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Abstract.

We present an operator algebraic approach to superconformal field
theory and a classification result in this framework. This is based on a
joint work with S. Carpi and R. Longo

§1. Introduction

This is a review on operator algebraic approach to superconformal
field theory based on a joint work [6] with S. Carpi and R. Longo.

In general, we study quantum fields in quantum field theory. From a
mathematical viewpoint, they are certain operator-valued distributions
on a spacetime and often called Wightman fields. We also need to fix a
certain type of a spacetime symmetry group on the spacetime.

An operator algebraic approach to quantum field theory is called an
algebraic quantum field theory [19] and has been studied for more than
40 years. When we deal with operator-valued distributions, they cause
technical difficulties since they are distributions, rather than functions,
and they usually produce unbounded operators. In algebraic quantum
field theory, we deal with a family of algebras of bounded linear operators
instead, and their algebraic operations are much easier to handle.

A basic idea in algebraic quantum field theory is as follows. In one
quantum field theory on one spacetime, we assign to each (bounded) re-
gion in the spacetime an algebra of bounded linear operators generated
by observables on the region. Recall that observables are represented
by (generally unbounded) self-adjoint operators in quantum mechanics.
Our operator algebras are assumed to be closed under the adjoint op-
eration and the weak operator topology, and such an operator algebra
is called a von Neumann algebra. On the Hilbert space on which these
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operators act, we also assume to have a projective unitary representa-
tion of the spacetime symmetry group. Thus one quantum field theory
is described with a Hilbert space, a family of von Neumann algebras
parameterized by spacetime regions and a projective unitary represen-
tation of the spacetime symmetry group, subject to certain set of phys-
ically natural axioms. We also have a distinguished vector representing
a vacuum on this Hilbert space.

We review conformal (quantum) field theory before dealing with
superconformal quantum field theory. In conformal field theory, we work
on a (1 + 1)-dimensional Minkowski space with conformal symmetry,
which is explained below. Then we can restrict the theory onto the two
light rays {(x, t) | x = ±t} and their compactifications, where x, t are the
space and time coordinates of the (1 + 1)-dimensional Minkowski space.
In this way, we have two restricted theories and each of such two is
called a chiral conformal field theory. An operator algebraic formulation
of a chiral conformal field theory is given as follows. (See [24] for a
more precise formulation. Also see [25] for a formulation on the (1 + 1)-
dimensional Minkowski space and the exact meaning of the “restriction”
procedure. A boundary conformal field theory can be studied in a similar
framework [34, 29]. See [9] for other aspects of conformal field theory
including more physical discussions.)

Now the space and time are mixed and compactified into a one-
dimensional circle S1. A spacetime region is an interval I which is a
non-empty, non-dense, connected open subset of S1. We have a corre-
sponding von Neumann algebra A(I) for each such interval I, all acting
on the same Hilbert space.

We explain basic axioms as follows.
If we have a larger spacetime region, we expect to have more ob-

servables, hence a larger operator algebra. That is, for intervals I1 ⊂ I2,
we assume to have A(I1) ⊂ A(I2). This axiom is called isotony.

On the (1 + 1)-dimensional Minkowski space, if we have two space-
like separated regions, we have no interactions between them, so two
observables on two respective regions commute. In a chiral conformal
field theory after restriction on a compactified light ray, this condition
takes an even simpler form. That is, when we have two disjoint intervals
I1, I2, our axiom requires [A(I1), A(I2)] = 0, where the bracket means
the commutator. This axiom is called a locality axiom.

Now our “spacetime symmetry” group is the conformal group Diff(S1),
that is, the group of orientation group preserving diffeomorphisms on S1.
We assume to have a projective unitary representation U of this group
on the Hilbert space satisfying U(g)A(I)U∗(g) = A(gI), where gI is the
image of the interval I under the diffeomorphism g. We further assume
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to have U(g)xU∗(g) = x for x ∈ A(I) if g acts as the identity on I. This
axiom is called conformal covariance.

We further assume that U restricts to a unitary representation of
the Möbius group Möb, identified with PSL(2, R), and this restriction
has a unit invariant vector Ω, unique up to phase. This vector Ω is
called a vacuum vector. The restriction of U to the rotation group gives
a one-parameter unitary group. We assume its generator is positive.
This axiom is called positivity of the energy.

The above net is sometimes called bosonic. We now modify the
above definition and present a fermionic counterpart to deal with a su-
persymmetric theory.

