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Abstract. We classify compact abelian group actions on injective type III

factors up to conjugacy, which completes the final step of classification of compact

abelian group actions on injective factors.

§0 Introduction

The purpose of this paper is to provide a classification, up to conjugacy, of actions

of a (separable) compact abelian group on injective factors of type III (Theorem

3.1).

Studying automorphism groups has been a powerful and fruitful approach to

deepening our understanding of the structure of operator algebras, and the class of

injective factors, which are approximately finite dimensional, (AFD), by [C5], has

been the most important and well-studied. Group and groupoid actions on AFD

factors have been extensively studied in recent years by Jones [J] (for finite groups),
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Ocneanu [O] (for discrete amenable groups), Jones-Takesaki [JT] (for compact

abelian groups), and Sutherland-Takesaki [ST1] (for orbitally discrete amenable

groupoids), since Connes’ breakthrough [C2, C4] for integer actions. Sutherland-

Takesaki started a classification of amenable discrete group actions on AFD factors

of type IIIλ, 0 ≤ λ < 1, in [ST2], while [ST1] gave a complete classification only

on semifinite algebras, and Kawahigashi-Sutherland-Takesaki extended the classi-

fication of discrete abelian group actions to the case of type III1 in [KST]. Here

we classify (separable) compact abelian group actions on AFD factors of type III.

This completes the classification of compact abelian group actions on AFD factors

as the natural continuation of Jones-Takesaki [JT].

In §1, we prepare some technical results on automorphisms of AFD factors of type

III. The key is Theorem 1.2, by which we obtain a special type of approximation of

approximately inner automorphisms by inner automorphisms. Because we already

have a complete list of automorphisms of AFD factors of type III by [ST2, KST],

we check the property for each automorphism in the list.

Section 2 handles centrally ergodic actions of discrete abelian groups on AFD von

Neumann algebras of type III which are not necessarily factors. Such actions arise

as dual actions of compact abelian group actions. We heavily rely on the method

of [JT, ST1], but a new difficulty arises from the fact that the isomorphism class

of each fibre of the central decomposition of the algebra is not unique in general,

while it is unique in the semifinite case.

We apply the result of §2 to compact abelian group actions in §3 by Takesaki

duality. With the aid of inner invariant, we get a classification up to conjugacy. We
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also give an example. For prime actions with properly infinite fixed point algebras,

we obtain simpler classification result, which extends Thomsen’s result [Th].

Section 4 is devoted to detailed study of the 1-dimensional torus. We determine

all the possible combinations of types of the original factors and the crossed product

algebras for prime actions.

The basic references are Connes [C1] and Connes-Takesaki [CT] for type III von

Neumann algebras, and Jones-Takesaki [JT] and Sutherland-Takesaki [ST1,2] for

group actions. We use notations and results from these sources freely.

This work was started while the authors stayed at IHES and the Mittag-Leffler

Institute, continued during the stay of the second-named author at University of

Tokyo, and completed at Hokkaido University. The authors are grateful to these

institutions. The second named author was supported in part by NSF Grant-DMS

8908281, IHES, the Mittag-Leffler Institute and JSPS.

§1 Preliminaries on automorphism groups of AFD factors of type III.

Let M be an AFD factor of type III and M = N �θ R be the continuous

decomposition of M. Define maps

U(Z(N ))/T → U(M)/T � Aut(M | N ),

U(M)/T � Aut(M | N ) → Cnt(M),

by v �→ (v, σv) and (v, σ) �→ Ad(v) ·σ respectively, where σv is defined by σv(x) = x

for x ∈ N and σv(u(s)) = vθs(v∗)u(s) for the unitaries u(s) implementing θs in M.

Here Aut(M | N ) denotes the group of automorphisms which fix the subalgebra

N elementwise.
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Proposition 1.1. In the above context, the following sequence is exact:

1 −→ U(Z(N ))/T −→ U(M)/T � Aut(M | N ) −→ Cnt(M) −→ 1.

Hence Cnt(M) is a Polish group under the quotient group topology. In particular,

Cnt(M) is Borel in Aut(M).

Proof. We get the exactness at Cnt(M) by Theorem 1(ii) in [KST]. Exactness

at the other points is clear. Since U(Z(N )), U(M), and Aut(M | N ) are Polish

groups and U(Z(N ))/T is the quotient group by the compact group T, Cnt(M) is

also a Polish group, being the image of a continuous homomorphism. Q.E.D.

We need a special type of approximation for approximately inner automorphisms

of AFD factors of type III. This will be used when we apply the generalized

cohomology lemma in [Su2] to our problem.

Theorem 1.2. Let M be an AFD factor of type III, and ϕ be a dominant weight

on M. If an automorphism α of M is approximately inner, then there exist a

unitary u ∈ M and a sequence of unitaries {vn} in Mϕ such that α = Ad(u) ·

limn→∞ Ad(vn).

We need some lemmas for the proof.

