on graphs, by characterizing reduced divisors on graphs as the solution to an energy minimization problem. The objective of this talk is to establish a Riemann-Roch theorem on an edge-weighted infinite graph. We introduce vertex weight assigned by the given weights of adjacent edges other than the units for expression of divisors and assume finiteness of total mass of graph. This is a joint work with A. Atsuji.

2019年07月01日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
Yeping Zhang 氏 (京都大学)
BCOV invariant and birational equivalence (English)
[ 講演概要 ]
Bershadsky, Cecotti, Ooguri and Vafa constructed a real valued invariant for Calabi-Yau manifolds, which is now called BCOV invariant. Now we consider a pair (X,Y), where X is a Kaehler manifold and $Y ¥subseteq X$ is a canonical divisor. In this talk, we extend the BCOV invariant to such pairs. The extended BCOV invariant is well-behaved under birational equivalence. We expect that these considerations may eventually lead to a positive answer to Yoshikawa's conjecture that the BCOV invariant for Calabi-Yau threefold is a birational invariant.

2019年06月24日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
山盛 厚伺 氏 (工学院大学)
A certain holomorphic invariant and its applications (Japanese)
[ 講演概要 ]
In this talk, we first explain a Bergman geometric proof of inequivalence of the unit ball and the bidisk. In this proof, the homogeneity of the domains plays a substantial role. We next explain a recent attempt to extend our method for non-homogeneous cases.

2019年06月17日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
Andrei Pajitnov 氏 (Universite de Nantes)
Inoue surfaces and their generalizations (English)
[ 講演概要 ]
In 1972 M. Inoue constructed complex non-algebraic surfaces that proved very important for classification of surfaces via the Enriques-Kodaira scheme. Inoue surface is the quotient of H ¥times C by action of a discreet group associated to a given matrix in SL(3, Z). In 2005 K. Oeljeklaus and M. Toma generalized Inoue’s construction to higher dimensions. Oeljeklaus-Toma manifold is the quotient of H^s ¥times C^n by action of a discreet group, associated to the maximal order of a given algebraic number field.
In this talk, I will give a brief overview of these works and related results. Then I will discuss a new generalization of Inoue surfaces to higher dimensions. The manifold in question is the quotient of H ¥times C^n by action of a discreet group associated to a given matrix in SL(2n+1, Z). This is joint work with Hisaaki Endo.

2019年05月27日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
小池 貴之 氏 (大阪市立大学)
Gluing construction of K3 surfaces (Japanese)
[ 講演概要 ]
Arnol'd showed the uniqueness of the complex analytic structure of a small neighborhood of an elliptic curve embedded in a surface whose normal bundle satisfies "Diophantine condition" in the Picard variety. By applying this theorem, we construct a K3 surface by holomorphically patching two open complex surfaces obtained as the complements of tubular neighborhoods of anti-canonical curves of blow-ups of the projective planes at general nine points. Our construction has 19 complex dimensional degrees of freedom. For general parameters, the resulting K3 surface is neither Kummer nor projective. By the argument based on the concrete computation of the period map, we also investigate which points in the period domain correspond to K3 surfaces obtained by such construction. (Based on joint work with Takato Uehara)

2019年05月20日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
奥間 智弘 氏 (山形大学)
Cohomology and normal reduction numbers of normal surface singularities (Japanese)
[ 講演概要 ]
The normal reduction number of a normal surface singularity relates the maximal degree of the generators of associated graded algebra for certain line bundles on resolution spaces. We show fundamental properties of this invariant and formulas for some special cases. This talk is based on the joint work with Kei-ichi Watanabe and Ken-ichi Yoshida.