First we denote the n-cover of Möb by Möb(n) for n = 1, 2, 3, . . . ,∞.
Note that Möb(2) and Möb(∞) are naturally identified with SL(2, R) and
the universal cover of Möb, respectively.

We now assume to have a Z2-grading Γ on the Hilbert space sat-
isfying ΓΩ = Ω, Γ2 = Id, and ΓA(I)Γ = A(I) for all intervals I. We
write γ for Ad(Γ) and for each element x in some A(I), we say that
x is bosonic [fermionic] if γ(x) = x [γ(x) = −x], respectively. We can
naturally define the graded commutator and still use the same symbol
[x, y] for it.

Now the locality axiom takes the form [x, y] = 0 for x ∈ A(I1),
y ∈ A(I2) with I1 ∩ I2 = ∅, which is the formula as before, but now we
mean the graded commutator by [x, y]. This is called graded locality.

Note that for a graded local net A, the fixed point subnet Aγ , called
the Bose subnet of A, satisfies the usual locality.

Let Diff(2)(S1) and Diff(2)
I (S1) be the 2-cover of Diff(S1) and the

connected component of the identity of the preimage of DiffI(S1) in
Diff(2)(S1), respectively. (Here the group DiffI(S1) consists of orienta-
tion preserving diffeomorphisms acting trivially on the complement of
I.) Then the conformal covariance for a graded local net means the
following.

We have a projective unitary representation U extending the uni-
tary representation of Möb(2) satisfying U(g)A(I)U∗(g) = A(ġI) for
g ∈ Diff(2)(S1) and U(g)xU∗(g) = x for x ∈ A(I ′) and g ∈ Diff(2)

I (S1).
Here ġ represents the image of g under the natural quotient map onto
Diff(S1), and I ′ is the interior of the complement of I.

A graded local net with conformal covariance is called a Fermi con-
formal net. This is our mathematical object to study.

Now at the end of this section, we briefly mention a theory of vertex
operator algebra, which is another mathematical framework to study a
chiral conformal field theory. A vertex operator is the name for a certain
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operator-valued distribution, and this notion gives a direct algebraic ax-
iomatization of Wightman fields on the circle S1. See [14] for a detailed
treatment. A discovery of mysterious relations between sporadic finite
simple groups and elliptic modular functions predates this theory. Af-
ter the initial discovery due to McKay, a general conjecture called the
Moonshine conjecture was established by Conway and Norton [8]. The
theory of vertex operator algebras gives a realization of a new predicted
algebraic structure and the Moonshine conjecture has been solved by
Borcherds [2].

One local conformal net and one vertex operator algebra are both
supposed to describe one conformal field theory, so we should have a
mathematical theorem on a bijective correspondence between local con-
formal nets and vertex operator algebras, at least under natural extra
assumptions on some kind of finiteness. The Hilbert space for a local
conformal net should be a completion of the underlying space of a vertex
operator algebra, and the von Neumann algebras should be generated
by smeared vertex operators. However, no such theorems have been
known so far, unfortunately. Still, if one has an example, a construc-
tion or a technique for one of them, it is often possible to “translate”
it to the other side. (Note that unitarity, existence of a positive defi-
nite inner product on the underlying space, is an essential part of the
operator algebraic approach and we cannot drop this assumption, while
vertex operator algebras without unitarity have been often studied. So
the “translation” is actually for local conformal nets and unitary vertex
operator algebras.) See [27, 23] for more on relations between the two
approaches. For example, we have a construction of an operator alge-
braic counterpart of the Moonshine vertex operator algebra [27] based
on [10].

There is also a super version of vertex operator algebras. See [20]
for a recent progress in this approach.

§2. Representation theory of Fermi nets

Representation theory is a very useful tool to study local/Fermi con-
formal nets. This is one of the main advantages of the operator algebraic
approach, while the counterpart for vertex operator algebras, theory of
modules, has a more complicated general theory. For a Fermi confor-
mal net A, a slight adaptation of the classical Doplicher-Haag-Roberts
theory [11] gives a framework to study representations as follows.