Lemma 1.3. Let M be a factor of type III0 and ϕ a dominant weight on M. Let

M = Mϕ �θ R be the continuous decomposition of M and c be a θ-cocycle in

Z(Mϕ). Then for a positive integer n, there exist a θ-cocycle d on Z(Mϕ) and a

unitary u in M such that σ̄ϕc = Ad(u) · (σ̄ϕd )n.
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Proof. We have an isomorphism Φ : H1
θ (R,U(Cϕ)) → H1(Z,U(Cψ)) by Appendix

in [CT], where ψ is a faithful normal semifinite lacunary weight of infinite multi-

plicity and M = Mψ � Z is a discrete decomposition of M. (See also Theorem

3.1 in [ST2] and Corollary 5.6 in [HS].) Let [c′] = Φ([c]), where c′ is a 1-cocycle on

U(Cψ). Then there exists a 1-cocycle d′ on U(Cψ) such that (d′)n = c′ by taking an

n-th root in U(Cϕ). Setting [d] = Φ−1([d′]), we get σ̄ϕc ≡ (σ̄ϕd )n modulo Int(M).

Q.E.D.

Regard elements of Z1
θ (R,U(Cϕ)) as maps from R to a Polish group U(Cϕ), and

topologize Z1
θ (R,Z(Mϕ)) by uniform convergence on compact sets.

Lemma 1.4. Let M be a factor of type III0, ϕ a dominant weight on M, and M =

Mϕ �θ R the continuous decomposition of M. The map Σ : c ∈ Z1
θ (R,U(Cϕ)) �→

σ̄ϕc ∈ Aut(M) is continuous.

Proof. Both Z1
θ (R,U(Cϕ)) and Aut(M) are Polish groups. Since the map Σ : c �→

σ̄ϕc is a group homomorphism, it is enough to show that Σ is closed. Suppose cn → c

and σ̄ϕcn
→ σ as n→ ∞. Then σ is identity on Mϕ, so σ is of the form σ̄ϕd by the

relative commutant theorem in [CT]. Comparing σ̄ϕd (u(s)) and σ̄ϕcn
(u(s)) for the

unitaries u(s) implementing θs, we get limn→∞ cn(s) = d(s) in the strong topology

for all s ∈ R. Thus we have c = d, which shows the closedness of Σ. Q.E.D.

Next we approximate extended modular automorphisms by certain inner auto-

morphisms.

Lemma 1.5. Let M be an AFD factor of type III and ϕ be a dominant weight on

M. For an extended modular automorphism σ̄ϕc , c ∈ Z1
θ (R,U(Cϕ)), there exist a
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unitary u in M and a sequence of unitaries {vn} in Mϕ such that σ̄ϕc = Ad(u) ·

limn→∞ Ad(vn).

Proof. Case 1 (M is of type IIIλ, 0 < λ < 1): Let ψ be the Powers state on

⊗∞
j=1M2(C) corresponding to λ. Then we may assume ϕ = ψ ⊗ ω, where ω is a

weight on L(L2(R)) such that σωt = Ad(ρt). (Here ρt denotes the translation on

R by t.) Then σψ⊗Tr
t =

(
⊗∞
j=1Ad

(
1 0
0 λit

))
⊗ id|L(L2(R)), and setting vn =(

⊗nj=1

(
1 0
0 λit

))
⊗ 1 ∈ Mϕ, we get limn→∞ Ad(vn) = σψ⊗Tr

t . This completes

the proof in this case because σϕt ≡ σψ⊗Tr
t mod Int(M) by the Connes Radon-

Nikodym cocycle theorem.

Case 2 (M is of type III1): This case is proved in a way similar to the above,

by regarding the AFD factor of type III1 as a tensor product of the AFD factors of

type IIIλ and IIIµ, log λ/ log µ /∈ Q, by the uniqueness of the AFD factor of type

III1 [C6], [H].

Case 3 (M is of type III0): Let Cϕ ∼= L∞(X), and regard the flow θ of weights on

X as the flow built over the base {B,m,Q} under the ceiling function f : B → R+

as in §3 of [ST2]. Let v ∈ Z1(B �Q Z) be a cocycle such that L∞ · p∗([v]) =

[c] ∈ H1
θ (R,U(L∞(X))) in the notation of Theorem 3.1 in [ST2]. Then we have

a θ-cocycle c′ = p∗(v). It is enough to show that σ̄ϕc′ can be approximated by

Ad(vn) because σ̄ϕc ≡ σ̄ϕc′ mod Int(M). As in the proof of Theorem 4.4 in [HS],

an argument based on the Rohlin lemma shows that v can be approximated by

coboundaries wn in the strong topology. Then c′ is approximated by coboundaries

dn = p∗(wn) in our topology defined above by the definition of p∗. Let Ad(vn),
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vn ∈ Mϕ, be the inner automorphisms corresponding to σ̄ϕdn
. Then by Lemma 4,

we get σ̄ϕc′ = limn→∞ Ad(vn). Q.E.D.

Proof of Theorem 1.2. We may assume ϕ · α = ϕ replacing α by an inner

perturbation of α if necessary.

First note that if the conclusion holds for some α ∈ Aut(M), then it also holds

for ρ · α · ρ−1 for any ρ ∈ Aut(M). The reason is as follows. Suppose α = Ad(u) ·

limn→∞ Ad(vn), vn ∈ U(Mϕ). Since ρ(Mϕ) = vMϕv
∗ for some v ∈ U(M), ϕ being

dominant, there exists a sequence of unitaries wn in Mϕ such that ρ(vn) = vwnv
∗.

Then

ρ · α · ρ−1 = lim
n→∞Ad(ρ(u)ρ(vn)) = Ad(ρ(u)v) · Ad( lim

n→∞wnv
∗w∗

n) · lim
n→∞ Ad(wn).