2019年05月13日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
只野 誉 氏 (東京理科大学)
Some Bonnet--Myers Type Theorems for Transverse Ricci Solitons on Complete Sasaki Manifolds (Japanese)
[ 講演概要 ]
The aim of this talk is to discuss the compactness of complete Ricci solitons and its generalizations. Ricci solitons were introduced by R. Hamilton in 1982 and are natural generalizations of Einstein manifolds. They correspond to self-similar solutions to the Ricci flow and often arise as singularity models of the flow. The importance of Ricci solitons was demonstrated by G. Perelman, where they played crucial roles in his affirmative resolution of the Poincare conjecture.
In this talk, after we review basic facts on Ricci solitons, I would like to introduce some Bonnet--Myers type theorems for complete Ricci solitons. Our results generalize the previous Bonnet--Myers type theorems due to W. Ambrose (1957), J. Cheeger, M. Gromov, and M. Taylor (1982), M. Fernandez-Lopez and E. Garcia-Rio (2008), M. Limoncu (2010, 2012), Z. Qian (1997), Y. Soylu (2017), and G. Wei and W. Wylie (2009). Moreover, I would also like to extend such Bonnet--Myers type theorems to the case of transverse Ricci solitons on complete Sasaki manifolds. Our results generalize the previous Bonnet--Myers type theorems for complete Sasaki manifolds due to I. Hasegawa and M. Seino (1981) and Y. Nitta (2009).

2019年04月22日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
久本 智之 氏 (名古屋大学)
Optimal destabilizer for a Fano manifold (Japanese)
[ 講演概要 ]
Around 2005, S. Donaldson asked whether the lower bound of the Calabi functional is achieved by a sequence of the normalized Donaldson-Futaki invariants.
For a Fano manifold we construct a sequence of multiplier ideal sheaves from a new geometric flow and answer to Donaldson's question.

2019年04月15日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
大沢 健夫 氏 (名古屋大学)
ある種の完備ケーラー多様体上のL2評価とその応用 (Japanese)
[ 講演概要 ]
しばらく前にL2拡張定理の応用として西野の剛性定理の別証を得たが, 最近これがL2消滅定理だけからも導けることが判明した. その結果, 剛性定理がシュタイン族に対してだけでなく完備ケーラー族に対しても成立することが わかった. この議論を用いると, ある種の完備ケーラー多様体が二つの多様体の直積に分解するための一つの条件を書くことができる. また, 同様の方法によりRadoの定理を高次元に一般化することが可能になる.

2019年01月28日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
大野乾太郎 氏 (東京大学)
Minimizing CM degree and slope stability of projective varieties (JAPANESE)
[ 講演概要 ]
Chow-Mumford (CM) line bundle is considered to play an important role in moduli problem for K-stable Fano varieties. In this talk, we consider a minimization problem of the degree of the CM line bundle among all possible fillings of a polarized family over a punctured curve. We show that such minimization implies the slope semistability of the fiber if the central fiber is smooth.

2019年01月21日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
Nicholas James McCleerey 氏 (Northwestern University)
POLAR TRANSFORM AND LOCAL POSITIVITY FOR CURVES (ENGLISH)
[ 講演概要 ]
Using the duality of positive cones, we show that applying the polar transform from convexanalysis to local positivity invariants for divisors gives interesting and new local positivity invariantsfor curves. These new invariants have nice properties similar to those for divisors. In particular, thisenables us to give a characterization of the divisorial components of the non-K¨ahler locus of a big class. This is joint worth with Jian Xiao.

2018年12月17日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
神本丈 氏 (九州大学)
Newton polyhedra and order of contact on real hypersurfaces (JAPANESE)
[ 講演概要 ]
This talk will concern some issues on order of contact on real hypersurfaces, which was introduced by D'Angelo. To be more precise, a sufficient condition for the equality of regular type and singular type is given. This condition is written by using the Newton polyhedron of a defining function. Our result includes earlier known results concerning convex domains, pseudoconvex Reinhardt domains and pseudoconvex domains whose regular types are 4. Furthermore, under the above condition, the values of the types can be directly seen in a simple geometrical information from the Newton polyhedron.

The technique of using Newton polyhedra has many significant applications in singularity theory. In particular, this technique has been great success in the study of the Lojasiewicz exponent. Our study about the types is analogous to some works on the Lojasiewicz exponent.

