All the papers in MathSciNet with Reviews

Author Citations for Y. Kawahigashi on MathSciNet

LaTeX file of the list PDF file of the list

- List of publications
- [1] Centrally ergodic one-parameter automorphism groups
on semifinite injective von Neumann algebras,
*Math. Scand.*64 (1989), 285-299. PDF file MathScand website MathSciNet[2] One-parameter automorphism groups of the hyperfinite type II

_{1}factor,*J. Operator Theory*25 (1991), 37-59. PDF file JOT website MathSciNet[3] One-parameter automorphism groups of the injective II

_{1}factor arising from the irrational rotation C^{*}-algebra,*Amer. J. Math.*112 (1990), 499-524. PDF file JSTOR MathSciNet[4] One-parameter automorphism groups of the injective II

_{1}factor with Connes spectrum zero,*Canad. J. Math.*43 (1991), 108-118. PDF file CJM site MathSciNet[5] (with C. E. Sutherland, M. Takesaki) The structure of the automorphism group of an injective factor and the cocycle conjugacy of discrete abelian group actions,

*Acta Math.*169 (1992), 105-130. PDF file Springer LINK MathSciNet[6] Cohomology of actions of discrete groups on factors of type II

_{1},*Pacific J. Math.*149 (1991), 303-317. PDF file Project Euclid MathSciNet[7] (with M. Takesaki) Compact abelian group actions on injective factors,

*J. Funct. Anal.*105 (1992), 112-128. PDF file ScienceDirect MathSciNet[8] Automorphisms commuting with a conditional expectation onto a subfactor with finite index,

*J. Operator Theory*28 (1992), 127-145. PDF file JOT website MathSciNet[9] Group actions on injective factors,

"Current Topics in Operator Algebras", World Scientific Publishing, (1991), 2-12. PDF file MathSciNet[10] On flatness of Ocneanu's connections on the Dynkin diagrams and classification of subfactors,

*J. Funct. Anal.*127 (1995), 63-107. PDF file ScienceDirect MathSciNet[11] (with M. Izumi) Classification of subfactors with the principal graph D

_{n}^{(1)},*J. Funct. Anal.*112 (1993), 257-286. PDF file ScienceDirect MathSciNet[12] Exactly solvable orbifold models and subfactors,

"Functional Analysis and Related Topics", Lect. Notes in Math. 1540, Springer Verlag, (1992), 127-147. PDF file Springer LINK MathSciNet[13] (with D. E. Evans) Orbifold subfactors from Hecke algebras,

*Commun. Math. Phys.*165 (1994), 445-484. PDF file Project Euclid MathSciNet[14] Centrally trivial automorphisms and an analogue of Connes's χ(M) for subfactors,

*Duke Math. J.*71 (1993), 93-118. PDF file Porject Euclid MathSciNet[15] (with D. E. Evans) From subfactors to 3-dimensional topological quantum field theories and back --- a detailed account of Ocneanu's theory ---,

*Internat. J. Math.*6 (1995), 537-558. PDF file IJM website MathSciNet[16] (with D. E. Evans) Subfactors and conformal field theory,

"Quantum and non-commutative analysis", Kluwer Academic (1993), 341-369. PDF file MathSciNet[17] (with D. E. Evans) The E

_{7}commuting squares produce D_{10}as principal graph,*Publ. RIMS Kyoto Univ.*30 (1994), 151-166. PDF file EMS MathSciNet[18] Classification of paragroup actions on subfactors,

*Publ. RIMS Kyoto Univ.*31 (1995), 481-517. PDF file EMS MathSciNet[19] Paragroups and their actions on subfactors,

"Subfactors", World Scientific (1994), 64-84. PDF file MathSciNet[20] Paragroups as quantized Galois groups of subfactors,

*Sugaku Exp.*9 (1996), 21-35. (Translation of the original Japanese articile in Sugaku 45 (1993), 346-358.) PDF file MathSciNet[21] (with D. E. Evans) On Ocneanu's theory of asymptotic inclusions for subfactors, topological quantum field theories and quantum doubles,