We regard M = M0 ⊗̄R, ϕ = ϕ0 ⊗ tr, and M0,ϕ0 ⊗̄R ⊂ Mϕ, where M ∼= M0,

R is the AFD factor of type II1, and ϕ0 is a dominant weight on M0.

Assume first the asymptotic period pa(α) to be 0. Then by Theorem 2 in [C2],

we may assume α is of the form idM0 ⊗ σ, where σ is a free automorphism on R.

Since Int(R) = Aut(R), we are done.

Next assume pa(α) = p 
= 0. Then by Theorem 1(ii) in [KST], αp is of the form

Ad(w) · σ̄ϕc . By Lemma 1.3, take a cocycle d such that σ̄ϕc ≡ (σ̄ϕd )p mod Int(M).

Setting β = α·(σ̄ϕd )−1, we get po(β) = pa(β) = p because ϕ·α = ϕ and mod(α) = 1.

Thus by Theorem 2.7 of [O] (see also Theorem 1.5 of [C4]), we may assume β is

of the form idM0 ⊗ σp,γ , where γ is an obstruction of β and σp,γ is the model

automorphism of R with obstruction γ constructed in [C4]. Now α is of the form

σ̄ϕ0
d′ ⊗ σp,γ modulo inner automorphisms for some d′ ∈ Z1

θ (R,Z(M0,ϕ0 )) by the
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Connes Radon-Nikodym cocycle theorem. Thus Lemma 1.5 completes the proof.

Q.E.D.

§2 Centrally ergodic actions of discrete abelian groups on AFD von

Neumann algebras of type III.

We will classify centrally ergodic actions of (countable) discrete abelian groups

on AFD von Neumann algebras of type III up to cocycle conjugacy.

Let M be an AFD von Neumann algebra of type III, and α be an action α of

a discrete abelian group G on M. The case where M is a factor was handled in

[ST2] and §2 of [KST]. Here we do not assume that M is a factor. Instead we

assume that α is centrally ergodic, i.e., Z(M)α = C. Let M =
∫ ⊕

X

M(x)dµ(x)

be the central decomposition of M. Then each M(x) is an AFD factor of type

III by Proposition 6.5 in [C5]. (We ignore measure-zero sets here and later unless

specified otherwise.) Note that the isomorphism class of M(x) is not necessarily

unique. (See p. 405 of [T3] for instance.) This is different from the case where M

is semifinite and causes technical difficulty.

Lemma 2.1. In the above context, the map x ∈ X �→ Cnt(M(x)) is Borel in the

sense of [Su2].

Proof. This follows immediately from Theorem 3.1 (ii) in [Su2] and Proposition

1.1. Q.E.D.

Let H = {h ∈ G : αh|Z(M) = id}. For h ∈ H and x ∈ X, let αxh be the

automorphism of M(x) corresponding to αh in the central decomposition of M.
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Define N(x) = {h ∈ H : αxh ∈ Cnt(M(x))}. Then N(x) is constant on each G/H-

orbit, thus by Lemma 2.1 and the central ergodicity, N(x) is independent of x. We

denote it by N(α) ≡ N . Let M = Mϕ�θR be the continuous decomposition of M

for a dominant weight ϕ. We can define χα = [λα, µα] ∈ Λ(G,N(α),U(F(M))),

να = [cα] ∈ H1(F(M)), and mod(α) : G → Aut(F(M)) as in p. 437 of [ST2]

even though M is not necessarily a factor here. (Here F(M) denotes the flow of

weights of M.) The center Z(M) is then identified with the fixed point subalgebra

of F(M) under the flow. As in [ST2], ρ ∈ Aut(F(M)) can act on these invariants.

Theorem 2.2. If α and β are centrally ergodic actions of a discrete abelian group

G on M, then these are cocycle conjugate if and only if N(α) = N(β) and there

exists a ρ ∈ Aut(F(M)) such that

ρ|Z(M) · α|Z(M) · ρ|−1
Z(M) = β|Z(M),

ρ(mod(α), χα, να) = (mod(β), χβ , νβ).

It is clear that the conditions are necessary as in [ST2]. We will prove that these

conditions are also sufficient in this section. In the rest of this section, assume α

and β satisfy the conditions in the theorem. We will prove that α and β are cocycle

conjugate. We will follow the lines of [JT] and [ST1].

Identify Z(M) with L∞(X). Define a groupoid G by G = X � G. Setting

K = G/H and K = X �K, we can identify G with H × K as in Lemma 2.2.11 in

[JT].
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We extend ρ to an automorphism of M and replace α by ρ ·α ·ρ−1 so that α = β

on Z(M). We may and do assume that α and β have an invariant dominant weight

ϕ, and satisfy

(∗) αg(u(s)) = u(s) = βg(u(s)), g ∈ G, s ∈ R,

where {u(s)} is the one parameter unitary group corresponding to the continuous

decomposition M = Mϕ �θ R, by Lemmas 5.10, 5.11 and 5.12 in [ST2]. (The fact

that M is a factor was not used in [ST2].)

Lemma 2.3. There exists an action κ of a groupoid H × K on the unique AFD

factor R of type II1with χκ = 1 ∈ Λ(H×K, N,T) such that for each homomorphism

q of K into Ĥ , there exists a Borel map ρ : x �→ ρx ∈ Aut(R) with the following

properties:

ρy · κ1,k · ρ−1
x = Ad(uk) · κ1,k, for a cocycle uk;

ρx · κh,x · ρ−1
x = Ad(vh,x) · κh,x, for a cocycle vh,x;

uγκ1,k(vh,x) = 〈h, q(k)〉vh,yκh,y(uk), where k ∈ K : x �→ y.