A DHR representation of a net A is a pair of a family of represen-
tations λI of A(I) on the same Hilbert space with λI2 |A(I1)= λI1 for
I1 ⊂ I2 and a projective unitary representation Uλ of the universal cover
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Diff(∞)(S1) of Diff(S1) on the same Hilbert space with

λġI(U(g)xU∗(g)) = Uλ(g)λI(x)U∗
λ(g),

for x ∈ A(I) and g ∈ Diff(∞)(S1).
For the net A, we can define a certain universal C∗-algebra C∗(A)

generated by A(I)’s with I ⊂ S1. Then any DHR representation λ is
given, up to unitary equivalence, by a certain type of endomorphism,
called a localized endomorphism, of C∗(A), as long as the Hilbert space
involved is separable. Then we can compose such endomorphisms and
this composition gives a right notion of a tensor product for representa-
tions. (Note that there are no obvious notions of a tensor product for
representations of a family of algebras.) If we have a DHR representa-
tion of a Fermi conformal net A, then it gives a DHR representation of
its Bose subnet Aγ .

Now we recall some results on representation theory for local confor-
mal nets A. The tensor product operation of representations makes the
representation category a tensor category. It is known that the tensor
category is actually braided [13]. Fix an interval I. Then a localized
endomorphism λ actually gives an endomorphism of A(I) (after a possi-
ble change of representative within the unitary equivalence class). Then
for the inclusion λ(A(I)) ⊂ A(I), we have a notion of the Jones in-
dex [22], which measures the relative size of A(I) with respect to the
subalgebra λ(A(I). The index [A(I) : λ(A(I))] takes a real value in
the interval [1,∞] and this number is independent of I. (Actually, the
von Neumann algebra A(I) is a so-called type III factor, and we need
Kosaki’s version of the Jones index.) A von Neumann algebra is called
a factor when its center is trivial and now each A(I) is automatically
a factor. The subalgebra λ(A(I)) is automatically isomorphic to A(I),
so in particular it is also a factor, and called a subfactor. Jones [22]
initiated a systematic study of theory of subfactors. Longo [30, 31] has
shown that the square root of the Jones index [A(I) : λ(A(I))] is equal
to the statistical dimension of λ, which plays the role of a dimension of
the representation in the Doplicher-Haag-Roberts theory. See [12] for a
general theory of subfactors and its connection to various topics such as
quantum invariants in 3-dimensional topology.

In some very nice situation, we have only finitely many unitary
equivalence classes of DHR representations of a local conformal net A
and all have finite statistical dimensions. A similar situation has been
well studied in theory of quantum groups and the terminology “rational”
has been used to express this situation. In [28], we have introduced a
notion called complete rationality as an operator algebraic counterpart
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of this rationality. Then we have proved the following theorem [28,
Theorem 33].

Theorem 1. Let A be a local conformal net on the circle satisfying
the following conditions.

(1) It has a split property.
(2) The Jones index for a subfactor A(I1)∨A(I3) ⊂ (A(I2)∨A(I4))′

is finite, where we split the circle into four intervals I1, I2, I3, I4

in this order, say, counterclockwise.
(3) It is strongly additive.

Then the number of irreducible DHR representations of A, up to unitary
equivalence, is finite and all have finite dimensions. Furthermore, the
braiding on these representations is nondegenerate.

When we have the above three conditions for A, we say that A
is completely rational. The third assumption on strong additivity has
been later shown to be redundant in [35]. The first condition, the split
property, is known to hold if the vacuum character Tr(exp−tL0) is con-
vergent for all t > 0, where L0 is the conformal Hamiltonian, so the main
condition of complete rationality is the finiteness of the Jones index. The
nondegeneracy of the braiding of the representation category is called
modular in the sense of Turaev [37]. This notion plays an important role
in theory of quantum invariants in 3-dimensional topology [37]. Rehren
[36] showed that we have a unitary representation of SL(2, Z) for such
a modular tensor category where the dimension of the representation
is the number of unitary equivalence classes of irreducible representa-
tions. That is, this representation arises from the structure of braiding.
In all the known concrete examples, this representation coincides with
the one arising from linear fractional transformations on the characters
of the representations, which has a well-established general theory for
vertex operator algebras as in [21, 45]. In [26], we have called a local
conformal net with such coincidence modular, but we do not have a nice
characterization of such local conformal nets. The action of SL(2, Z) is
very important in many aspects of conformal field theory, and its role
in classification theory, as we will see below, is one of such examples of
this importance.