*Internat. J. Math.*6 (1995), 205-228. PDF file IJM website MathSciNet[22] Orbifold subfactors, central sequences, and the relative Jones invariant kappa,

*Internat. Math. Res. Notices*(1995), 129-140. PDF file Oxford website MathSciNet[23] Classification of approximately inner automorphisms of subfactors,

*Math. Ann.*308 (1997), 425-438. PDF file Springer LINK MathSciNet[24] (with D. E. Evans) "Quantum symmetries on operator algebras" (848 pages),

Oxford University Press, 1998. MathSciNet[25] (with D. E. Evans) Orbifold subfactors from Hecke algebras II,

*Commun. Math. Phys.*196 (1998), 331-361. PDF file funct-an/9702018 Springer LINK MathSciNet[26] Quantum doubles and orbifold subfactors,

"Operator Algebras and Quantum Field Theory", S. Doplicher, R. Longo, J. Roberts, L. Zsido eds, International Press (1997), 271-283. PDF file MathSciNet[27] Subfactors and paragroup theory,

"Operator Algebras and Operator Theory", (Contemp. Math. 228) (1998), 179-188. PDF file MathSciNet[28] Quantum Galois correspondence for subfactors,

*J. Funct. Anal.*167 (1999), 481-497. PDF file ScienceDirect Academic Press IDEAL MathSciNet[29] (with J. Böckenhauer, D. E. Evans) On α-induction, chiral generators and modular invariants for subfactors,

*Commun. Math. Phys.*208 (1999), 429-487. PDF file math.OA/9904109 Springer LINK MathSciNet[30] (with R. Longo, M. Müger) Multi-interval subfactors and modularity of representations in conformal field theory,

*Commun. Math. Phys.*219 (2001), 631-669. PDF file math.OA/9903104 Springer LINK MathSciNet[31] (with J. Böckenhauer, D. E. Evans) Chiral structure of modular invariants for subfactors,

*Commun. Math. Phys.*210 (2000), 733-784. PDF file math.OA/9907149 Springer LINK MathSciNet[32] (with J. Böckenhauer, D. E. Evans) Longo-Rehren subfactors arising from α-induction,

*Publ. RIMS Kyoto Univ.*37 (2001), 1-35. PDF file math.OA/0002154 EMS MathSciNet[33] Braiding and nets of factors on the circle,

"Operator Algebras and Applications", H. Kosaki, ed. Adv. Stud. Pure Math. 38 (2004), 219-228. PDF file MathSciNet[34] Braiding and extensions of endomorphisms of subfactors,

"Mathematical Physics in Mathematics and Physics", R. Longo ed., The Fields Institute Communications 30, AMS Publications (2001), 261-269. PDF file MathSciNet[35] Generalized Longo-Rehren subfactors and α-induction,

*Commun. Math. Phys.*226 (2002), 269-287. PDF file math.OA/0107127 Springer LINK MathSciNet[36] (with R. Longo) Classification of local conformal nets: Case c < 1,

*Ann. of Math.*160 (2004), 493-522. PDF file math-ph/0201015 Annals website MathSciNet[37] Conformal quantum field theory and subfactors,

*Acta Math. Sin.*19 (2003), 557-566. PDF file Springer LINK MathSciNet[38] (with N. Sato, M. Wakui) (2+1)-dimensional topological quantum field theory from subfactors and Dehn surgery formula for 3-manifold invariants,

*Adv. Math.*195 (2005), 165-204. math.OA/0208238. ScienceDirect MathSciNet[39] Classification of operator algebraic conformal field theories,

"Advances in Quantum Dynamics", Contemp. Math. 335 (2003), 183-193. PDF file math.OA/0211141 MathSciNet[40] (with R. Longo) Classification of two-dimensional local conformal nets with c < 1 and 2-cohomology vanishing for tensor categories,

*Commun. Math. Phys.*244 (2004), 63-97. PDF file math-ph/0304022 Springer LINK MathSciNet[41] Subfactor theory and its applications --- operator algebras and quantum field theory ---,