Proof. This is nothing but Theorem 3.1 (b) in [ST1]. Q.E.D.

We regard this κ as the action of G on R ⊗̄ L∞(X).

According to the central decomposition M =
∫ ⊕

X

M(x)dµ(x), we get a decom-

position αg,x : M(x) → M(gx) of αg, where gx stands for the image of x by the
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transformation induced on X by αg. Based on the fact: M ∼=
∫ ⊕

X

M(x)⊗̄Rdµ(x),

we define the model action m of G on M by

mg,x = αg,x ⊗ κg,x : M(x) ⊗̄ R → M(gx) ⊗̄ R.

This m also satisfies the above condition (∗). We will prove that m and β are

cocycle conjugate, which is enough for the proof of Theorem 2.2.

For each x ∈ X, we have actions mx and βx of H on M(x). Now m and

β have the same invariants by construction. Hence by [ST2, Theorem 5.9] and

[KST, Theorem 19], mx and βx are cocycle conjugate for each x as actions of

H, thus there exist τx ∈ Aut(M(x)) and an mx
h-cocycle vxh for each x so that

τx · βxh · (τx)−1 = Ad(vxh) · mx
h. Integrating τx and vxh respectively based on the

von Neumann measurable cross-section theorem, we obtain τ ∈ Aut(M) and an

m-cocycle {vh} in M, so that τ · βh · τ−1 = Ad(vh) ·mh, h ∈ H. Now we replace

βh,k : M(x) → M(y) by τ y ·βh,k · (τx)−1, where (h, k) ∈ H×K and k : x �→ y. It is

enough to prove that this new β is cocycle conjugate to m. We will write βk = β1,k

and mk = m1,k. Summarizing the above change, we come to the situation:

βh = Ad(vh) ·mh, h ∈ H ; equivalently βxh = Ad(vxh) ·mx
h, h ∈ H.

Set

A0(x) = {(ρx, wxh) : ρx ∈ Aut(M(x)), ρx ·mx
h · (ρx)−1 = Ad(wxh) ·mx

h,

wxh is an mx
h-cocycle, h ∈ H},

B0(x) = {(Ad(ux), uxmx
h((u

x)∗)) : ux ∈ U(M(x))}.
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The group structure of A0(x) is given by

(ρx1 , w
x
h) · (ρx2 , vxh) = (ρx1ρ

x
2 , ρ

x
1(vxh)w

x
h),

and the topology of A0(x) is given by the topology of the semi-direct product of

Aut(M(x)) and U(M(x))H , the group of all functions of H into U(M(x)) equipped

with the product topology, as in page 242 of [JT]. The above group structure and

the topology of A0(x) may appear to be artificial. We should note, however, that

A0(x) can be viewed as the group of automorphisms of M(x) �mx H commuting

with the dual action m̂x of Ĥ under the identification:

(ρx, wx) �→ ρ̄ x ∈ Aut(M(x) �mx H)

where

ρ̄ x(a) = ρx(a), a ∈ M(x) ;

ρ̄ x(ux(h)) = wxhu
x(h), h ∈ H.

Here {ux(h)} is of course the unitary representation of H in the crossed prod-

uct. It then follows that B0(x) corresponds to the group of inner automorphisms

commuting with m̂x.

Since Ĥ is commutative, Ĥ , or more precisely its action via m̂x, is a closed

subgroup of A0(x), which consists of those elements (id, p), p ∈ Ĥ , regarding each

p ∈ Ĥ as an mx-cocycle: h → p(h) ∈ T. Define A(x) by A(x) = A0(x)/Ĥ and π
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to be the quotient map: A0(x) → A(x). It is a normal Borel subgroup of a Polish

group A(x).

We define nk ∈ Aut(M(y)) by nk = βkm
−1
k for k ∈ K : x �→ y. Since βxh =

Ad(vxh) ·mx
h, we have

nk ·my
h · n−1

k = βk ·mx
h · β−1

k

= βk · (Ad((vxh)
∗) · βxh) · β−1

k

= Ad(βk((vxh)
∗)) · βyh

= Ad(βk((vxh)
∗)vyh) ·my

h.

Define wkh = βk((vxh)∗)vyh, which can be shown to be an my
h-cocycle by a routine

calculation. This means the class [nk, wkh] of (nk, wkh) belongs to A(x).

Lemma 2.4. In the above context, [nk, wkh] belongs to B(y).

Proof. By the conditions (∗) and the definition of n, we know that nγ satisfies

ϕy · nγ = ϕy and nk(uy(s)) = uy(s) in M(y) for k ∈ K : x �→ y, where ϕx

and ux(s) are given by the central decompositions ϕ =
∫ ⊕

X

ϕx dµ(x) and u(s) =∫ ⊕

X

ux(s)dµ(x). We also know mod(nk) = 1, because m and β have the same

modules. Hence by [KST, Theorem 1. (i)], nk is approximately inner. By Theorem

1.2, we have a unitary u ∈ M(y) and a sequence of unitaries {vn} in M(y)ϕy such

that nk = Ad(u) · limn→∞ Ad(vn). Set ρ = limn→∞ Ad(vn) ∈ Aut(M(y)). Since

nk leaves ϕ invariant and mod(nk) = 1, nk commutes with the extended modular
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automorphism σ̄c corresponding to the continuous decomposition: M = Mϕ�θR.