2018年12月03日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
細野元気 氏 (東京大学)
多変数関数論における変動理論 (JAPANESE)
[ 講演概要 ]
関数論において、領域の擬凸変動に関する様々な量の劣調和性が知られている。例えば、山口によるRobin定数の変動、米谷-山口によるBergman核の変動が知られている。また、Bergman核の変動理論のある種の一般化として、Berndtssonにより、$L^2$正則関数のなす空間の変動に関する正曲率性が知られている。これらの理論は$L^2$拡張定理とも深い関係が知られており、その意味でも興味深い。本講演では、これらの理論に関して知られている結果を紹介し、Robin定数の変動問題の多変数化として東川擬距離の変動問題についての考察を行う。

2018年11月26日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
糟谷久矢 氏 (大阪大学)
DGA-Models of variations of mixed Hodge structures (JAPANESE)
[ 講演概要 ]
Mixed Hodge structureは(Projectiveとは限らない)代数多様体のコホモロジー等に現れる非常に重要な構造です。Variations of mixed Hodge structures(VMHS)とは複素多様体をパラメーターとして複素幾何学的に良い振る舞いをしながら変化するMixed Hodge structureたちのことです。今回のお話ではこのVMHSの代数的なモデルについて考えてみたいと思いいます。具体的にはMorganの Mixed Hodge diagramと呼ばれるケーラー多様体のde Rham複体(あるいは対数的 de Rham複体)を積構造込みで模した代数的な対象に対して、”(Unipotent)VMHSのようなもの"を定義します。このVMHSのようなものは純粋に代数的に定義されたものであるため、本来のVMHSのようにベースとなる空間のパラメーターごとにMixed Hodge structureをとる(ファイバーをとる)ことを自然にはできません。本講演ではこの"VMHSのようなもの”からいかにファイバーを取るかということをメインテーマにしてお話ししたいと思います。さらに時間があれば、本結果の幾何学的応用についてもお話ししたいと思います。特に今回の結果によりMorganのMixed Hodge structureとHainのMixed Hodge structureの深い関係が見えることをお話ししたいと思います。

2018年11月19日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
Gerard Freixas i Montplet 氏 (Centre National de la Recherche Scientifique)
BCOV invariants of Calabi-Yau varieties (ENGLISH)
[ 講演概要 ]
The BCOV invariant of Calabi-Yau threefolds was introduced by Fang-Lu-Yoshikawa, themselves inspired by physicists Bershadsky-Cecotti-Ooguri-Vafa. It is a real number, obtained from a combination of holomorphic analytic torsion, and suitably normalized so that it only depends on the complex structure of the threefold. It is conjecturaly expected to encode genus 1 Gromov-Witten invariants of a mirror Calabi-Yau threefold. In order to confirm this prediction for a remarkable example, Fang-Lu-Yoshikawa studied the asymptotic behavior for degenerating families of Calabi-Yau threefolds acquiring at most ordinary double point (ODP) singularities. Their methods rely on former results by Yoshikawa on the singularities of Quillen metrics, together with more classical arguments in the theory of degenerations of Hodge structures and Hodge metrics. In this talk I will present joint work with Dennis Eriksson (Chalmers) and Christophe Mourougane (Rennes), where we extend the construction of the BCOV invariant to any dimension and we give precise asymptotic formulas for degenerating families of Calabi-Yau manifolds. Under several hypothesis on the geometry of the singularities acquired, our general formulas drastically simplify and prove some conjectures or predictions in the literature (Liu-Xia for semi-stable minimal families in dimension 3, Klemm-Pandharipande for ODP singularities in dimension 4, etc.). For this, we slightly improve Yoshikawa's results on the singularities of Quillen metrics, and we also provide a complement to Schmid's asymptotics of Hodge metrics when the monodromy transformations are non-unipotent.

2018年11月05日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
志賀啓成 氏 (東京工業大学)
On the quasiconformal equivalence of Dynamical Cantor sets (JAPANESE)
[ 講演概要 ]
Let $E$ be a Cantor set in the Riemann sphere $\widehat{\mathbb C}$, that is, a totally disconnected perfect set in $\widehat{\mathbb C}$.
The standard middle one-thirds Cantor set $\mathcal{C}$ is a typical example.
We consider the complement $X_{E}:=\widehat{\mathbb C}\setminus E$ of the Cantor set $E$.
It is an open Riemann surface with uncountable many boundary components.
We are interested in the quasiconformal equivalence of such surfaces.

In this talk, we discuss the quasiconformal equivalence for the complements of Cantor sets given by dynamical systems.