We have a natural notion of an extension A(I) ⊂ B(I) for local
conformal nets. Such a situation was first systematically studied in [33]
under the name of nets of subfactors. An extension with (

∨
I A(I))′ ∩

B(I0) = C, for some, hence all I0, is said to be irreducible. In a usual
representation theory for groups, we have a notion of an induced repre-
sentation for a subgroup H ⊂ G, which produces a representation of the
larger group from one for the smaller group. For a net of subfactors, we
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have a similar notion called an α-induction. For a DHR representation
λ of A, we have an α-induction αλ of λ, but this induction procedure
depends on a choice of braiding (of λ and the so-called dual canonical
endomorphism of the extension), so we use a symbol α±

λ to denote the
choice of over/under crossing. Furthermore, the induced “representa-
tion” is not a genuine DHR representation in general, but a so-called
soliton representation. (Actually, this α-induction is more similar to re-
striction rather than to induction in the classical situation, but we use
the name α-induction.) This α-induction was first defined in [33], and
many interesting properties and examples were given in [39]. We have
unified this theory of α-induction in [1] with Ocneanu’s graphical cal-
culus. In particular, we have shown the following theorem [1, Theorem
5.7]. Actually, this holds for a more general braided tensor category, as
explained in [1].

Theorem 2. Let Zλ,µ = dim Hom(α+
λ , α−

µ ). Then the matrix Z is
a modular invariant, which means that the matrix Z is in the commutant
of the image of the unitary representation of SL(2, Z) arising from the
braiding of the DHR representations of the local conformal net, each
Zλ,µ is a nonnegative integer, and Z00 is 1, where 0 denotes the vacuum
representation.

If a completely rational local conformal net A is given, its any ex-
tension B produces a modular invariant matrix Z through the above
procedure. The number of possible matrices Z is always finite and often
very small for a given modular tensor category. Together with Longo’s
notion of Q-system [32, 33], we can, in principle, classify all (irreducible)
extensions B of A.

§3. Classification results for superconformal nets with c < 3/2

First we review our previous classification result for local conformal
nets with small central charge [24].

When we have conformal covariance for a local net A, the Hilbert
space also has a unitary representation of the Virasoro algebra, which
is an infinite dimensional Lie algebra generated by Ln, n ∈ Z, and one
central element c with the relations

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 − m)δm+n,0.

It has been known [15] that the central element c is mapped to a posi-
tive scalar for an irreducible representation and the value is of the form
1 − 6/m(m + 1), m = 3, 4, 5, . . . , if it is less than 1. The unitary rep-
resentation of the Virasoro algebra arising from conformal covariance is
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not irreducible in general, but still one has that the central element c
is mapped to a scalar. In this way, we obtain a numerical invariant,
called the central charge, of a local conformal net A. This number is
also denoted by c. The representation of the Virasoro algebra produces
a local conformal subnet of A, called the Virasoro net, and if c < 1, then
one can show that A is an irreducible extension of the Virasoro net. In
this way, a classification of A with c < 1 reduces to a classification of
irreducible extensions of the Virasoro nets with c < 1.

The Virasoro nets can be also realized with the coset construction
[18]. In the operator algebraic framework, the coset construction has
been studied well by Xu [41, 42, 43]. The case of the Virasoro net with
c < 1 uses Wassermann’s construction of the local conformal nets cor-
responding to the Wess-Zumino-Witten models SU(2)k [38]. By using
another paper of Xu [40] together, one can show that the Virasoro nets
with c < 1 are completely rational in the sense of [28]. The modu-
lar invariant matrices for the representation categories of these Virasoro
nets have been classified by [5], and we have shown in [24] that the
so-called type I modular invariant matrices in the classification list of
[5] are in a bijective correspondence to the local conformal nets with
c < 1. (For uniqueness of the local conformal net corresponding to each
modular invariant matrix, also see [25].) In this way, we have obtained
a first classification result in algebraic quantum field theory as follows
[24, Theorem 5.1].

Theorem 3. The following is a complete list of the local conformal
nets on the circle with central charge less than 1.

(1) The Virasoro nets with c = 1 − 6/m(m − 1).
(2) The index 2 extensions of the Virasoro nets with c = 1 −

6/m(m − 1), where m ≡ 1, 2 mod 4.
(3) The four exceptionals at c = 1 − 6/m(m − 1), where m =

11, 12, 29, 30.

The four exceptionals in the list arise from the modular invariants la-
beled with pairs of the Dynkin diagrams (A10, E6), (E6, A12), (A28, E8),
(E8, A30). Three of them with m = 11, 12, 30, can be constructed with
another known construction, the coset construction, but the other one
with m = 29 does not seem to arise from any other known constructions.
This new construction has been generalized as a mirror extension [44].