We have also σ̄c · ρ = ρ · σ̄c, hence σ̄c ·Ad(u) = Ad(u) · σ̄c. Set

(n′k, w
′k
h) = (Ad(u), umy

h(u
∗))−1 · (nk, wkh) = (Ad(u∗)nk, u∗wkhm

y
h(u)).

For h ∈ N ⊂ H, we have my
h = Ad(ayh) · σ̄ϕ

y

cy(h), where ayh ∈ U(M(y)ϕy ) and

cy(h)(s) = (ayh)
∗θs(a

y
h) ∈ U(Z(M(y)ϕy )), see [ST2, Lemma 5.12. (iii)]. Hence,

Ad(w′k
ha
y
h) · σ̄ϕ

y

cy(h) = Ad(w′k
h) ·my

h = n′
k ·my

h · (n′k)−1 = Ad(n′k(a
y
h)) · σ̄ϕ

y

cy(h),

which implies that (i) there exists ckh ∈ U(Z(M(y))) = T such that

n′
k(a

y
h) = ckhw

′k
h a

y
h ;

(ii) w′k
k belongs to M(y)ϕy . Using µy(h, h′)ayhh′ = ayha

y
h′ , h, h′ ∈ N , and µy(h, h′) ∈

Z(M(y)ϕy ), we can show that ckh is a character of N , by a computation similar

to that in p. 243 of [JT]. We extend ck to a character c̄k of H. Therefore we

may assume ck = 1 by changing (n′k, w
′k
h) within its class in A(x). For simplicity,

we write (nk, wkh) for this new (n′k, w
′k
h). Now nk(a

y
h) = wkha

y
h, nk · my

h · n−1
k =

Ad(wkh) · my
h, and nk = limn→∞ Ad(vn) in our new notation, and it is enough

to show that (nk, wkh) can be approximated by elements in B0(x). The sequence

{(wkh)∗vnmy
h(v

∗
n)} is strongly central in M(y), and we get

(wkh)
∗vnmy

h(v
∗
n) = (wkh)

∗vnayhv
∗
n(a

y
h)

∗ → (wkh)
∗nγ(ayh)(a

y
h)

∗ = 1 as n→ ∞,
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for h ∈ N . Thus the same argument as in p. 244 of [JT] appealing to the 1-

cohomology vanishing theorem in the ultraproduct algebra of [O] completes the

proof. Q.E.D.

Proof of Theorem 2.2. We define a covariant Borel functor F from K to Polish

groups in the sense of [Su2, Definition 4.1] by

F (x) = Aut(M(x)),

Fk(ρ) = mk · ρ ·m−1
k , k ∈ K : x→ y and ρ ∈ F (x).

Define F -cocycles ρ1 and ρ2 by

ρ1(k) = nk, ρ2(k) = id, k ∈ K.

Then ρ1(k) ≡ ρ2(k)mod(B(r(k))). Thus the Cohomology Reduction Lemma, [Su2,

Theorem 5.5], entails the existence of θx ∈ Aut(M(x)), an mx-cocycle {wkh} and

ak ∈ M(r(k)) such that for k ∈ K : x→ y and h ∈ H,

θy · βk · θ−1
x = Ad(ak) ·mk,

θx ·mx
h · θ−1

x = Ad(wxh) ·mh.

We now follow the line of arguments of [JT, pages 247–248] and [ST1, pages 1111–

1112]. Since K is hyperfinite, {ak} can be chosen to be an m-cocycle. Recalling

βxh = Ad(vxh) ·mx
h, we replace βγ by θy ·βγ · θ−1

x where γ = hk ∈ H×K = G and set

bhk = θy(vyh)w
y
hmh(ak),
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so that we have now

(∗∗) βhk = Ad(bhk) ·mhk, hk ∈ H ×K.

It then follows easily that the map: h ∈ H �→ bhx ∈ U(M(x)) is an m-cocycle, and

that k ∈ K �→ bk = ak ∈ U(M(r(k))) is an m-cocycle also. As [ST1, Lemma 4.4],

we have

bgkmgk(bh
) = 〈h, q(k)〉bgkh
, g, h ∈ H; k, � ∈ K.

for some q ∈ Hom(K, Ĥ). By the construction of m, we can choose θx ∈ Aut(M(x))

and unitaries cγ ∈ U(M(r(γ))), γ ∈ G, such that

θy ·mγ · θ−1
x = Ad(cγ) ·mγ , γ ∈ G ;

cgkmgk(ch
) = 〈h, q(k) 〉 cgkh
, g, h ∈ H,k, � ∈ K ;

h ∈ H �→ chx ∈ U(M(x)) is an mx-cocycle ;

k ∈ K �→ ck is an m-cocycle.

With β as in (∗∗), we have, for γ ∈ G : x→ y ,

θy · βγ · θ−1
x = Ad(θy(bγ)cγ) ·mγ.

It is now routine to check that γ �→ θr(γ)(bγ)cγ is an m-cocycle over G, and that β

is cocycle conjugate to m. Q.E.D.