2018年10月29日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
松村慎一 氏 (東北大学)
On morphisms of compact Kaehler manifolds with semi-positive holomorphic sectional curvature (JAPANESE)
[ 講演概要 ]
In this talk, we consider a smooth projective variety $X$ with semi-positive holomorphic "sectional" curvature, motivated by generalizing Howard-Smyth-Wu's structure theorem and Mok's result for compact Kaehler manifold with semi-positive "bisectional" curvature.
We prove that, if $X$ admits a holomorphic maximally rationally connected fibration $X ¥to Y$, then the morphism is always smooth (that is, a submersion), that the image $Y$ admits a finite ¥'etale cover $T ¥to Y$ by a complex
torus $T$, and further that all the fibers $F$ are isomorphic.
This gives a structure theorem for $X$ when $X$ is a surface.
Moreover we show that $X$ is rationally connected, if the holomorphic sectional curvature is quasi-positive.
This result gives a generalization of Yau's conjecture.

2018年10月22日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
足立真訓 氏 (静岡大学)
On certain hyperconvex manifolds without non-constant bounded holomorphic functions (JAPANESE)
[ 講演概要 ]
For each compact Riemann surface of genus > 1, we can construct a Riemann sphere bundle over the given Riemann surface using the projective structure induced by its uniformization.
The total space of this bundle is divided into two 1-convex domains by a closed Levi-flat real hypersurface. Although these two domains are not biholomorphic, we see that they have several function theoretic properties in common. In this talk, I would like to explain these common properties: hyperconvexity and expressions for certain Green function, and Liouville property and growth estimates of holomorphic functions.

2018年10月15日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
堀田一敬 氏 (山口大学)
Recent problems on Loewner theory (JAPANESE)
[ 講演概要 ]
Loewner Theory, which goes back to the parametric representation of univalent functions introduced by Loewner in 1923, has recently undergone significant development in various directions, including Schramm’s stochastic version of the Loewner differential equation and the new intrinsic approach suggested by Bracci, Contreras, Diaz-Madrigal and Gumenyuk.

In this talk, we firstly review the theory of Loewner equations in classical and modern treatments. Then we discuss some recent problems on the theory:
(i) Quasiconformal extensions of Loewner chains;
(ii) Hydrodynamics of multiple SLE.

2018年07月23日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
Filippo Bracci 氏 (University of Rome Tor Vergata)
Strange Fatou components of automorphisms of $\mathbb{C}^2$ and Runge embedding of $\mathbb{C} \times \mathbb{C}^*$ into $\mathbb{C}^2$. (ENGLISH)
[ 講演概要 ]
The classification of Fatou components for automorphisms of the complex space of dimension greater than $1$ is an interesting and difficult task. Recent deep results prove that the one-dimensional setting is deeply different from the higher dimensional one. Given an automorphism F of $\mathbb{C}^k$, the first bricks in the theory that one would like to understand are invariant Fatou components, namely, those connected open sets $U$, completely invariant under $F$, where the dynamics of $F$ is not chaotic. Among those, we consider “attracting” Fatou components, that is, those components on which the iterates of $F$ converge to a single point. Attracting Fatou components can be recurrent, if the limit point is inside the component or non-recurrent. Recurrent attracting Fatou components are always biholomorphic to $\mathbb{C}^k$, since it was proved by H. Peters, L. Vivas and E. F. Wold that in such a case the point is an attracting (hyperbolic) fixed point, and the Fatou component coincides with the global basin of attraction. Also, as a consequence of works of Ueda and Peters-Lyubich, it is know that all attracting non-recurrent Fatou components of polynomial automorphisms of $\mathbb{C}^2$ are biholomorphic to $\mathbb{C}^2$. One can quite easily find non-simply connected non-recurrent attracting Fatou components in $\mathbb{C}^3$ (mixing a two- dimensional dynamics with a dynamics with non-isolated fixed points in one- variable). In this talk I will explain how to construct a non-recurrent attracting Fatou component in $\mathbb{C}^2$ which is biholomorphic to $\mathbb{C}\times\mathbb{C}^*$. This“fantastic beast” is obtained by globalizing, using a result of F. Forstneric, a local construction due to the speaker and Zaitsev, which allows to create a global basin of attraction for an automorphism, and a Fatou coordinate on it. The Fatou coordinate turns out to be a fiber bundle map on $\mathbb{C}$, whose fiber is $\mathbb{C}^*$, then the global basin is biholomorphic to $\mathbb{C}\times\mathbb{C}^*$. The most subtle point is to show that such a basin is indeed a Fatou component. This is done exploiting Poschel's results about existence of local Siegel discs and suitable estimates for the Kobayashi distance.