The vertex operator algebras corresponding to the Virasoro nets
with c < 1 and their extensions of index 2 are well-known. A result of
Huang, Kirillov and Lepowsky on extensions of vertex operator algebras
ensures that we do have vertex operator algebras corresponding to the
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four exceptionals, including the one at m = 29, but we do not have a
good understanding on what it really is.

Now we work on superconformal nets. As a “super” version of the
Virasoro algebra, we have two super Virasoro algebras and they are the
super Lie algebras generated by even elements Ln, n ∈ Z, odd elements
Gr, and a central even element c, satisfying the relations,

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 − m)δm+n,0,

[Lm, Gr] =
(m

2
− r

)
Gm+r,

[Gr, Gs] = 2Lr+s +
c

3

(
r2 − 1

4

)
δr+s,0,

where we have r ∈ Z + 1/2 in the Neveu-Schwarz case and r ∈ Z in
the Ramond case. The corresponding super Lie algebras are called the
Neveu-Schwarz and Ramond algebras. We can define the central charge
again for representations, and now the discrete part of the possible values
is up to the value 3/2. Again by using a (different) coset construction
involving the SU(2)k-models, one can construct the super Virasoro nets
with c < 3/2, and again, their Boson parts are completely rational, so
we can apply the above procedure to classify irreducible extensions. We
now define such irreducible extensions to be superconformal nets with
c < 3/2. (The discrete part of the local conformal nets is given by the
condition c < 1 as above. Now the discrete part of the superconformal
nets is given by the condition c < 3/2, since we have contribution 1 from
a boson and 1/2 from a fermion.)

We first need a classification of modular invariant matrices for the
modular tensor categories arising from the representations of the Boson
parts of the super Virasoro nets with c < 3/2. Such a classification list
was proposed by Cappelli [4], and certain completeness of the classifica-
tion list has been shown in [16, 17] for the case without so-called fixed
point resolution. The modular tensor categories for the case having the
fixed point resolution have been studied in [42], so with this result, one
can extend the method of [16, 17] to show completeness of the classifi-
cation list of the modular invariant matrices. In this way, we reach a
complete classification of superconformal nets with c < 3/2 as follows
[6, Theorem 36]. (We first classify extensions of the Boson parts of the
super Virasoro nets and deal with Fermionic extensions after that.)

Theorem 4. The following gives a complete list of superconformal
nets with c < 3/2, together with the labels for the modular invariants.



paris06.tex : 2008/8/4 (10:16) page: 10

10 Y. Kawahigashi

(1) The super Virasoro net with c =
3
2

(
1 − 8

m(m + 2)

)
, labeled

with (Am−1, Am+1).
(2) Index 2 extensions of the above (1), labeled with (A4m′−1, D2m′+2),

(D2m′+2, A4m′+3).
(3) Six exceptionals labeled with (A9, E6), (E6, A13), (A27, E8), (E8, A31),

(D6, E6), (E6, D8).

Again some of the exceptionals can be realized with the coset con-
struction, and others with the mirror extension of [44].

At the end, we mention that some connections to noncommutative
geometry of Connes [7] have been expected and one possible direction is
given as follows [26, Theorem 30].

Theorem 5. Let A be a Fermi conformal net and λ a supersym-
metric irreducible representation of A. Then

ind(Qλ+) =
d(ρ)
√

µA

∑
ν∈R

Φν(ε(ρ, ν)∗ε(ν, ρ)∗)d(ν)null(ν, c/24),

where ρ is one of the two irreducible components of λb.

Here d(ρ) is the dimension of ρ, µA is the µ-index of A, which is the
square sum of the dimensions of all irreducible representations of the net
A. A supersymmetric representation λ means that we have

Hλ − c

24
= Q2

λ,

where Hλ is the conformal Hamiltonian and Qλ is some odd selfadjoint
operator called the supercharge and ind(Ql+) is the Fredholm index of
the upper off diagonal part of Qλ. The symbol null(ν, h) denotes the
dimension of the kernel of Hν − h. The set R is the set of σ-Fermi
irreducible sectors of Boson part Ab. A sector ν of Ab is said to be
σ-Fermi if the monodromy of ν and σ is trivial, where σ is the sector of
Ab dual to the grading of A. The symbol Φν denotes the left inverse of
ν and ε means the braiding. Note that Φν(ε(ρ, ν)∗ε(ν, ρ)∗) is a complex
number.

In this theorem, the Jones index and the Fredholm index are related,
while these have been unrelated despite their common name.

Also see [3] for a recent, but different treatment of supersymmetry
within algebraic quantum field theory.
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