§3 Actions of compact abelian groups.
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Let A be a compact, (separable), abelian group. We define the dual invariant

∂(α) and the inner invariant ι(α) as in [JT, Definition 3.2.1] for each action α

of A on an AFD factor. With these two invariant, we complete the conjugacy

classification of actions of A on an AFD factor as follows:

Theorem 3.1. Let α and β be actions of a compact abelian group on an AFD

factor M of type III. Then we conclude:

i) α and β are cocycle conjugate if and only if

a) M �α A ∼= M �β A,

b) N(α̂) = N(β̂),

c) there exists an isomorphism θ of F(M �α A) onto F(M �β A) which con-

jugates the restriction of α̂ and β̂ to the center Z(M �α A) and Z(M �β A) and

θ(mod(α̂), χα̂, να̂) = (mod(β̂), χβ̂ , νβ̂).

ii) α and β are conjugate if ∂(α) = ∂(β) and ι(α) = ι(β).

Proof. i) Since M is properly infinite, stable conjugacy implies cocycle conjugacy.

Each fibre of the central decomposition of the crossed product algebra is semifinite

or of type III. Thus we get the theorem by Theorem 1.2 in [ST1] and Theorem 2.2

in each case, respectively.

ii) This follows from the proof of [JT, Proposition 3.2.2] without change.

Q.E.D.

We will construct an example of a T2-action α on an AFD factor M of type III1

in Example 3.4 such that all the fibres of the central decomposition of M �α T2

are not isomorphic. We prove Theorem 3.3 for computation of flow of weights of

crossed product algebras. (At the final stage of the preparation of this paper, we
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received a preprint of Sekine, who proves the same result as Theorem 3.3 as the

main theorem of [Se].)

Let M be an injective factor of type III and M = N �θ R be the continuous

decomposition of M. Thus we have a trace τ on the semifinite von Neumann algebra

N and the one-parameter automorphism group θ of N satisfying τ ·θt = e−t ·τ , and

θ on the center Z(N ) induces the flow of weights of M. Let N =
∫ ⊕

X

N (x)dµ(x)

be the central decomposition of N . Here each N (x) is isomorphic to the AFD

factor of type II∞, R0,1.

Lemma 3.2. Suppose α is an automorphism of N and commutes with θ in the

above context. If there exists a non-zero a ∈ N such that xa = aα(x) for all x ∈ N ,

then there exists a unitary u ∈ N and an element b ∈ Z(N ) such that α = Ad(u)

and a = u∗b.

Proof. Let a = hu be the polar decomposition of a with h = (aa∗)1/2. Since

aa∗ ∈ Z(N ), we have h ∈ Z(N ), and we get xu = uα(x) for all x. Let Z(N ) =

L∞(X,µ) and T be the transformation on X determined by (αf)(x) = f(T−1x),

f ∈ L∞(X,µ). Define Y = {x ∈ X : Tx = x}, and consider αx ∈ Aut(N (x)) arising

from the central decomposition for x ∈ Y . Define Y ′ = {x ∈ Y : αx ∈ Int(N (x))}.

The set Y ′ is invariant under the flow on X induced from θ because θ ·α · θ−1 = α,

and has a positive measure because uu∗ and u∗u are central projections. Thus we

get Y ′ = X, u is a unitary, and α = Ad(u). By xa = auxu∗, a is of the form u∗b

for b ∈ Z(N ). Q.E.D.

LetG be a discrete (countable) group, and α be an action of G on an injective von

Neumann algebra M of type III. For the continuous decomposition M = N �θ R,
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we may assume the action α keeps a dominant weight ϕ invariant, N = Mϕ, α

commutes with θ on N , and α keeps the implementing unitaries of θ invariant by

Lemma 5.11 in [ST]. We denote also by α the restriction of α on N . Let N(α) =

{n ∈ G : αn is inner on N .}, and choose a unitary vn ∈ N with αn = Ad(vn) for

n ∈ N(α). Let

R(µ∗α;Z(N )) = {
∑

n∈N (α)

anv
∗
nUn : an ∈ Z(N )} ⊂ N �α G,

where Ug denotes the implementing unitary of the crossed product algebra. Now

G and R act on R(µ∗α;Z(N )) by Ad(Ug) and θt. The product and the G-action

on R(µ∗α;Z(N )) is given by

anv
∗
nUn · amv∗mUm = anamµα(n,m)∗v∗nmUnm,

Ug(anv∗nUn)U
∗
g = αg(an)λα(g, gng−1)∗v∗gng−1Ugng−1 ,

This is why we use the notation R(µ∗α;Z(N )) for this algebra. For n ∈ N(α),

the automorphism αn of M is centrally trivial, and it is of the form αn = Ad(vn) ·

σ̄c(n,·) ∈ Aut(M), where σ̄ is an extended modular automorphism, by Theorem 1(ii)

of [KST]. Since αn(u(t)) = u(t) for the implementing unitary u(t) of M = N �θR,

the R-action on R(µ∗α;Z(N )) is given by

anv
∗
nUn �−→ c(n, t)∗θt(an)v∗nUn.

Let A = R(µ∗α;Z(N ))G, then the above R-action can be restricted to this commu-

tative algebra A = Z(N �α G). We denote this flow by F̃ .
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Theorem 3.3. In the above context, the flow of weights of M �α G is given by

(A, F̃t).