Since attracting Fatou components are Runge, it turns out that this construction gives also an example of a Runge embedding of $\mathbb{C}\times\mathbb{C}^*$ into $\mathbb{C}^2$. Moreover, this example shows an automorphism of $\mathbb{C}^2$ leaving invariant two analytic discs intersecting transversally at the origin.

The talk is based on a joint work with J. Raissy and B. Stensones.

2018年07月09日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
Casey Kelleher 氏 (Princeton University)
Rigidity results for symplectic curvature flow (ENGLISH)
[ 講演概要 ]
We continue studying a parabolic flow of almost Kähler structure introduced by Streets and Tian which naturally extends Kähler-Ricci flow onto symplectic manifolds. In a system consisting primarily of quantities related to the Chern connection we establish clean formulas for the evolutions of canonical objects. Using this we give an extended characterization of fixed points of the flow.

2018年07月02日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
松崎克彦 氏 (早稲田大学)
Rigidity of certain groups of circle homeomorphisms and Teichmueller spaces (JAPANESE)
[ 講演概要 ]
In this talk, I explain a complex analytic method and its applications for the study of quasisymmetric homeomorphisms of the circle by extending them to the unit disk quasi-conformally. In RIMS conference "Open Problems in Complex Geometry'' held in 2010, I gave a talk entitled "Problems on infinite dimensional Teichmueller spaces", and mentioned several problems on the fixed points of group actions on the universal Teichmueller space and its subspaces, and the rigidity of conjugation of certain groups of circle homeomorphisms. I will report on the development of these problems since then.

2018年06月25日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
Stephen McKeown 氏 (Princeton University)
Cornered Asymptotically Hyperbolic Spaces
[ 講演概要 ]
This talk will concern cornered asymptotically hyperbolic spaces, which have a finite boundary in addition to the usual infinite boundary. I will first describe the construction a normal form near the corner for these spaces. Then I will discuss formal existence and uniqueness, near the corner, of asymptotically hyperbolic Einstein metrics, with a CMC-umbilic condition imposed on the finite boundary. This is analogous to the Fefferman-Graham construction for the ordinary, non-cornered setting. Finally, I will present work in progress regarding scattering on such spaces.

2018年06月11日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
千葉 優作 氏 (お茶の水女子大学)
Cohomology of non-pluriharmonic loci (JAPANESE)
[ 講演概要 ]
In this talk, we study a pseudoconvex counterpart of the Lefschetz hyperplane theorem.
We show a relation between the cohomology of a pseudoconvex domain and the cohomology of the non-pluriharmonic locus of an exhaustive plurisubharmonic function.

2018年06月04日(月)

10:30-12:00   数理科学研究科棟(駒場) 128号室
野口潤次郎 氏 (東京大学)
Picardの大定理とManin-Mumford予想(Raynaudの定理) (JAPANESE)
[ 講演概要 ]
Manin-Mumford予想とは,関数体上のMordell予想が解決された後の1960年代後半にManinとMumfordにより(独立に)提示されたもので1983年にM. Raynaudにより『代数体上定義されたアーベル多様体の代数的部分空間$X$内のトージョン点集合$X_{tor}$の$\mathbb{Z}$-閉包は部分群の平行移動の有限和である』という形で解決された.この結果は内容の深さからか多くの研究者の関心を呼び、その後,一般化や種々の別証明がM. Hindry ('88), E. Hrushovski ('96), Pila-Zannier ('08)等により与えられてきた.最後のPila-Zannierがここでの話に関係する.
本講演では,準アーベル多様体に対し拡張されたPicardの大定理(N. '81)を用いて上記Manin-Mumford予想(Raynaudの定理)を準アーベル多様体の場合に証明する.
Nevanlinna理論とDiophantus幾何については,これまで類似の観点からの議論・成果が多くあったが,今回の結果は証明レベルでの直接的な関係で,この様な関係を講演者は永く求めてきた(missing link).その意味で今般の知見は新しいもものであると思う.両理論の間をモデル理論の"o-minimal sets 理論''が取り持つ点も興味深いところと思う.

1234567891011121314 次へ >