"Selected Papers on Differential Equations Analysis", Amer. Math. Soc. Transl. 215, Amer. Math. Soc. (2005), 97-108. PDF file MathSciNet[42] Topological quantum field theories and operator algebras,

"Quantum Field Theory and Noncommutative Geometry", Lect. Notes in Phys. 662, Springer Verlag (2005), 241-253. PDF file math.OA/0306112 Springer LINK MathSciNet[43] Classification of operator algebraic conformal field theories in dimensions one and two,

"XIVth International Congress on Mathematical Physics", 476-485, World Scientific (2005). PDF file math-ph/0308029 MathSciNet[44] (with R. Longo) Noncommutative spectral invariants and black hole entropy,

*Commun. Math. Phys.*257 (2005), 193-225. PDF file math-ph/0405037 Springer LINK MathSciNet[45] (with R. Longo) Local conformal nets arising from framed vertex operator algebras,

*Adv. Math.*206 (2006), 729-751. PDF file math.OA/0407263 ScienceDirect MathSciNet[46] (with R. Longo, U. Pennig, K.-H. Rehren) Classification of non-local chiral CFT with c<1,

*Commun. Math. Phys.*271 (2007), 375-385. PDF file math.OA/0505130 Springer LINK MathSciNet[47] Conformal field theory and operator algebras,

"New Trends in Mathematical Physics", Springer (2009), 345-356. PDF file arXiv:0704.0097 Springer LINK[48] (with S. Carpi, R. Longo) Structure and classification of superconformal nets,

*Ann. Henri Poincaré*9 (2008), 1069-1121. arXiv:0705.3609 Springer LINK MathSciNet[49] Superconformal field theory and operator algebras,

"Noncommutativity and Singularities", Adv. Stud. Pure Math. 55, (2009), 69-81. MathSciNet PDF file[50] (with S. Carpi, R. Hillier, R. Longo) Spectral triples and the super-Virasoro algebra,

*Commun. Math. Phys.*295 (2010), 71-97. arXiv:0811.4128 Springer LINK MathSciNet[51] From operator algebras to superconformal field theory,

*J. Math. Phys.*51 (2010), 015209. arXiv:1003.2925 AIP website MathSciNet[52] (with S. Carpi, R. Longo) On the Jones index values for conformal subnets,

*Lett. Math. Phys.*92 (2010), 99-108. arXiv:1002.3710 Springer LINK MathSciNet[53] (with S. Carpi, R. Longo) How to add a boundary condition,

*Commun. Math. Phys.*322 (2013), 149-166. arXiv:1205.3924 Springer LINK MathSciNet[54] (with S. Carpi, R. Hillier, R. Longo, F. Xu) N=2 superconformal nets,

*Commun. Math. Phys.*336 (2015), 1285-1328. arXiv:1207.2398 Springer LINK MathSciNet.[55] (with N. Suthichitranont) Construction of holomorphic local conformal framed nets,

*Internat. Math. Res. Notices*2014 (2014), 2924-2943. arXiv:1212.3771 Oxford University Press MathSciNet.[56] (with Y. Ogata, E. Størmer) Normal states of type III factors,

*Pacific J. Math.*267 (2014), 131-139. arXiv:1301.5737 Pacific Jouranl Site MathSciNet[57] (with M. Bischoff, R. Longo, K.-H. Rehren) Phase boundaries in algebraic conformal QFT,

arXiv:1405.7863[58] (with M. Bischoff, R. Longo, K.-H. Rehren) Tensor categories and endomorphisms of von Neumann algebras (with applications to Quantum Field Theory),

*SpringerBriefs in Mathematical Physics*Vol. 3, 2015. arXiv:1407.4793 MathSciNet[59] (with M. Bischoff, R. Longo) Characterization of 2D rational local conformal nets and its boundary conditions: the maximal case,

arXiv:1410.8848[60] (with S. Carpi, R. Longo, M. Weiner) From vertex operator algebras to conformal nets and back,

arXiv:1503.01260[61] Conformal field theory, tensor categories and operator algebras,

arXiv:1503.05675[62] A remark on gapped domain walls between topological phases,

*Lett. Math. Phys.*(to appear) arXiv:1504.01088