Proof. Since α and the modular automorphism σ of M commute, the flow of

weights of M�αG = N �α′ (G×R) is given by θ̄ on Z(N �αG) = (N ′∩N �αG)G,

where θ̄ is an extension of θ to N �α G.

We compute N ′ ∩ N �α G. Suppose
∑

g∈G xgUg commute with every y ∈ N ,

where xg ∈ N , and Ug is the implementing unitary of the crossed product algebra.

Then we get yxg = xgαg(y) for every y ∈ N , thus by Lemma 3.2, we get g ∈ N(α),

and xg is of the form v∗gag , where αg = Ad(vg) on N and ag ∈ Z(N ). Thus the

center Z(N �α G) is given by A as in the theorem. The flow on A given by θ is

exactly our F̃ . Q.E.D.

Now we can construct a T2-action on the AFD factor of type III1 such that the

isomorphism class of each fibre of the central decomposition of the crossed product

algebra is not unique.

Example 3.4. Consider the AFD factor R∞ of type III1, and the modular auto-

morphism group σt of R∞. For λ ∈ R \ Q, set M(λ) = R∞ �σ (Q + λQ). Then

as in p. 406 of [T3], we get a von Neumann algebra M =
∫ ⊕

R\Q
M(λ)dλ. Here

M(λ) and M(λ′) are isomorphic if and only if λ = aλ′ + b for some a, b ∈ Q,

a 
= 0. The ax + b-group (a, b ∈ Q, a 
= 0) defines the hyperfinite relation on

R \ Q, hence this relation is generated by a single transformation T on R \ Q by

[CFW]. Then we have M(λ) = M(Tnλ) for n ∈ Z and λ ∈ R \ Q. We define

αn,λ = id : M(λ) → M(Tnλ). This defines a Z-action α on M. We also define

another Z-action α′ on M with α′|Z(M) = id by α′
n,λ(x) = x, x ∈ R∞ ⊂ M(λ),
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and α′
n,λ(u(p)) = exp(ip)u(p), p ∈ Q + λQ, where α′

n,λ : M(λ) → M(λ) and

u(p) is the unitary implementing σp in M(λ). These α and α′ commute, hence

define a Z2-action. We denote it by α again. Then this action satisfies the assump-

tion of Theorem 3.3, thus we can compute the flow of weights of M �α Z2. Now

N ′ ∩ (N � Z2) is Z(N ) ∼= L∞(Q̂ × Q̂) ⊗̄ L∞(R \ Q). The fixed point algebra of

Z(N ) by the action of the second component of Z2 is now L∞(R \Q) because the

action is ergodic on N (λ) for λ ∈ R \Q \ 2πZ. Considering the fixed point algebra

under the action of the other Z, we get the flow of weights is the trivial flow on C.

Thus the crossed product algebra is the AFD factor R∞ of type III1. Let β be the

dual action of α on R∞. Then this β has the desired property.

In the rest of this section, we consider a faithful action α of a compact abelian

group A on an AFD factor M of type III with the condition that the fixed point

algebra Mα is a factor. Such an action is called prime. The fixed point algebra

is a factor if and only if the crossed product algebra M �α A is a factor by [P,

Corollary 4.7], and thus this condition is also equivalent to Γ(α) = Â. Thomsen

studied prime actions of compact abelian groups on AFD factors, and classified

them on semifinite AFD factors in [Th]. We apply Theorem 3.1 to prime actions

to obtain a classification result.

We assume that the fixed point algebra Mα is properly infinite. Because M is

of type III, Mα cannot be of type In, n < ∞, by [St, 3.4]. Thus we assume that

Mα is not of type II1. (Note that if Mα is of type II1, we can change α within its

stable conjugacy class so that Mα is of type II∞.)
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Then we know that α is a dual action by [Th, Theorem 4.3]. That is, we have

a full unitary spectrum by maximality argument as in [Th, Lemma 2.5] and adjust

Ug, g ∈ Â, by [Su1, Theorem 4.3.3] so that Ad(Ug) is an action on Mα. Lemma 5.10

in [ST2] shows that we have a dominant weight ϕ on Mα which is invariant under

the action Ad(Ug), by changing Ug if necessary. Let N = (Mα)ϕ. Then the action

Ad(Ug) of Â restricts on N . Define N(α) = {g ∈ Â : Ad(Ug) on N is inner.}. As

in [ST2, page 437], we can define χ ∈ Λ(Â,N(α),U(Z(N ))) and ν ∈ H1(Z(N ))

for Ad(Ug). We denote them by Ω(α) and Φ(α) respectively. These are conjugacy

invariants of α. We also define ∆(α) : Â→ Aut(Z(N )) by ∆(α)(g) = Ad(Ug)|Z(N ).

Lemma 3.5. The invariants N(α), Ω(α), Φ(α), ∆(α) are equal to N(α̂), χ(α̂),

ν(α̂), mod(α̂) in Theorem 3.1 i).

Proof. Because the actions Ad(Ug) and α̂ of Â are stably conjugate, we get the

conclusion. Q.E.D.

Now we get the following.

Theorem 3.6. Let α, β be prime actions of a compact abelian group A on an AFD

factor M of type III with properly infinite fixed point algebras. Then α and β are

conjugate if and only if N(α) = N(β) and there is an isomorphism θ : Mα → Mβ

with θ(Ω(α),Φ(α),∆(α)) = (Ω(β),Φ(β),∆(β)).

Proof. By Theorem 3.1 ii) and Lemma 3.5, it is enough to show ι(α) = ι(β).

Because the fixed point algebras are properly infinite factors, this is proved as in

(3.2.3) and (3.2.4) in [JT]. Q.E.D.
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Remark 3.7. Thomsen studied prime actions on semifinite AFD factors in [Th],

and he also obtained the above theorem in the case Mα ∼= R0,1 [Th, Theorem 8.1].

We extend his result so that the type III fixed point algebra case is included as

above.

We now close the section with a brief discussion on the case where Mα is a factor

of type II1. As seen in the structure analysis of a factor of type IIIλ, 0 < λ < 1,

[T1], there exists an action of the one dimensional torus group T whose fixed point

algebra is a factor of type II1, yet it is not dual. On the other hand, if Mα is a

factor, then α ⊗ id on M ⊗̄ L(�2) is dominant, and hence it is dual. Therefore,

any prime action α of a compact abelian group A on an AFD factor of type III

is conjugate to a reduction of a dominant action α̃ of A by a projection in the

fixed point algebra of α̃, which means that the conjugacy comparison of two prime

cocycle conjugate actions is reduced to the equivalence analysis of projections in the

fixed point algebra under α̃. In the case that Mα is a finite factor. The comparison

of projections in Mα̃ is nothing but the comparison of the relative dimension of

the projections. In the next section, we will discuss prime actions more in detail

for the group T.

§4 Actions of the 1-dimensional torus T.

In this section, we make a detailed study of actions of the 1-dimensional torus

T on AFD factors M of type III. We identify T with R/Z.

Theorem 4.1. Let M be an AFD factor of type III, and α be an action of T on

M with Γ(α) = Z. Then the possible combinations of types of M and N = M�αT

are as follows.
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Type of N
III0 IIIλ III1 II∞

III0 � � × ×
Type of M IIIλ � © © ©

III1 © © © ×

Here “IIIλ” means “IIIλ(0 < λ < 1)”.

The symbol © means all the combinations are possible.

The symbol � means only some combinations are possible.

The symbol × means no combinations are possible.

Proof. We will give a proof for each case. Now N is a factor because Γ(α) = T̂.

Case 1 (N is of type II∞): It is clear.

Case 2 (N is of type III1): Let β = α̂ ∈ Aut(M). If pa(β) = 0, then β is unique

up to outer conjugacy by Theorem 1(i) in [KST] and Theorem 2 in [C2]. In this

case, M is of type III1.

Let pa(β) = p 
= 0. Then we may assume βp = Ad(u) · σϕT , u ∈ U(Nϕ), for a

dominant weight ϕ on N by Theorem 1(2) in [KST]. Because N �βZ is isomorphic

to a factor M by Takesaki duality (Theorem 4.5 in [T2]), po(β) = 0 and T 
= 0.

Let β(u) = γu, γ = exp(2πik/p). Then by Theorem 3.3, we know that the flow

of weights of M is periodic with period exp(−pT/k). Here T can be any non-zero

number.

Case 3 (N is of type IIIλ(0 < λ < 1)): Suppose pa(β) = p 
= 0 first. Then βp

may be assumed to be of the form Ad(u) · σϕT as above. Then by Theorem 3.3, the

flow of weights of M is given by (L∞(T) ⊗ L∞(T))mod(β)×S, where the flow is

given by the speed − log λ and T on the first and second components respectively,
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and S is given by the rotation by k/p, β(u) = exp(2πik/p)u. Here we have all

the possibilities III0, IIIµ(0 < µ < 1), and III1. But we cannot get all the AFD

factors of type III0, because we can construct only type III0 factors with the flow

of weights having pure point spectrum. Again, T can be any non-zero number.

If pa(β) = 0, then the flow of weights of M is given by L∞(T)modβ , where the

flow on L∞(T) is given by the speed − logλ. We get factors of type III1 and IIIµ,

where log µ = (log λ)/n for some n ∈ N.

Case 4 (N is of type III0): If pa(β) = 0, then the flow of weights of M is given by

F(N )modβ . This can be of type III0, of course. If F(N ) is a flow under the constant

ceiling function, then we can make a factor of type IIIλ(0 < λ < 1). By using θT as

mod(β) for some T , we can get a factor of type III1. (If θT is not ergodic on F(N )

for some T 
= 0, then the original flow is a flow under the constant ceiling function.

Then we can use another θT ′ with T ′/T /∈ Q as an ergodic transformation.)

If po(β) = p 
= 0, then as in Case 3, we know that the flow of weights of M is

given by (F(M) ⊗ L∞(T))mod(β)×S, where S is defined as above. Q.E.D.

We consider actions α of T with Γ(α) 
= Z next. If Γ(α) = pZ for some p 
= 1, 0,

then we may assume α has a period 1/p by changing α within its cocycle conjugacy

class if necessary by Corollaire 2.3.1 and Lemma 2.3.14 in [C1]. Then an action α

has the full Connes spectrum as an action of T/(Z/p). So these are reduced to the

above case.

Finally we consider the case Γ(α) = {0}. In this case, Z = T̂ acts on X freely

because of Γ(α) = {0}, where Z(M �α T) = L∞(X). So we have H = {0} for α̂

25



in the notation in §2. Thus we do not have characteristic invariants nor modular

invariants. Hence, these are classified by modules.
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